Renee Collins	Luminant
Sr. Director	6555 Sierra Drive.
Environmental Services	Irving, TX 75039
Renee.collins@luminant.com	T 214.875 .8383
	C 214.406 .2452
	F 214.875 .8699

Delivered via FedEx and Electronically via IHWPER@tceq.texas.gov
January 21, 2022
Industrial and Hazardous Waste Permits Section - MC-130
Gulay Aki, P.E., Manager, Building-F
Waste Permits Division
TCEQ
12100 Park 35 Circle
Austin, TX 78753
RE: Coal Combustion Residuals (CCR) Registration Application Coleto Creek Power Station
Solid Waste Registration No. 31911

Please find enclosed the CCR Registration Application materials for the Coleto Creek Power Station.

If you have any questions or require any additional information, please contact Eric Chavers at 903-389-6062 or by e-mail at eric.chavers@luminant.com.

Sincerely,

Renee Collins
Attachments: CCR Registration Application and Attachments

Texas Commission on Environmental Quality

Registration Application for Coal Combustion Residuals (CCR) Waste Management

I. General Information

1. Reason for Submittal

Type of Registration Application
\boxtimes New $\quad \square$ Major Amendment
\square Notice of Deficiency (NOD) ResponseTransferName ChangeOther

2. Application Fees

\$150 Application Fee
Payment MethodCheck \boxtimes Online through ePay portal <www3.tceq.texas.gov/epay/>
If paid online, enter ePay Trace Number: 582EA000467502

3. Facility Information

Facility information must match regulated entity information on the Core Data Form.
Applicant: \square Owner \square Operator \boxtimes Owner/Operator
Facility TCEQ Solid Waste Registration No: 31911
Facility EPA ID: TXD000836999
Regulated Entity Reference No. (if issued): RN100226919
Facility Name: COLETO CREEK POWER STATION
Facility (Area Code) Telephone Number: 361-788-5100
Facility physical street address (city, state, zip code, county): 45 FM 2987, FANNIN, TX, 77960, GOLIAD
Facility mailing address (city, state, zip code, county): 6555 Sierra Drive, Irving, TX 75039
Latitude (Degrees, Minutes Seconds): $28^{\circ} 42^{\prime} 49^{\prime \prime}$
Longitude (Degrees, Minutes Seconds): $97^{\circ} 12^{\prime} 50^{\prime \prime}$

4. Publicly Accessible Website

Provide the URL address of a publicly accessible website where the owner or operator of a CCR unit will post information.
https://www.luminant.com/ccr/

5. Facility Landowner(s) Information

Facility landowner(s) name: COLETO CREEK POWER, LLC
Facility landowner mailing address: 6555 Sierra Drive
City: Irving State: TX Zip Code: 75039
(Area Code) Telephone Number: 214-875-8338
Email Address (optional):

6. CCR Waste Management Unit(s)

Landfill Unit(s) \boxtimes Surface Impoundment(s)
For each existing landfill, new landfill and lateral expansion, existing surface impoundment, and new surface impoundment and lateral expansion(s) provide information on type of waste, the registered unit(s) in which they are managed, and sampling and analytical methods.

Submit the following tables:
Table I.6. - CCR Waste Management Units;
Table I.6.A. - Waste Management Information;
Table I.6.B. - Waste Managed in Registered Units; and
Table I.6.C. - Sampling and Analytical Methods.

7. Description of Proposed Activities or Changes to Existing Facility

Provide a brief description of the proposed activities if application is for a new facility, or the proposed changes to an existing facility or registration conditions, if the application is for an amendment.

Coleto Creek Power, LLC operates the Coleto Creek Power Station located at 45 FM 2987 near the city of Fannin in Goliad County, Texas. The boiler uses coal as the primary fuel and fuel oil as a backup fuel to generate electricity. There are two streams of coal combustion residuals (CCR) generated at this plant. Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment, referred to as Primary Ash Pond (PAP). Fly ash is collected from the boiler exhaust and transported pneumatically to two storage silos. From there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial use. Off-spec fly ash is currently combined with water and pumped to the facility's surface impoundment for disposal. Limited amounts of bottom ash in the surface impoundment is recovered for beneficial reuse via excavation, screening, and placement in covered dump trucks for transport off site.

8. Primary Contact Information

Contact Name: Renee Collins Title: Sr. Director Environmental Services
Contact mailing address: 6555 Sierra Drive
City: Irving County: Dallas State: TX Zip Code: 75039
(Area Code) Telephone Number: 214-875-8338
Email Address (optional):

9. Notice Publishing

Party responsible for publishing notice:
区 Applicant
\square Consultant
Agent in Service
Contact Name: Renee Collins Title: Sr. Director, Environmental Services
Contact mailing address: 6555 Sierra Drive
City: Irving County: Dallas State: TX Zip Code: 75039
(Area Code) Telephone Number: 214-875-8338

10. Alternative Language Notice

Is an alternative language notice required for this application? For determination, refer to Alternative Language Checklist on the Public Notice Verification Form (TCEQ-20244-WasteNORI).
Yes
\boxtimes No

11. Public Place Location of Application

Name of the Public Place: Goliad Public Library
Physical Address: 320 S. Commercial St
City: Goliad County: Goliad State: TX Zip Code: 77963
(Area code) Telephone Number: 361-645-2291

12. Ownership Status of the Facility

\square Corporation

Limited Partnership\square Sole ProprietorshipGeneral Partnership
\boxtimes Other (specify): Limited Liability Company

Does the Site Owner (Permittee/Registrant) own all the CCR units and all the facility property?
\boxtimes YesNo

13. Property / Legal Description Information

Provide a legal description and supporting documents of the property where the management of CCR waste will occur; including a survey plat and a boundary metes and bounds description (30 TAC §352.231(g)).

Submit the following documents:
a. Property Legal Description
b. Property Metes and Bounds Description
c. Metes and Bounds Drawings
d. On-Site Easements Drawings

See APPENDIX A for Property/Legal Description Information.

14. Operator Information

Identify the entity who will conduct facility operations, if the owner and operator are not the same.
Operator Name:
Operator mailing address:
City: State: Zip Code:
(Area Code) Telephone Number:
Email Address (optional):

15. Confidential Documents

Does the application contain confidential documents?
\square Yes $\quad \boxtimes$ No
If "Yes", cross-reference the confidential documents throughout the application and submit as a separate attachment in a binder clearly marked "CONFIDENTIAL."

16. Permits and Construction Approvals

Permit or Approval	Received	Pending	Not Applicable
Hazardous Waste Management Program under the Texas Solid Waste Disposal Act	\boxtimes	\square	\square
Underground Injection Control Program under the Texas Injection Well Act	\square	\square	\boxtimes
National Pollutant Discharge Elimination System Program under the Clean Water Act and Waste Discharge Program under Texas Water Code, Chapter 26	\boxtimes	\square	\square
Prevention of Significant Deterioration Program under the Federal Clean Air Act (FCAA).	\boxtimes	\square	\square
National Emission Standards for Hazardous Air Pollutants Preconstruction Approval under the FCAA	\square	\square	\boxtimes
Other (describe):	\square	\square	\square

Other (describe):	\square	\square	\square
Other (describe)	\square	\square	\square

17. Legal Authority

The owner and operator of the facility shall submit verification of their legal status with the application. This shall be a one-page certificate of incorporation issued by the secretary of state. The owner or operator shall list all persons having over a 20% ownership in the facility.
See APPENDIX A for Certificate of Authority.

18. TCEQ Core Data Form

The TCEQ requires that a Core Data Form (TCEQ-10400) be submitted on all incoming applications, unless a Regulated Entity and Customer Reference Number has been issued by the TCEQ and no core data information has changed. For more information regarding the Core Data Form, call (512) 239-5175 or visit the TCEQ Website.
See APPENDIX A for TCEQ Core Data Form.

19. Other Governmental Entities Information

Coastal Management Program

Is the facility within the Coastal Management Program boundary?

Local Government Jurisdiction (If Applicable)

Within City Limits of: N/A
Within Extraterritorial Jurisdiction of: N/A
Is the facility located in an area in which the governing body of the municipality or county has prohibited the storage, processing or disposal of municipal or industrial solid waste?
\square Yes \boxtimes No If "Yes", provide a copy of the ordinance or order as an attachment.

20. Attachments

Does the application include the following?

General Maps	\boxtimes Yes	\square No
General Topographic Map	\boxtimes Yes	\square No
Facility Layout Map	\boxtimes Yes	\square No
Surrounding Features Map	\boxtimes Yes	\square No
Process Flow Diagram	\boxtimes Yes	\square No
Land Ownership Map	\boxtimes Yes	\square No
Land Ownership List	\boxtimes Yes	\square No
Pre-printed Mailing Labels	\boxtimes Yes	\square No

Maps and drawings shall be legible and easily readable by eye without magnification. Scales and paper size shall be chosen based on the type of map submitted, the land area covered, and the amount of detail to be shown. See instructions for details regarding maps and drawings to be submitted in application.
See APPENDIX A for Attachments detailed in Item 20.

21. Verification of Compliance

Does the owner and operator verify that the design, construction, and operation of CCR landfill(s) and surface impoundment(s) meets the requirements of 30 TAC $\S 352.231(f)$ (30 TAC §352.2; 40 CFR §257.52, and 40 CFR §§257.3-1 - 257.3-3).
\boxtimes YesNo

II. Location Restrictions and Geology

See Instructions and Technical Guidance

22. Location Restrictions

Submit certifications and technical reports demonstrating compliance of CCR unit(s) with applicable location restrictions (30 TAC 352, Subchapter E) and comply with 30 TAC
$\S 352.231(\mathrm{~d})$ and 30 TAC $\S 352.4$ for submission of engineering and geoscientific information.
A. Placement above the uppermost aquifer (30 TAC §352.601) (40 CFR §257.60). For those CCR units whose base is less than five feet above the upper limit of the uppermost aquifer, please submit a copy of the demonstration showing evidence of compliance with 40 CFR §257.60(a) - (c).
B. Wetlands (30 TAC $\S 352.611$) (40 CFR $\S 257.61$). For CCR units located in wetlands, please submit a copy of the demonstration showing evidence of compliance with 40 CFR §257.61(a) - (c).
C. Fault areas (30 TAC $\S 352.621$) (40 CFR §257.62). For CCR units located within 200 feet of the outermost damage zone of a fault, please submit a copy of the demonstration showing evidence of compliance with 40 CFR §257.62(a) - (c).
D. Seismic impact zones (30 TAC §352.631) (40 CFR §257.63). For CCR units located in a seismic impact zone, please submit a copy of the demonstration showing evidence of compliance with 40 CFR §257.63(a) - (c).
E. Unstable areas (30 TAC §352.641) (40 CFR §257.64). For CCR units located in unstable areas, please submit a copy of the demonstration showing evidence of compliance with 40 CFR §257.64(a) - (d).

Location Restriction Demonstration report for the Primary Ash Pond located in APPENDIX B.

23. Geology Summary Report

Submit a summary of the geologic conditions at the facility, including the relation of the geologic condition to each CCR unit. The summary must include enough information and data and include sources and references for the information. Include all groundwater monitoring data required by 40 CFR Part 257, Subpart D, (30 TAC $\S 352.241, ~ § 352.601, ~ § 352.621$, §352.631, and §352.641) and submitted in accordance of 30 TAC §352.4.

Note: Previously prepared documents may be submitted but must be supplemented or updated as necessary to provide the requested information (30 TAC §352.241(b)).
For Geology Summary, please refer to "Groundwater Hydrogeologic Monitoring Plan" reports for the Primary Ash Pond located in APPENDIX E. The Geology and Hydrogeology summary is located in Section 2 of the report.
All groundwater monitoring data summarized in "2020 Annual Groundwater Monitoring and Corrective Action Report" for the Primary Ash Pond located in APPENDIX E

III. Fugitive Dust Control Plan

24. Fugitive Dust Control Plan

A. Submit a copy of the CCR Fugitive Dust Control Plan (30 TAC §352.801) (40 CFR §257.80(b)), or the most recently amended plan. The initial plan or subsequent amended plan must be certified by a qualified Texas licensed professional engineer (Texas P.E.) that the plan meets the requirements of 30 TAC Chapter 352.
B. Submit the most recent Annual CCR Fugitive Dust Control Report (30 TAC §352.801) (40 CFR §257.80(c)) and include the report information.
CCR Fugitive Dust Control Plan and 2021 Annual CCR Fugitive Dust Control Report are located in APPENDIX C.

IV. Landfill Criteria - N/A

See Instructions and Technical Guidance - No. 30 Coal Combustion Residuals Landfill

25. Landfill(s) for CCR Waste

Provide the following information below if there is a landfill; if there is more than one landfill, separate information is required for each landfill.

A. Landfill Characteristics

Describe the design, installation, construction, and operation of the landfill and submit a completed Table IV.A. - Landfill Characteristics.

B. Liner Design

1. For existing landfills, provide attachments describing how the facility will comply with 30 TAC 352, Subchapter F (Design Criteria).
2. For new landfills or lateral expansions of existing landfills, submit pages describing how the facility will comply with 30 TAC $\S 352.261$ and 30 TAC $\S 352.701$.
3. Complete Table IV.B. - Landfill Liner System and specify the type of liner used for the landfill.
4. Provide attachments describing the design, installation, and operation of the liner and leak detection system. The description must demonstrate that the liner and leak detection system will prevent discharge to the land, groundwater, and surface water. Submit a quality assurance project plan (QAPP) to ensure that each analysis is performed appropriately.

C. Leachate Collection and Removal

Submit design information and description of leachate collection and removal system in accordance with 30 TAC $\S 352.701$.

Complete Table IV.C. - Landfill Leachate Collection System
D. Design of Liner and Leachate Collection and Removal System.

For a new landfill or lateral expansion of a CCR landfill, provide a qualified Texas P.E. certification and technical report that the design of the liner and the leachate collection and removal system meets the requirements of 30 TAC §352.711.
E. Run-on and Run-off Controls

At time of application, attach pages describing how the facility will comply with the runon and run-off system plan for an existing, new, or lateral expansion of a CCR landfill information. Provide a qualified Texas P.E. certification and technical report that the runon and run-off control system plans meet the requirements of 30 TAC $\S 352.811$.
F. Inspection for Landfills

At time of application, attach pages describing how the facility will comply 30 TAC §352.841 and complete Table IV.D. - Inspection Schedule for Landfills. For existing CCR landfills, provide the most recent inspection report. All CCR landfills and any lateral expansions of a CCR landfill must be inspected for any structural weakness, malfunction, deterioration conditions which are disrupting or have the potential to disrupt the operation or safety of the CCR unit, or any other conditions which may cause harm to human health and environment at a frequency specified in 40 CFR §257.84(a) and (b).

V. Surface Impoundment Criteria

See Instructions and Technical Guidance - No. 31 Coal Combustion Residuals Surface Impoundment

26. Surface Impoundment(s) for CCR Waste

Provide the following information below if there is a surface impoundment; if there is more than one surface impoundment, separate information is required for each surface impoundment.

A. General Surface Impoundment(s) Characteristics

Provide information about the characteristics of the surface impoundment(s): incised, surface area (acres), storage volume (acres-feet), and depth (feet).

For all surface impoundment(s), include the following information:

1. Complete Table V.A. - Surface Impoundments Characteristics. List the surface impoundment(s) to be registered as a CCR unit(s), the wastes managed in each unit, and the rated capacity or size of each unit.
2. Describe the surface impoundment(s) and provide a plan view drawing with crosssections, if available.
See "History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment" in APPENDIX D, section 2.3 for a summary description of the impoundment. For drawings, see Figures 2-4 and 2-5A.
3. Specify the minimum freeboard to be maintained and the basis of the design to prevent overtopping resulting from normal or abnormal operation; overfilling; wind and wave action; rainfall; run-on; malfunctions of level controllers, alarms, and other equipment; and human error. Show that adequate freeboard will be available to prevent overtopping from a 100 -year, 24 -hour storm.
The "Inflow Design Flood Control System Plan" located in APPENDIX D indicates maximum elevation set at 136.1' to allow sufficient freeboard for design storm and wave action. See last paragraph of section 2.0.
4. Waste Flow

Describe the means that will be used to immediately shut off the flow of waste to the impoundment in the event of liner failure or to prevent overtopping.
All inflows that enter the surface impoundment are pumped into the unit under controlled conditions. There are no gravity or uncontrolled inflows. Pumps will be immediately removed from service to shut off flows to the impoundment.
5. Dike Construction \boxtimes Yes \square No

N/A-Section not required per TCEQ due to Structural Stability Assessment requirement.
If Yes, submit the dike certification (located at the end of the application).
The structural integrity of the dike system must be certified by a qualified Texas P.E. before the registration is issued. If the impoundment is not being used, the dike system must be certified before it can be put into use. The certification must be sealed by a qualified Texas P.E., along with the engineering firm's name and registration number (30 TAC §352.4).

A report shall accompany the dike certification which summarizes the activities, calculations, and laboratory and field analyses performed in support of the dike certification. Describe the design basis used in construction of the dikes. A QAPP should be included in the report to ensure that each analysis is performed appropriately and include:
(1) Slope Stability Analysis
(2) Hydrostatic and Hydrodynamic Analysis
(3) Storm Loading
(4) Rapid Drawdown

Earthen dikes should have a protective cover to minimize wind and water erosion and to preserve the structural integrity of the dike. Describe the protective cover used and describe its installation and maintenance procedures.

B. Liner Design

For surface impoundment(s), provide information about how the facility will comply with 30 TAC $\S 352.711$ for existing CCR surface impoundments. For new and lateral expansion of CCR surface impoundments provide information on how the facility will comply with 30 TAC §352.261, and 30 TAC §352.721, see Instructions and Technical Guidance No. 31 Coal Combustion Residuals Surface Impoundment. The qualified Texas P.E. must certify that the design of the liner complies with the requirements of 30 TAC Chapter 352 and 40 CFR Part 257, Subpart D, where required.

Is the CCR surface impoundment unlined? \boxtimes Yes \square No
If "Yes", the CCR unit is subject to the closure requirements under 30 TAC Chapter 352 and 40 CFR §257.101(a) to retrofit or close. A notification must be prepared stating that an assessment of corrective measures has been initiated.

On November 30, 2020, Coleto Creek Power, LLC (CCP) submitted a request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § $257.103(f)(2)$ for the Primary Ash Pond located at the Coleto Creek Power Plant near Fannin, Texas. CCP is requesting an extension pursuant to 40 C.F.R. § $257.103(\mathrm{f})(2)$ so that the Primary Ash Pond may continue to receive CCR and non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2028. On January 11, 2022, EPA issued a letter stating the sitespecific alternative deadline demonstration was deemed complete thus tolling the cease receipt date until a final decision is issued on the demonstration. The "Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to the Initiation of Closure" report submitted can be found in APPENDIX D.

1. Complete Table V.B. - Surface Impoundment Liner System for each surface impoundment to be registered.
2. Describe the design, installation and operation of liner and leak detection components. The description must demonstrate that the liner and leak detection system will prevent discharge to the land and surface water. Submit a QAPP report to ensure that each analysis is performed appropriately.
See Section 2 in the "History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment" report in APPENDIX D.
3. For new or laterally expansions of existing surface impoundments, provide a subsurface soil investigation report that must include:
a. A description of all borings drilled, at the unit location, to test soils and characterize groundwater;
b. A unit map drawn to scale showing the surveyed locations and elevations of the borings, including location of permanent identification markers ((30 TAC §352.731) and (40 CFR §257.73(a)(1));
c. Cross-sections prepared from the borings depicting the generalized strata at the unit;
d. Boring logs, including a description of materials encountered, and any discontinuities such as fractures, fissures, slickensides, lenses or seams;
e. A description of the geotechnical data and the geotechnical properties of the subsurface soil materials, including the suitability of the soils and strata for the intended uses; and
f. A demonstration that all geotechnical tests were performed in accordance with industry practices and recognized procedures.

C. Hazard Potential Classification

Provide the current hazard potential classification assessment and associated documentation, as required by 30 TAC $\S 352.731$ or $\S 352.741$ and 40 CFR $\S 257.73(\mathrm{a})(2)$ or §257.74(a)(2). The qualified Texas P.E. must certify that the initial hazard potential classification and any subsequent periodic classification was conducted in accordance with the requirements of 30 TAC Chapter 352, where required.
Hazard Potential Classification: LOW
See "Hazard Potential Classification Assessment" located in APPENDIX D.
D. Emergency Action Plan for High or Significantly High Hazard Potential

Provide the current Emergency Action Plan that has been certified by a qualified Texas P.E. and includes the following requirements from 30 TAC 352, Subchapter F and 40 CFR §257.73(a)(3)(i)(A) - (E) or 40 CFR §257.74 (a)(3)(i)(A) - (E). The qualified Texas P.E. must certify that the written Emergency Action Plan and any subsequent amendment of the plan complies with the requirements of 30 TAC 352, Subchapter F, where required.
Complete Table V.J. - Inspection of Surface Impoundments
N/A

E. Inflow Design Flood Control System Plan

Describe how the surface impoundment(s) system will manage stormwater run-on away from the surface impoundment(s) (30 TAC §352.821 and 40 CFR §257.82(a) and (c)). Stormwater run-on must be diverted away from a surface impoundment, based on the hazard potential. Where dikes are used to divert run-on, they must be protected from erosion. Include all analyses used to calculate run-on volumes. Provide the inflow design flood control system plan. Provide qualified Texas P.E. certification that the initial and periodic inflow design flood control system plans meet the requirements of 30 TAC §352.821, where required.
See "Inflow Design Flood Control System Plan" located in APPENDIX D.
F. History of Construction for Existing CCR Surface Impoundment(s), or the Design and Construction Plans for New and Lateral Expansions
Provide information on the history of construction for each existing CCR surface impoundment (30 TAC $\S 352.731$ and 40 CFR §257.73(c)) or the design and construction plans for new and lateral expansions of each CCR surface impoundment (30 TAC §352.741) and (40 CFR §257.74(c)).
See "History of Construction" report located in APPENDIX D.

G. Structural Stability Assessment

Provide the most recent structural stability assessment of the surface impoundments. Include the combined capacity of all surface impoundment spillways with calculations; the peak discharge the unit must meet for all combined spillways; probable maximum flood-high hazard, 1,000-yr-significant high hazard, 100-yr-low hazard; identify if there were any structural stability deficiencies in last assessment; identify how these deficiencies were managed and corrected; and qualified Texas P.E. certification. The structural stability assessment must include all information required in 30 TAC §352.731 for existing surface impoundments or 30 TAC $\S 352.741$ for new or laterally expanding surface impoundments.
See "Structural Stability Assessment" located in APPENDIX D.

H. Safety Factor Assessment

The current safety factor assessment must be submitted with the application. It must include documentation that demonstrates whether the calculated factors of safety for each CCR surface impoundment achieve the minimum safety factors specified in 30 TAC 352, Subchapter F and 40 CFR $\S 257.73$ (e)(1)(i) - (iv) and 40 CFR $\S 257.74(\mathrm{e})(1)(\mathrm{i})$ - (iv) for the critical cross-section of the embankment. The critical cross-section is the cross-section anticipated to be the most susceptible to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations and certified by a qualified Texas P.E.
See "Safety Factor Assessment" located in APPENDIX D.

VI. Groundwater Monitoring and Corrective Action (30 TAC 352, Subchapter H)

See Instructions and Technical Guidance - No. 32 Coal Combustion Residuals Groundwater Monitoring and Corrective Action

27. Groundwater Monitoring System

A. Complete Table VI.A. - Unit Groundwater Detection Monitoring System.
B. Provide a map showing location of wells, groundwater elevations, and groundwater flow direction.
See Figures 4 thru 7 in the "Groundwater Hydrogeologic Monitoring Plan" in APPENDIX E.
C. Provide attachments describing how the facility will comply with the requirements in 30 TAC $\S 352.911$ and provide a certification by a qualified Texas P.E or qualified Texas P.G. that the groundwater monitoring system design and construction meet the requirements of 30 TAC Chapter 352.
See Appendix A in the "Groundwater Hydrogeologic Monitoring Plan" located in APPENDIX E for the monitoring system certification.
D. Provide a figure showing the geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.
See Figures 2 and 3 in the "Groundwater Hydrogeologic Monitoring Plan" in APPENDIX E.
E. For a multiunit groundwater monitoring system, demonstrate that the groundwater monitoring system will be equally as capable of detecting monitored constituents at the waste boundary of the CCR unit as the individual groundwater monitoring system for each CCR unit by providing at minimum the following information:

1. Number, spacing, and orientation of each CCR unit;
2. Hydrogeologic setting; and
3. Site history.
F. Has there been any sampling concentrations of one or more constituents listed in Appendix IV detected at statistically significant levels above the groundwater protection standard (GWPS)? \square Yes \boxtimes No
G. Provide information on how monitoring wells have been constructed and cased in a manner that maintains the integrity of the monitoring well borehole and to prevent contamination of samples and the groundwater.
Groundwater monitoring well construction logs are located in Appendix B of the "Groundwater Hydrogeologic Monitoring Plan" found in APPENDIX E.

28. Groundwater Monitoring Sampling and Analysis Program

Provide a sampling and analysis plan that includes procedures and techniques; sampling and analytical methods that are appropriate for groundwater sampling; and that address the requirements of 30 TAC $\S 352.931$ and 40 CFR §257.93. Provide a P.E or P.G. certification that describes the statistical method selected to evaluate the groundwater monitoring data and certifies that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR management area. Refer to TG-32 for information and guidance.
See "Groundwater Monitoring Plan", "Statistical Analysis Plan", and "Statistical Method Certification" in APPENDIX E.

29. CCR Unit(s) in a Detection Monitoring Program

Does the facility have CCR unit(s) in a Detection Monitoring Program?

```
Yes }\quad\mathrm{ No
```

If "Yes", Submit the following information:
A. Submit Table VI.C. - Facility CCR Units Under Detection Monitoring.
B. Provide a Background Evaluation Report.
C. Provide a report with the results of semiannual monitoring events.

1. Has a statistically significant increase (SSI) been detected for one or more of the constituents listed in Appendix III at any monitoring well?
\square YesNo
2. Has a notification to the executive director been sent within 14 days?
\square Yes \square No
3. Date assessment monitoring program will start:
4. Do you plan to provide an alternative source demonstration (ASD)?Yes
No
5. CCR Unit(s) in an Assessment Monitoring Program

Does the facility have CCR unit(s) in an Assessment Monitoring Program?
Q Yes No

If "Yes", Submit information related for units.
A. Complete Table VI.D. - CCR Units Under Assessment Monitoring.
B. Provide, for each well in assessment monitoring status, the recorded concentrations lab sheets and results in a tabulated form.
See summary Tables 3 and 4 for all results in tabulated form in the " 2020 Annual Groundwater Monitoring and Corrective Action Report" in APPENDIX E.

Have the concentrations of all constituents listed in Appendices III and IV been at or below background values, using the statistical procedures in 30 TAC $\S 352.931$ and 40 CFR $\S 257.93(\mathrm{~g})$, for two consecutive sampling events for the CCR unit(s)? \square Yes \boxtimes No

If answer to above is yes, detection monitoring may resume. The owner or operator must prepare a notification stating that detection monitoring is resuming for the CCR unit and obtain written approval from the executive director.
C. Are there any concentrations of any constituent in Appendices III and IV above background values? \boxtimes Yes \square No

1. Has a notification to the executive director been sent within 14 days?
\boxtimes Yes $\quad \square$ No
D. Date assessment of corrective measures will be initiated (must be within $\mathbf{9 0}$ days of finding a statistically significant level above the GWPS) for the CCR unit(s): Not required due to no SSLs to date. Unit is in assessment monitoring but has not triggered assessment of corrective measure to date.
E. Will you provide an ASD (see TG-32 for an acceptable submittal)? \square Yes \boxtimes No
F. Date assessment of corrective measures will be initiated if ASD is not accepted? Not required.
G. Complete Table VI.D-2. - Groundwater Detection Monitoring Parameters

Note: Refer to TG-32 regarding establishing a GWPS for each constituent in Appendix IV detected in the groundwater and attach as table.
H. Have you completed the assessment of corrective measures? \square Yes \boxtimes No If "Yes", date assessment of corrective measures was completed:
If "No", date assessment of corrective measures will be completed: Not required Expected date of submittal of amendment (see note below):
Provide completed assessment of corrected measures materials.
Note: Within 30 days of completing the assessment of corrective measures, and before remedy implementation, the owner or operator shall submit an application for amendment to the registration. In some circumstances, the assessment of corrective measures and selected remedy may be approved as part of the initial application for the CCR unit registration.
I. Have you selected a remedy? \square Yes $\quad \square$ No N/A

Provide public meeting documentation under 30 TAC $\S 352.961$ and a report under 30 TAC §352.971 and 40 CFR §257.97.

VII. Closure and Post-Closure Care

See Instructions and Technical Guidance

Submit a full closure plan and post-closure plan and all information describing how the owner or operator will comply with 30 TAC 352, Subchapter J and 40 CFR §§257.100257.104. The owner of property on which an existing disposal facility is located, following the closure of a unit, must also submit documentation that a notation has been placed in the deed to the facility that will in perpetuity notify any potential purchasers of the property that the land has been used to manage CCR wastes and its use is restricted (30 TAC $\S 352.1221$ and 40 CFR $\S 257.102$ (i)). For CCR units, closed after October 19, 2015, that were closed before submission of the application, the applicant should submit documentation to show that notices required under 30 TAC 352, Subchapter K and 40 CFR $\S 257.105$ or $\$ 257.106$ have been filed.

See "Closure Plan" and "Post-Closure Plan" in APPENDIX F. Also included in the appendix is a "Closure Plan Addendum" that was prepared to meet the requirements of the site-specific alternative deadline to initiate closure.

31. Closure Plan

This section applies to the owners and operators of all CCR units required to be registered. The applicant must close the facility in a manner that minimizes need for further maintenance and controls, or eliminates, to the extent necessary to protect human health and the environment, the post-closure release of CCR waste, chemical constituents of concern, leachate, contaminated rainfall, or waste decomposition products to the groundwater, surface waters, or to the atmosphere.

The type of unit to be closed can determine the level of detail sufficient for a closure plan. CCR units which have been certified closed after October 19, 2015, must provide documentation to demonstrate compliance with state and federal regulations.
For each unit to be registered, complete Table VII.A.1. - Unit Closure and list the CCR Unit components to be decontaminated, possible methods of decontamination, and possible methods of disposal of wastes and waste residues generated during unit closure. All ancillary components must be decontaminated, and the generated waste disposed of appropriately.
Information about CCR units closed or to be closed under alternative closure requirements must be provided in Table VII.A.2. - CCR Units Under Alternative Closure Notification.

Guidance on design of a closure cap and final cover for non-hazardous industrial solid wastes landfills is provided in EPA publication 530-SW-85-014, TCEQ Technical Guidance No. 3 and TCEQ publication, RG-534, "Guidance for Liner Construction and Testing for a Municipal Solid Waste Landfill".

32. Post-Closure Care Plan

Provide a post-closure care plan that complies with the requirements of 30 TAC §352.1241.
See "Post-Closure Plan" in APPENDIX F.
Post-closure care of each CCR unit must continue for at least 30 years after the date of completing closure of the unit and must consist of monitoring and reporting of the groundwater monitoring systems, in addition to the maintenance and monitoring of CCR unit. Continuation of certain security requirements may be necessary after the date of closure. Post-closure use of property on or in which waste remains after closure must never be allowed to disrupt the integrity of the containment system. In addition, submit the following information:

- The name, address, and phone number of the person or office to contact about the CCR unit during the post-closure period; and
Luminant-Environmental Services
Renee Collins-Senior Environmental Director
6555 Sierra Drive
Irving, TX 75039
214-875-8338
CCRPostClosurePlan@Luminant.com
- A discussion of the future use of the land associated with each unit.

Following closure of the Primary Ash Pond, a notation on the deed to the property, or some other instrument that is normally examined during title search, will be recorded in accordance with 40 CFR 257.102(i). The notation will notify potential purchasers of the property that the land has been used as a CCR unit and its use is restricted under the post-closure care requirements per 40 CFR 257.104(d)(1)(iii).

Landfills and surface impoundments which have been certified closed after October 19, 2015, must be included in post-closure care plans, unless they have been determined to have been closed by waste removal equivalent to the closure standards in 30 TAC §352.1221 and 40 CFR $\S 257.102$ or 30 TAC $\S 352.1231$ and 40 CFR $\S 257.103$. If such a demonstration has been made pursuant to 40 CFR $\$ 257.102$ or $\S 257.103$, but an equivalency determination has not been made, please submit a copy of the demonstration documentation. If an equivalency determination has been made, applicant should submit a copy of this determination.

VIII. Financial Assurance

33. Post-Closure Care Cost Estimate

Financial assurance for post-closure care (30 TAC §352.1101) applies to owners or operators of all CCR units, except CCR units from which the owner or operator intends to remove wastes and perform clean closure. Provide a written cost estimate in current dollars of the total cost of the 30-year (or longer, if applicable under 30 TAC §352.1101(d)) post-closure care period to perform post-closure care requirements as prescribed in 30 TAC $\$ 352.1241$. The cost estimate must be based on the costs of hiring a third party to conduct post-closure care maintenance.
Complete Table VIII.A. 1 - Post-Closure Cost Summary for Existing Registered Units
See Post-Closure Care Estimate Memo from Golder in APPENDIX G. Coleto Creek Power Station cost estimates are summarized in Table 7.
Complete Table VIII.A.2. - Post-Closure Cost Summary for Proposed Registered Units

34. Financial Assurance Mechanism

The financial assurance for post-closure care is required in accordance with 30 TAC §352.1101. The applicant shall demonstrate the financial assurance within 90 days after approval of the registration with a financial mechanism acceptable to TCEQ in compliance with 30 TAC $\S 352.1101$ (c) and 30 TAC $\S 37$, Subchapters A through D, except as indicated in 30 TAC $\S 352.1111$, in an amount no less than the amount specified in the approved PostClosure Care Cost Summary. Provide a description of the proposed financial assurance mechanism.

Vistra Corporation currently uses AEGIS Insurance Services Endorsement No. 60 (TCEQ Endorsement for Closure, Post-Closure or Corrective Action) as an approved financial assurance mechanism at other Vistra owned facilities. Applicant intends to add post-closure coverage amounts detailed in Table VIII.A.1. to current policy.

Complete Table VIII.B. - Post-Closure Period, for the authorized post-closure period, to meet the requirements of 30 TAC $\S 352.1241$ (a) through (c).

Signature Page

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Applicant Signature: \qquad Date: \qquad
Name and Official Title (type or print):
Owner or Operator Signature: Km Date: 1/21/2022 Name and Official Title (type or print): Renee Collins._-Sr. Director
To be completed by the owner or operator if the application is signed by an authorized representative for the operator
\qquad hereby designate
(operator)

> (authorized representative)
as my representative and hereby authorize said representative to sign any application, submit additional information as may be requested by the Commission; and/or appear for me at any hearing or before the Texas Commission on Environmental Quality in conjunction with this request for a CCR waste management registration. I further understand that I am responsible for the contents of this application, for oral statements given by my authorized representative in support of the application, and for compliance with the terms and conditions of any registration which might be issued based upon this application.

Printed or Typed Name of Applicant or Principal Executive Officer

Signature

(Note: Application Must Bear Signature \& Seal of Notary Public)
Subscribed and sworn to before me by the said Rene Collin is

My commission expires on the 29 m day of august 2025
(Seal) Notary Public in and for Dillies County, Texas

Registration Application for Coal Combustion Residuals Waste Management

(See instructions for P.E/P.G. seal requirements.)

Attachments and Tables General Information	Attachment No.
Property/Legal Description	Appendix A
Legal Authority	
Delegation of Signature Authority	
TCEQ Core Data Form	
Attachments	Appendix B
Location Restrictions \& Geology	
Location Restrictions Demonstration	Appendix C
Fugitive Dust Control Plan	
CCR Fugitive Dust Control Plan	
2021 Annual CCR Fugitive Dust Control Report	Appendix D
Surface Impoundment Design and Operating Criteria	
Alternative Closure Plan Demonstration - §257.103(f)(2)	
Hazard Potential Classification Assessment	
Inflow Design Flood Control Plan	
History of Construction Report	Appendix E
Structural Stability Assessment	
Safety Factor Assessment	Groundwater Monitoring and Corrective Action
Groundwater Hydrogeologic Monitoring Plan	
Groundwater Monitoring Plan	
Statistical Analysis Plan	
Statistical Method Certification	
2020 Groundwater Monitoring and Corrective Action Report	
Closure and Post-Closure Care	Appendix G
Closure Plan	
Closure Plan Addendum No.1	
Post-Closure Plan	
Financial Assurance	Post-Closure Care Estimate Memo

Attachments and Tables
Attachment No.
Property/Legal Description
Legal Authority
Delegation of Signature Authority
TCEQ Core Data Form
Attachments
Location Restrictions \& Geology Appendix B
Location Restrictions Demonstration
Fugitive Dust Control Plan Appendix C
CCR Fugitive Dust Control Plan
2021 Annual CCR Fugitive Dust Control Report
Surface Impoundment Design and Operating Criteria
Appendix D
7.103(f)(2)

Inflow Design Flood Control Plan
History of Construction Report
Structural Stability Assessment
Safety Factor Assessment
Groundwater Monitoring and Corrective Action Appendix E
Groundwater Hydrogeologic Monitoring Plan
Groundwater Monitoring Plan
Statistical Analysis Plan
2020 Groundwater Monitoring and Corrective Action Report

Tables

Tables	Submitted	Not Applicable
Table I．6．－CCR Waste Management Units	区	\square
Table I．6．A．－Waste Management Information	区	\square
Table I．6．B．－Wastes Managed in Registered Units	】	\square
Table I．6．C．－Sampling and Analytical Methods	区	\square
Table IV．A．－Landfill Characteristics	\square	\boxtimes
Table IV．B．－Landfill Liner System	\square	\boxtimes
Table IV．C．－Landfill Leachate Collection System	\square	\boxtimes
Table IV．D．－Inspection Schedule of Landfills	\square	\boxtimes
Table V．A．－Surface Impoundments Characteristics	区	\square
Table V．B．－Surface Impoundment Liner System	\boxtimes	\square
Table V．J．－Inspection of Surface Impoundments	凹	\square
Table VI．A．－Unit Groundwater Detection Monitoring System	\square	\square
Table VI．C．－CCR Units Under Detection Monitoring	\square	\boxtimes
Table VI．D．－CCR Units Under Assessment Monitoring	区	\square
Table VI．D－2．－Groundwater Detection Monitoring Parameters	区	\square
Table VII．A．1．－Unit Closure	区	\square
Table VII．A．2．－CCR Units Under Alternative Closure Notification	区	\square
Table VIII．A．1．－Post－Closure Cost Summary for Existing Registered Units	区	\square
Table VIII．A．2．－Post－Closure Cost Summary for Proposed Registered Units	\square	\boxtimes
Table VIII．B．－Post－Closure Period	\square	\boxtimes
Engineering Certification（s）－Dike Construction	\square	\boxtimes

Additional Attachments as Applicable－Select all those apply and add as necessary
\boxtimes TCEQ Core Data Form（s）Appendix A
\boxtimes Signatory Authority Delegation Appendix A
\square Fee Payment Receipt
Confidential Documents
\boxtimes Certificate of Fact（Certificate of Incorporation）Appendix A
\square Assumed Name Certificate

Table I.6. - CCR Waste Management Units

CCR Unit No.	Unit Name	N.O.R. No.			
001	Primary Ash Pond	001	Surface Impoundment	Capacity	Unit Status
				2,700 acre- feet	Active

1 Registered Unit No. and N.O.R. No. cannot be reassigned to new units or used more than once. 2 Unit Status options: Active, Closed, Inactive (built but not managing waste), Proposed (not yet built), Never Built, Transferred, Post-Closure.
3 If a unit has been transferred, the applicant should indicate which facility/permit it has been transferred to in the Unit Description column.

Table I.6.A. - Waste Management Information

Waste No. ${ }^{1}$	Waste Type(s)	Source	Volume (tons/year)
1	Fly Ash	Coal Combustion Byproduct	57,000 produced 425 disposed
2	Bottom Ash	Coal Combustion Byproduct	13,000 produced 400 disposed

1 Assign waste number sequentially. Do not remove waste number wastes which are no longer generated.

Table I.6.B. - Wastes Managed in Registered Units

Waste No. ${ }^{1}$	Waste	TCEQ Waste Form Codes and Classification Codes
1	Fly Ash	TWC-20173192, TX Form Code-319, Class 2
2	Bottom Ash	TWC-20183192, TX Form Code-319, Class 2

1 from Table I.6.A., first column

Table I.6.C - Sampling and Analytical Methods

Waste No. ${ }^{1}$	Sampling Location	Sampling Method	Frequency	Parameter	Test Method	Desired Accuracy Level
1	Fly Ash	Grab	<5 years	TCLP Metals	SW1311/7470A SW1311/6020B	See below ${ }^{2}$
2	Bottom Ash	Grab	<5 years	TCLP Metals	$\begin{aligned} & \text { SW1311/7470A } \\ & \text { SW1311/6020B } \end{aligned}$	See below ${ }^{2}$

1 from Table I.6.A., first column
2 Analytical protocol will meet EPA quality control and accuracy specifications as published in the SW-846 Methods. The laboratory will be TCEQ accredited.

Table IV.A. - Landfills Characteristics

Registered Unit No.	Landfill	N.O.R. No.	Waste Nos.					
N/A					Rated Capacity	Dimensions		Distance from
:---:								
lowest liner to								
groundwater	\quad	Action						
:---:								

1 From Table I.6.A., first column
2 Dimensions should be provided as average length, width and depth, also include the surface acreage for the unit.

Table IV.B. - Landfill Liner System

Registered Unit No.*	Landfill	Geomembrane Liner Material	Geomembrane Liner Permeability (cm/sec)	Geomembrane Liner Thickness	Soil Liner Material	Soil Liner Permeability (cm/sec)	Soil Liner Thickness
N/A							

* This number should match the Registration Unit No. given on Table IV.A.

Table IV.C. - Landfill Leachate Collection System

Registered Unit No.	Landfill Name	Drainage Media	Collection Pipes (including risers)	Filter Fabric	Geofabric	Sump Material
N/A						

Table IV.D. - Inspection Schedule of Landfills

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
N/A		

Table V.A. - Surface Impoundment Characteristics

Registered Unit No.	Surface Impoundment Name	N.O.R. No.	Waste Nos.					
001	Primary Ash Pond	001	1,2	Rated Capacity	2,700 acre-feet	2,450 feet W x 3,375 feet L x 20 feet D 190 acres	>5 Feet	n/a
						Distance from lowest liner to groundwater	Action Leakage Rate (if required)	Unit will manage CCR Waste and non-CCR Waste (state all that apply)
							Fly Ash, Bottom Ash	

1 From Table I.6.A., first column
2 Dimensions should be provided as average length, width and depth, also include the surface acreage for the unit.

Table V.B. - Surface Impoundment Liner System

Registered Unit No.*	Surface Impoundment Name	Geomembrane Liner Material	Geomembrane Liner Permeability (cm/sec)	Geomembrane Liner Thickness	Soil Liner Material	Soil Liner Permeability (cm/sec)	Soil Liner Thickness
001	Primary Ash Pond	None	None	None	In-situ clay	$<1.0 \times 10^{-7}$ cm/sec	Avg 9', ranges 4'- 20^{\prime}

* This number should match the Registration Unit No. given on Table V.A.

Table V.J. - Inspection Schedule of Surface Impoundments

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
010-Ash Landfill 1	Inspect for any appearances of actual or potential structural weakness and other conditions which are disrupting of have the potential to disrupt the operation and safety of the CCR unit	Weekly Inspection per 40 CFR 257.84(a)
Embankments	Surface cracking, animal burrows, misalignments, slides, vegetative cover, rutting, erosion, seepage, slope protection/chutes	Weekly Inspection
Capped Areas	Animal burrows, vegetative cover, rutting, surface cracking	Weekly Inspection
Active Work Area	Contact water, dusting	Weekly Inspection
Groundwater Monitoring Wells	Deterioration of pads, bollards, missing locks, compromise of casing integrity	Semi-Annual Inspection
		Annually per 40 CFR 257.84(b)
010-Ash Landfill 1	Inspect for any changed in geometry of the structure since the previous annual inspection.	Annual Inspection
	Estimate the approximate volume of CCR contained in the unit at the time of the inspection.	Annual Inspection
	Inspect for any appearance of actual or potential structural weakness of the CCR unit, and any conditions that are disrupting or have the potential to disrupt the operation and safety of the unit.	Annual Inspection
	Inspect for any other change(s) which have affected the stability or operation of the CCR unit since the previous inspection	Annual Inspection

Registration No. New
Registrant: Coleto Creek Power, LLC

Table VI.A. - Unit Groundwater Detection Monitoring Systems

Waste Management Unit/Area Name ${ }^{1}$	WMU 001 - Primary Ash Pond								
Well Number(s):	MW-4	MW-5	MW-6	MW-8	MW-9	MW-10	MW-11	BV-5	BV-21
Hydrogeologic Unit Monitored	Houston Group								
Type (e.g., point of compliance, background, observation, etc.)	POC								
Up or Down Gradient	Down	Down	Down	Up	Down	Down	Down	B?	Up
Casing Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	2" PVC				
Screen Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	2" PVC				
Screen Slot Size (in.)	0.016"	0.016"	0.016"	0.016"	0.010"	0.010"	0.010"	0.010"	0.010"
Top of Casing Elevation (Ft, Mean Sea Level [MSL])	137.71	122.31	119.22	134.72	132.3	130.4	118.66	135.8	131.17
Grade or Surface Elevation (Ft, MSL)	134.3	119.57	116.35	131.78	129.3	127.6	115.8	133	128.4
Well Depth (Ft, Below Grade Surface [BGS])	70.1	59.27	61.15	56.88	60	60	49	40	40
Well Depth (Ft, Below Top of Casing [BTOC])	73.51	62.01	64.02	59.82	63	62.8	51.86	42.8	42.77
Screen Interval									
From (Ft, BGS)	50.5	39.47	41.25	36.98	40	40	29	30	30
To (Ft, BGS)	70.1	59.27	61.15	56.88	60	60	49	40	40
Screen Interval									
From (Ft, BTOC)	53.91	42.21	44.12	39.92	43	42.8	31.86	32.8	32.77
To (Ft, BTOC)	73.51	62.01	64.02	59.82	63	62.8	51.86	42.8	42.77

1 From Tables in Section I.; MSL : Mean Sea Level; BGS: Below Grade Surface; BTOC: Below Top of Casing
NOTE-Data from Table 3 from Groundwater Hydrogeologic Monitoring Plan 10/17/2017

Table VI.C. - CCR Units Under Detection Monitoring

N.O.R. Unit No.	Unit Description ${ }^{1,2}$	Well(s)	Constituent(s)	Date of SSI Determination	Date of Assessment Monitoring Notification
N/A					

1 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been requested pursuant to 40 CFR §257.103.
2 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been made pursuant to 40 CFR §257.103.
3 Enter month, day, and year.

Table VI.D. - CCR Units Under Assessment Monitoring

N.O.R. Unit No.	Unit Description ${ }^{1,2}$	Well(s)	Constituent(s)	Date of SSI Determination	Date of Assessment Monitoring Notification
001	Primary Ash Pond	MW-6, MW-9, MW-10	B	$2 / 12 / 2018$	Notification made 5/9/18
001	Primary Ash Pond	MW-4, MW-5, MW-6, MW-9, MW-10, MW-11	Cl, F, SO4, pH	$2 / 12 / 2018$	ASD Successful for all constituents except Boron $(4 / 11 / 18)$

1 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been requested pursuant to 40 CFR §257.103.
2 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been made pursuant to 40 CFR §257.103.
3 Enter month, day, and year

Table VI.D-2. - Groundwater Detection Monitoring Parameters

Parameter	Sampling Frequency	Analytical Method	Practical Quantification Limit (units)	Concentration Limit 1
Boron	Semi-Annual	SW6020A	$0.03 \mathrm{mg} / \mathrm{L}$	1.26
Calcium	Semi-Annual	SW6020A	$3.0 \mathrm{mg} / \mathrm{L}$	143
Chloride	Semi-Annual	E300	$1.0 \mathrm{mg} / \mathrm{L}$	118
Fluoride	Semi-Annual	E300	$0.4 \mathrm{mg} / \mathrm{L}$	0.61
Sulfate	Semi-Annual	E300	$3.0 \mathrm{mg} / \mathrm{L}$	148
Total Dissolved Solids	Semi-Annual	M2540C	$10.0 \mathrm{mg} / \mathrm{L}$	766
pH	Semi-Annual	Field Measured	s.u.	6.51
				7.33

1 The concentration limit is the basis for determining whether a release has occurred from the CCR unit/area.

Table VII.A.1. - Unit Closure
For each unit to be registered, list the unit components to be decontaminated, the possible methods of decontamination, and the possible methods of disposal of wastes and waste residues generated during unit closure.

Equipment or CCR Unit	Possible Methods of Decontamination	
001-Primary Ash Pond Piping	Removal	Possible Methods of Disposal 1
001-Primary Ash Pond	Close in Place	Landfill
		No Disposal

1 Applicants may list more than one appropriate method.

Table VII.A.2. - CCR Units Under Alternative Closure Notification

Registered Unit No.	N.O.R. Unit No.	Unit Description ${ }^{1,2}$	Date of Receipt of Last Waste ${ }^{3}$	Date of Closure Notification 3
001	001	Surface Impoundment	$7 / 17 / 2027$	$11 / 30 / 2020$

1 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been requested pursuant to 40 CFR §257.103.
2 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been made pursuant to 40 CFR §257.103.
3 Enter month, day, and year.

Table VIII.A.1. - Post-Closure Cost Summary for Existing Registered Units

Unit	Cost
001-Primary Ash Pond	$\$ 3,117,987$
	$\$ 3,117,987$ (in 2021 Dollars) ${ }^{1}$
Total Existing Unit Post-Closure Cost Estimate	

Table VIII.A.2. - Post-Closure Cost Summary for Proposed Registered Units

Unit	Cost

1 As units are added or deleted from these tables through future registration amendments, the remaining itemized unit costs should be updated for inflation when re-calculating the revised total cost in current dollars.

Table VIII.B. - Post-Closure Period

Unit Name	Date Certified Closed	Authorized Post- Closure Period (Yrs.)	Earliest Date Post- Closure Ends (See Note 1)
[Unit Example 1]	$[\mathbf{1 / 1 / 1 9 9 5]}$	30 years	$[\mathbf{1 / \mathbf { 1 } / \mathbf { 2 0 2 5] }}$
[Unit Example 2]	$[\mathbf{1 / 1 / 1 9 9 0]}$	30 years	$[\mathbf{1 / \mathbf { 1 } / \mathbf { 2 0 2 0 }]}$
[Unit Example 3]	$[\mathbf{1 / 1 / 1 9 8 4]}$	30 years	$[\mathbf{1 / \mathbf { 1 } / \mathbf { 2 0 1 4] }}$

Note 1 - Post-Closure Care shall continue beyond the specified date until the Executive Director has approved the applicant's request to reduce or terminate the post-closure period, consistent with 30 TAC $\S 352.1241$ - Post-Closure Care Requirements.

N/A

APPENDIX A - GENERAL INFORMATION

Property/Legal Description
Legal Authority
Delegation of Signature Authority
TCEQ Core Data Form
Attachments

TX. REG. \#101102-01
12825 Trinity Dr., Stafford, TX 77477
Main Line: 281.240.0113 • Toll Free: 1.866.357.1050•Fax: 281.240.0245•Online: www.tbsmith.com

EXHIBIT "A"
FIELD NOTES FOR PRIMARY ASH POND

Being a reference line description for the boundary of the existing PRIMARY ASH POND and being out of the J.P. Wallace Survey, Abstract No. 294 and the W.D. Durham Survey, Abstract No. 114 in Goliad County, Texas, said reference line being situated upon, over, through and across a called 184.63 acre tract "Tract I, Parcel 4" as referenced to a prior instrument: Volume 275, Page 154 of the Deed Records of Goliad County, Texas (D.R.G.C.T.) and a called 1,417.386 acre tract "Tract II" (save and except 21.930 acres) consisting of the following tracts: a portion of a called $1,236.71$ acres as described in Volume 285, Page 411, D.R.G.C.T., all of a called 218.98 acres as described in Volume 270, Page 925, D.R.G.C.T., a portion of a called 144.24 acres and all of a called 0.82 acres as described in Volume 270, Page 925, D.R.G.C.T., a portion of a called 37.74 acres, all of a called 1.11 acres, and all of a called 0.26 acres as described in Volume 273, Page 614, D.R.G.C.T., all of a called 0.14 acres as described in Volume 275, Page 151, D.R.G.C.T., a portion of a called 124.89 acres and all of a called 0.45 acres, all of a called 188.77 acres and all of a called 0.11 acres as described in Volume 274, Page 717, D.R.G.C.T., and a portion of a called 200.90 acres as described in Volume 273, Page 609, D.R.G.C.T. (The previous six tracts also being described in Volume 359, Page 433, D.R.G.C.T.). Said reference line being situated five (5) feet outside of the existing toe of the external dike of said PRIMARY ASH POND and being more particularly described by metes and bounds as follows:

COMMENCING at a $5 / 8$ " iron rod with yellow cap stamped "CDS/MUERY" found in the westerly boundary line of "Tract II" and the easterly right-of-way line of Farm to Market 2987 for the POINT OF COMMENCEMENT of the herein described reference line;

THENCE S $88^{\circ} 34^{\prime} 45^{\prime \prime}$ E, over and across "Tract II", a distance of $3,403.60$ feet to the POINT OF BEGINNING of the herein described reference line, from which a broken t-post in concrete found at a westerly corner of "Tract I, Parcel 4" bears N $37^{\circ} 00^{\prime} 36$ " W, a distance of $2,020.89$ feet;

THENCE continuing across "Tract II", the following courses and distances:

> N $19^{\circ} 49^{\prime} 50^{\prime \prime} \mathrm{E}$, a distance of 666.20 feet;
> N $18^{\circ} 58^{\prime} 18^{\prime \prime} \mathrm{E}$, a distance of 938.40 feet;

THENCE N $20^{\circ} 21^{\prime} 13^{\prime \prime} \mathrm{E}$, at 145.84 feet passing the southeast line of "Tract I, Parcel 4", and continuing over and across "Tract I, Parcel 4" and "Tract II" for a total distance of 609.61 feet to the point of curvature of a curve to the right, from which a $5 / 8$ " iron rod with yellow cap stamped "CDS/MUERY" found at a northerly corner of "Tract II" bears N 1953'04" W, a distance of 2,255.98 feet;

THENCE with said curve to the right, having a radius of 255.00 feet, a delta angle of $81^{\circ} 35^{\prime} 12^{\prime \prime}$, a chord bearing of $\mathrm{N} 61^{\circ} 08^{\prime} 49^{\prime \prime} \mathrm{E}$ and a chord length of 333.20 feet, with an arc length of 363.11 feet to the point of tangency;

THENCE S $78^{\circ} 03^{\prime} 35$ " E, at 193.27 feet passing the southeast line of "Tract I, Parcel 4 ", and continuing over and across "Tract I, Parcel 4" and "Tract II" for a total distance of 318.40 feet;

THENCE continuing across "Tract II", the following courses and distances:
S $79^{\circ} 45^{\prime} 20^{\prime \prime} \mathrm{E}$, a distance of 430.34 feet;
S $46^{\circ} 01^{\prime} 51^{\prime \prime} \mathrm{E}$, a distance of $1,181.26$ feet;
S $07^{\circ} 57^{\prime} 59^{\prime \prime} \mathrm{E}$, a distance of 739.79 feet;
$\mathrm{S} 07^{\circ} 15^{\prime} 32^{\prime \prime} \mathrm{E}$, a distance of 371.63 feet;
S $09^{\circ} 48^{\prime} 45^{\prime \prime} \mathrm{E}$, a distance of 296.61 feet;
S $07^{\circ} 18^{\prime} 42^{\prime \prime} \mathrm{E}$, a distance of 816.79 feet to the point of curvature of a curve to the right;
THENCE with said curve to the right, having a radius of 255.00 feet, a delta angle of $54^{\circ} 24^{\prime} 20^{\prime \prime}$, a chord bearing of S $19^{\circ} 53^{\prime} 28^{\prime \prime} \mathrm{W}$ and a chord length of 233.14 feet, with an arc length of 242.14 feet to the point of tangency;

Main Line: 281.240.0113•Toll Free: 1.866.357.1050•Fax: 281.240.0245• Online: www.tbsmith.com
THENCE continuing across "Tract II", the following courses and distances:
S $47^{\circ} 05^{\prime} 38^{\prime \prime} \mathrm{W}$, a distance of 413.78 feet;
S $49^{\circ} 22^{\prime} 54^{\prime \prime} \mathrm{W}$, a distance of 511.47 feet to the point of curvature of a curve to the right;
THENCE with said curve to the right, having a radius of 255.00 feet, a delta angle of $42^{\circ} 34^{\prime} 155^{\prime \prime}$, a chord bearing of $\mathrm{S} 70^{\circ} 40^{\prime} 02^{\prime \prime} \mathrm{W}$ and a chord length of 185.14 feet, with an arc length of 189.47 feet to the point of tangency;

THENCE N $88^{\circ} 02^{\prime} 51^{\prime \prime} \mathrm{W}$, continuing across "Tract II" a distance of 747.51 feet to the point of curvature of a curve to the right;

THENCE with said curve to the right, having a radius of 255.00 feet, a delta angle of $36^{\circ} 48^{\prime} 39^{\prime \prime}$, a chord bearing of $\mathrm{N} 69^{\circ} 38^{\prime} 31^{\prime \prime} \mathrm{W}$ and a chord length of 161.03 feet, with an arc length of 163.83 feet to the point of tangency;

THENCE continuing across "Tract II", the following courses and distances:
N $51^{\circ} 14^{\prime} 11^{\prime \prime} \mathrm{W}$, a distance of 447.96 feet;
N $52^{\circ} 30^{\prime} 41^{\prime \prime} \mathrm{W}$, a distance of 455.15 feet;
N $51^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{W}$, a distance of 413.37 feet;
N $46^{\circ} 53^{\prime} 09^{\prime \prime} \mathrm{W}$, a distance of 250.04 feet to the point of curvature of a curve to the right;
THENCE with said curve to the right, having a radius of 155.00 feet, a delta angle of $63^{\circ} 43^{\prime} 11^{\prime \prime}$, a chord bearing of $\mathrm{N} 15^{\circ} 01^{\prime} 34^{\prime \prime} \mathrm{W}$ and a chord length of 163.63 feet, with an arc length of 172.38 feet to the point of tangency;

THENCE N $16^{\circ} 50^{\prime} 01$ " E, continuing across "Tract II" a distance of 616.40 feet to the point of POINT OF BEGINNING and containing 207.543 acres, more or less, as depicted on the attached plat of survey;

A plat of even date accompanies this legal description on page 1.
Basis of Bearings: State Plane Coordinate System, Texas South Central Zone, NAD 83 (2011) Datum.
Prepared December 9, 2021, Revised December 10, 2021

Jake T. Rodrigue, R.P.L.S.
Texas Registered Professional Land Surveyor No. 6685

Office of the Secretary of State

CERTIFICATE OF FILING OF

Coleto Creek Power, LLC

File Number: 802989013

The undersigned, as Secretary of State of Texas, hereby certifies that an Application for Registration for the above named Foreign Limited Liability Company (LLC) to transact business in this State has been received in this office and has been found to conform to the applicable provisions of law.

ACCORDINGLY, the undersigned, as Secretary of State, and by virtue of the authority vested in the secretary by law, hereby issues this certificate evidencing the authority of the entity to transact business in this State from and after the effective date shown below for the purpose or purposes set forth in the application under the name of

> Coleto Creek Power, LLC

The issuance of this certificate does not authorize the use of a name in this state in violation of the rights of another under the federal Trademark Act of 1946, the Texas trademark law, the Assumed Business or Professional Name Act, or the common law.

Dated: 04/13/2018
Effective: 04/13/2018

Rolando B. Pablos
Secretary of State

Texas Commission on Environmental Quality
12100 Park 35 Circle
Austin, Texas 78753

Re: Delegation of Administrative Authority for Vistra Corp.

This letter confirms the signatory authority for environmental matters related to the subsidiary entities of Vistra Operations Company LLC, which is a subsidiary of Vistra Corp.

Vistra Operations Company LLC hereby authorizes Renee Collins, Senior Director - Environmental Services, to act in the following capacities as it relates to administrative issues related to the below listed subsidiaries: Authorized Responsible Official and Alternate Designated Representative; as well, Ms. Collins has signatory authority for all air, water and waste permitting activities, and for water rights and water quality regulatory submissions. Those subsidiaries for which Ms. Collins has signatory authority are: Luminant Mining Company LLC, Luminant Generation Company LLC, La Frontera Holdings, LLC, Sandow Power Company LLC, Oak Grove Management Company LLC, Coleto Creek Power, LLC, Brightside Solar, LLC, Emerald Grove, LLC, and Core Solar SPV I, LLC.

Vistra Operations Company LLC hereby authorizes Renee Collins, Senior Director - Environmental Services, to act in the following capacities as it relates to administrative issues related to the below listed Vistra Corp. subsidiaries: Duly Authorized Representative and Alternate Designated Representative; as well, Ms. Collins has signatory authority for all air, water and waste permitting activities, and for water rights and water quality regulatory submissions. Those subsidiaries for which Ms. Collins has signatory authority are: Hays Energy, LLC and Midlothian Energy, LLC.

This delegation of authority is effective as of January 12, 2022, supersedes all previous delegations for this responsibility, and is valid until revoked or revised by Vistra Operations Company LLC.

I, Barry Boswell, being Executive Vice President-Generation Operations and Services of Vistra Operations Company LLC, the parent company to each of the above listed entities, and designee in charge of business functions, policy or decision-making functions for solar, battery, and fossil operations, hereby delegate authority, as detailed herein, ty Renee Collins, Senior Director - Environmental Services.

cc: David Mitchell - Senior Counsel

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.) New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)		
\square Renewal (Core Data Form should be sub	the renewal form)	\square Other
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)
CN 605521988	$\frac{\text { for } \mathrm{CN} \text { or } \mathrm{RN} \text { numbers in }}{\text { Central Registry*** }}$	RN 100226919

SECTION II: Customer Information

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)
\square New Regulated Entity $\quad \square$ Update to Regulated Entity Name \boxtimes Update to Regulated Entity Information

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Coleto Creek Power Station

23. Street Address of the Regulated Entity: (No PO Boxes)	45 FM 2987							
	City	Fannin	State	TX	ZIP	77960	ZIP + 4	
24. County	Goliad							

Enter Physical Location Description if no street address is provided.

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

\square Dam Safety	\square Districts	\square Edwards Aquifer	\square Emissions Inventory Air	\square Industrial Hazardous Waste
\square Municipal Solid Waste	\square New Source Review Air	\square OSSF	\square Petroleum Storage Tank	\square PWS
\square Sludge	\square Storm Water	\square Title V Air	\square Tires	\square Used Oil
\square Voluntary Cleanup	\square Waste Water	\square Wastewater Agriculture	\square Water Rights	\square Other:

SECTION IV: Preparer Information

40. Name:	Eric Chavers	41. Title:	Environmental Coordinator
42. Telephone Number 43 . Ext./Code	44. Fax Number	45. E-Mail Address	
$(903) 389-6062$		$(\mathrm{l})-$	eric.chavers@luminant.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Luminant Generation Company LLC	Job Title:		Sr. Director, Environmental Services	
Name (In Print):	Renee Collins		Phone:	(214)875-8382	
Signature:	$12 e r ~ C l 2022$				

ATTACHMENT 1

CCR UNIT MAPS AND INFORMATION

Figure No.		Description
Figure 1		General Location Map
Figure 2		Topographic Map
Figure 3		Facility Layout Map
Figure 4		Surrounding Features Map
Figure 5	Simplified CCR Process Flow Diagram	
Figure 6	Land Ownership Map	

Table No.
Table 1 Land Ownership List

TABLE 1
LAND OWNERSHIP LIST

COLETO CREEK POWER STATION

ID No.	Owner Name	Mailing Address		
1	HANLEY RANCH PARTNERSHIP	576 LAKESHORE DR	VICTORIA	TX
2	COLETO CREEK POWER LLC	6555 SIERRA DRIVE	77905	
3	GREG SCHERER	7875 US HWY 87N	IRVING	TX
	75039			

Notes:

1. Property information from Goliad County Appraisal District (CAD) real property account information records as of December 3, 2021.

APPENDIX B - LOCATION RESTRICTIONS AND GEOLOGY

Location Restrictions Demonstration

MEMORANDUM

October 17, 2018
SUBJECT: Location Restriction Demonstration - Placement Above Uppermost Aquifer Coleto Creek Power, LP
Coleto Creek Power Station
Coleto Creek Primary Ash Pond Fannin, Texas

Coleto Creek Power, LP operates the coal-fired Coleto Creek Power Station (Plant) located in Fannin, Texas. The Coleto Creek Primary Ash Pond (Unit) is an existing coal combustion residuals (CCR) surface impoundment. This demonstration addresses the requirements of 40 CFR $\$ 257.60$ Placement Above the Uppermost Aquifer of the US Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257 rule, effective 19 October 2015 for the Unit.
\$257.60(a): New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must be constructed with a base that is located no less than 1.52 meters (five feet) above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table). The owner or operator must demonstrate by the dates specified in paragraph (c) of this section that the CCR unit meets the minimum requirements for placement above the uppermost aquifer.

Bullock, Bennett \& Associates, LLC (BBA) reviewed original construction documentation and the results of other historic field investigation programs at the Unit and used that information to create a generalized stratigraphic model of the site. Elevations for the top of the uppermost aquifer as defined in the rule range from approximately El. 82 feet NAVD88 to El. 116 feet NAVD88. Base of unit elevations appear to range from El. 101 feet NAVD88 to El. 135 feet NAVD88. As a result, the separation between the base of the unit and the upper limit of the uppermost aquifer was confirmed to be greater than five feet and therefore meets the requirement of $\$ 257.60$ (a) for the Unit.

MEMORANDUM
October 17, 2018
Page 2 of 2
$\$ 257.60(b)$: The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.

I, Daniel Bullock, being a Licensed Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the CCR Unit meets the Placement Above the Uppermost Aquifer criteria as included in the CCR Rule Location Restrictions Evaluation memorandum dated 17 October 2018 and, therefore, meets the requirements of 40 CFR $\S 257.60(\mathrm{a})$.

Signed:

Principal Engineer
Print Name:
Texas License No.:
Title:
Daniel Bullock. P.E.
82596
Firm:
Principal Engineer
Bullock, Bennett \& Associates, LLC
Texas Engineering Firm No.: F-8542

MEMORANDUM

October 17, 2018
SUBJECT: Location Restriction Demonstration - Wetlands
Coleto Creek Power, LP
Coleto Creek Power Station
Coleto Creek Primary Ash Pond
Fanning, Texas
Coleto Creek Power, LP operates the coal-fired Coleto Creek Power Station (Plant) located in Fanning, Texas. The Coleto Creek Primary Ash Pond (Unit) is an existing coal combustion residuals (CCR) surface impoundment. This demonstration addresses the requirements of 40 CFR $\S 257.61$ Wetlands of the US Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257 rule, effective 19 October 2015 for the Unit.
§257.61(a): New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in wetlands, as defined in $\$ 232.2$ of this chapter, unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that the CCR unit meets the requirements of paragraphs (a) (1) through (5) of this section.

Bullock, Bennett \& Associates (BBA) reviewed USGS Topographic Maps, National Welands Inventory data, local soil survey data, and FEMA floodplain data to evaluate whether the Unit is located in a wetland area. BBA's findings were field verified during a site visit. The Unit is not located in wetlands as defined by 40 CFR $\S 232.2$
\$257.61(b): The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.

I, Daniel Bullock, being a Licensed Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the CCR Unit is not located in wetlands as included in the CCR Rule Location Restrictions Evaluation memorandum dated 17 October 2018 and, therefore, meets the requirements of 40 CFR $\S 257.61$ (a).

Signed:

Principal Engineer
Print Name:
Texas License No.:
Daniel Bullock, P.E.
Title:
Firm:
Texas Engineering Firm No.: 82596
Principal Engineer
Bullock. Bennett \& Associates, LLC F-8542

MEMORANDUM

October 17, 2018

SUBJECT: Location Restriction Demonstration - Fault Areas

> Coleto Creek Power, LP

Coleto Creek Power Station
Coleto Creek Primary Ash Pond Fannin, Texas

Coleto Creek Power, LP operates the coal-fired Coleto Creek Power Station (Plant) located in Fannin, Texas. The Coleto Creek Primary Ash Pond (Unit) is an existing coal combustion residuals (CCR) surface impoundment. This demonstration addresses the requirements of 40 CFR $\S 257.62$ Fault Areas of the U.S. Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257 rule effective 19 October 2015, for the Unit.
§257.62(a): New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located within 60 meters (200 feet) of the outermost damage zone of a fault that has had displacement in Holocene time unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that an alternative setback distance of less than 60 meters (200 feet) will prevent damage to the structural integrity of the CCR unit.

Bullock, Bennett \& Associates (BBA) reviewed available public records including the United States Geologic Survey (USGS) Earthquake Hazards Program Quarternary Fault and Fold Database, USGS Interactive Fault Map, The Geologic Atlas of Texas, and reports generated by the Texas Bureau of Economic Geology. BBA also reviewed site boring log and stratigraphy data supplemented by a site visit to perform a visual inspection. Based on the available published geologic data and information reviewed, there are no active faults or fault damage zones that have had displacement in Holocene time reported or indicated within 200 feet of the Unit.

MEMORANDUM
October 17, 2018
Page 2 of 2
§257.62(b): The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.

I, Daniel Bullock, being a Licensed Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the CCR Unit is not located within 60 meters (200 feet) of the outermost damage zone of a fault that has had a displacement in Holocene time as included in the CCR Rule Location Restrictions Evaluation memorandum dated 17 October 2018 and, therefore, meets the requirements of 40 CFR $\$ 257.62$ (a).

Signed:

Principal Engineer
Print Name:
Texas License No.:
Title:
Daniel Bullock, P.E.
82596
Principal Engineer

Firm:
Bullock. Bennett \& Associates, LLC
F-8542

MEMORANDUM

October 17, 2018
SUBJECT: Location Restriction Demonstration - Seismic Impact Zones Coleto Creek Power, LP Coleto Creek Power Station Coleto Creek Primary Ash Pond Fannin, Texas

Coleto Creek Power, LP operates the coal-fired Coleto Creek Power Station (Plant) located in Fannin, Texas. The Coleto Creek Primary Ash Pond (Unit) is an existing coal combustion residuals (CCR) surface impoundment. This demonstration addresses the requirements of 40 CFR $\S 257.63$ Seismic Impact Zones of the U.S. Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257 rule, effective 19 October 2015, for the Unit.
§257.63(a): New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of a CCR unit must not be located in seismic impact zones unless the owner or operator demonstrates by October 17, 2018 that all structural components including liners, leachate collection and removal systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material for the site.

A Seismic Impact Zone is defined in 40 CFR $\$ 257.63$ as "an area having a 2% or greater probability that the maximum expected horizontal acceleration, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10 g in 50 years." The 2014 U.S. Geological Survey National Seismic Hazard Map indicates that the Unit falls within the area with a maximum probable earthquake peak ground acceleration ranging from 0.02 g to 0.04 g . Accordingly, the Unit is not located in a seismic impact zone and a demonstration that the structural components have been designed to resist the maximum horizontal acceleration in lithified earth material for the site is not required.

MEMORANDUM
October 17, 2018
Page 2 of 2
\$257.63(b): The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.

I, Daniel Bullock, being a Licensed Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the demonstration that the CCR Unit is not located in a seismic impact zone as included in the CCR Rule Location Restrictions Evaluation memorandum dated 17 October 2018 meets the requirements of 40 CFR §257.63(a).

Signed:

Principal Engineer

Print Name:
Texas License No.:
Title:
Daniel Bullock, P.E. 82596

Firm: Bullock, Bennett \& Associates, LLC

Texas Engineering Firm No.: $\quad \underline{F-8542}$

MEMORANDUM

October 17, 2018
SUBJECT: Location Restriction Demonstration - Unstable Area Coleto Creek Power, LP
Coleto Creek Power Station Coleto Creek Primary Ash Pond Fannin, Texas

Coleto Creek Power, LP operates the coal-fired Coleto Creek Power Station (Plant) located in Fannin, Texas. The Coleto Creek Primary Ash Pond (Unit) is an existing coal combustion residuals (CCR) surface impoundment. This demonstration addresses the requirements of 40 CFR $\S 257.64$ Unstable Area of the US Environmental Protection Agency's (EPA's) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, 40 CFR Part 257 rule, effective 19 October 2015, for the Unit.
§257.64(a): An existing or new CCR landfill, existing or new CCR surface impoundment, or any lateral expansion of a CCR unit must not be located in an unstable area unless the owner or operator demonstrates by the dates specified in paragraph (d) of this section that recognized and generally accepted good engineering practices have been incorporated into the design of the CCR unit to ensure that the integrity of the structural components of the CCR unit will not be disrupted.
§257.64(b): The owner or operator must consider all of the following factors, at a minimum, when determining whether an area is unstable:
(1) On-site or local soil conditions that may result in significant differential settling;
(2) On-site or local geologic or geomorphologic features; and
(3) On-site or local human-made features or events (both surface and subsurface).

Bullock, Bennett \& Associates, LLC (BBA) reviewed original construction documentation and the results of other historic field investigation programs at the Unit and used that information to create a generalized stratigraphic model of the site. In addition, BBA reviewed historic annual Unit inspection reports generated by professional engineers and the findings of the Liquifaction Assessment conducted in support of the Initial Structural Integrity Assessment. As a result of this evaluation, BBA concludes that the Unit is not located in an unstable area and therefore meets the requirement of §257.64(a) for the Unit.

MEMORANDUM
October 17, 2018
Page 2 of 2
\$257.64(c): The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the demonstration meets the requirements of paragraph (a) of this section.

I, Daniel Bullock, being a Licensed Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the CCR Unit is not located in an unstable area as included in the CCR Rule Location Restrictions Evaluation memorandum dated 17 October 2018 and, therefore, meets the requirements of 40 CFR §257.64(a).

Signed:

Principal Engineer
Print Name:
Texas License No.:
Daniel Bullock. P.E.
82596

Title:
Principal Engineer
Firm: Bullock, Bennett \& Associates, LLC
Texas Engineering Firm No.: \quad F-8542

APPENDIX C - FUGITIVE DUST CONTROL PLAN

CCR Fugitive Dust Control Plan
2021 Annual CCR Fugitive Dust Control Report

Coal Combustion Residual Fugitive Dust Control Plan (AMENDMENT 1)
 Coleto Creek Power Station
 Tannin, Texas

JANUARY 24, 2018

Prepared for:

Coleto Creek Power, LP

Fanning, Texas

Prepared by:
Bullock, Bennett \& Associates, LLC
Engineering and Geoscience
Registrations: Engineering F-8542, Geoscience 50127
165 N. Lampasas Street Bertram, Texas 78605 (512) 355-9198

BBA Project No. 15214-2

TABLE OF CONTENTS

Page
LIST OF FIGURES ii
Site Summary 1
Coleto Creek Power Station CCR Management Fugitive Dust Control Plan
Section 1 - General Information 2
1.A Facility Name and Location 2
1.B Contacts 2
1.C Contractors 3
Section 2 - CCR Fugitive Dust Sources 4
2.A Responsibilities 4
2.B Surface Impoundment Sources of Fugitive Dust 4
2.C Bulk CCR Materials (Management Outside Primary Ash Pond) 5
Section 3 -CCR Dust Control Methods 6
3.A Dust Suppression Products 6
3.B Other CCR Dust Control Methods 6
3.C Contingencies 6
Section 4 -Recordkeeping 7
4.A Recordkeeping 7
Fugitive Dust Control Report Form 8
Citizen CCR Fugitive Dust Complaint Record 10
Section 5 -Certification 11

LIST OF FIGURES

Figure Title
1 Area Map
2 Simplified CCR Management Process Flow Diagram
3
Potential CCR Fugitive Dust Sources

Coleto Creek Power Station
Coal Combustion Residuals (CCR) Management Fugitive Dust Control Plan

(Amendment 1)

Site Summary

Coleto Creek Power, LP operates the Coleto Creek Power Station located at 45 FM 2987 near the city of Fannin in Goliad County, Texas (Figure 1). One boiler is operated at the facility to generate electricity for distribution to the area power grid. The boiler uses coal as the primary fuel and fuel oil as a backup fuel. There are two streams of coal combustion residuals (CCR) generated at this plant. Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment named the Coleto Creek Primary Ash Pond (Figures 2 and 3). Fly ash is collected from the boiler exhaust and transported pneumatically to two storage silos. From there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial reuse. Off-spec fly ash is combined with water and pumped to the Primary Ash Pond for disposal (Figure 3). CCR in the Primary Ash Pond is recovered for beneficial reuse via excavation, screening, and placement in covered dump trucks for transport off site.

Pursuant to Rule 40 CFR $\S 257.80$, "the owner or operator of a CCR landfill, CCR surface impoundment...must adopt measures that will effectively minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR units, road, and other CCR management and material handling activities." 40 CFR $\S 257.80$ (b) requires the owner or operator of the CCR unit to "prepare and operate in accordance with a CCR fugitive dust control plan." This Fugitive Dust Control Plan has been prepared to meet the requirements of the rule. This plan should be amended at any time that CCR management operations substantially change. A copy of this Plan and all associated inspection reports/neighborhood complaints shall be maintained in the facility's operating record and publicly accessible internet site.

The potential for excessive CCR fugitive dust emissions at the Coleto Creek Power Station site is relatively low. Bottom ash is conveyed to the surface impoundment for disposal in slurry form. Fly ash from the boiler is conveyed to two storage silos in an enclosed pneumatic conveyance system. Fugitive emissions are possible in equipment flanges/piping leading to the storage silos. Off-spec fly ash that is not shipped off-site for beneficial use and requires on-site disposal is conveyed in slurry form to the surface impoundment. The surface impoundment is surrounded on three sides by dense tree cover that serves as a windbreak. Dry areas of the impoundment are generally either crusted over or covered with vegetation. CCR within the surface impoundment boundary can be recovered via excavation as a plant product for offsite beneficial re-use. Ingress and egress from the surface impoundment is via a paved road. The road surrounding the surface impoundment is a dirt road that is primarily vegetated with the exception of the tire paths. Figure 3 shows potential fugitive dust source locations. There are no sensitive receptors (i.e., residential areas/schools) within the immediate vicinity of the site (Figure 1).

This Plan will be assessed to evaluate its effectiveness (40 CFR §257.80(4)) at a minimum frequency of once per year. Any changes will be noted and included in the facility operating record ($\$ 257.105(\mathrm{~g})$) and publicly accessible internet site ($\$ 257.107(\mathrm{~g})$). In addition, notification of any amendment of this plan will be reported to the relevant State director as required in $\S 257.106(\mathrm{~g})(1)$.

Coleto Creek Power Station
 Coal Combustion Residuals Management
 Fugitive Dust Control Plan
 Section 1 - General Information - Page 1

1-A Facility Name and Location	
Facility Name:	Coleto Creek Power Station
Facility Address:	45 FM 2987
Major X-Streets:	Hwy 59 and FM 2987
City:	Fannin

1-B Contacts
Names, addresses, and phone numbers of persons and owners or operators responsible for the implementation of the Dust Control Plan and responsible for the dust generating operation and dust control applications.

Coleto Creek Power Station Coal Combustion Residuals Management Fugitive Dust Control Plan Section 1 - General Information - Page 2

Facility Name: Coleto Creek Power Station

1-C Contractors

Names, addresses, and phone numbers of the contractors involved in CCR dust generating activities or performing dust control as part of this project.

1. Boral Material Technologies, Inc.

45 NE Loop 410 San Antonio, TX 78216-5832
210-349-4069
2. \qquad
3. \qquad
4. \qquad

Coleto Creek Power Station Coal Combustion Residuals Management
 Fugitive Dust Control Plan Section 2 - CCR Fugitive Dust Sources - Page 1

Facility Name: Coleto Creek Power Station

2-A Responsibilities

All staff members will be required to notify the operations manager of excessive CCR fugitive emissions when observed. This will include a description of the source of the excessive emission. The operations manager will be responsible for directing dust control measures.

2-B Surface Impoundment Sources of CCR Fugitive Dust

This section describes the minimum requirements for limiting visible dust emissions from activities that cause CCR fugitive dust.

Active Operations Within the Surface Impoundment

\boxtimes Water will be applied to dry areas during leveling, grading, trenching, and earthmoving activities as needed to reduce dust emissions. Chemical dust suppressants may also be used.
Material fall distances will be reduced to the lowest level reasonably practicable.
\boxtimes The existing tree line and other vegetative cover which serve as wind barriers will be maintained.
\boxtimes In the event that the application of water does not achieve the desired reduction in visible emissions, such as may occur during a high wind event, all operations will cease to the extent practicable until such time conditions will not result in excessive visible emissions.

Inactive Operations Within the Surface Impoundment

\boxtimes Vehicle access will be restricted to maintain the surface crust and/or vegetative cover.
\boxtimes The existing tree line and other vegetative cover which serve as wind barriers will be maintained.
Temporary Stabilization of CCR Excavation Areas that Remain Unused for Seven or More Days
\boxtimes Water or dust suppressants will be applied as needed to reduce visible emissions if excessive dusting is observed. CCR piles also may be covered with a tarp, plastic, or other suitable material and anchored in such a manner that prevents the cover from being removed by wind action.
Unpaved Access and Haul Roads Surrounding the Surface Impoundment
Restrict traffic to only necessary activities.
\boxtimes Post "Drive Slow - Reduce Dusting" signs at each entrance.
Water or dust suppressants will be applied to vehicle traffic areas if high traffic use is necessary and excessive visible emissions are observed.

High Wind Events

\boxtimes Water application equipment will apply water to control fugitive dust during high wind events if excessive visible emissions are occurring, unless unsafe to do so. Outdoor activities that disturb the CCR will cease whenever excessive visible dust emissions cannot be effectively controlled.

Coleto Creek Power Station Coal Combustion Residuals Management Fugitive Dust Control Plan Section 2 - CCR Fugitive Dust Sources - Page 2

2-C Bulk CCR Materials (Management Outside of Primary Ash Pond)

Outdoor Handling of Bulk CCR Materials (Only occurs during equipment maintenance/malfunction)
Water or dust suppressants will be applied when handling bulk materials as needed to reduce emissions.
Material fall distances will be reduced to the lowest level reasonably practicable.
\boxtimes If the addition of water and/or dust suppressants does not achieve the desired reduction in visible emissions, wind barriers, administrative controls, or other engineering controls will be used to reduce dusting.

On-Site Transport of Bulk CCR Materials

Transport vehicles will be operated at low speeds to reduce potential for dusting.
Haul trucks will maintain adequate freeboard to prevent excessive dusting while in transit.
\boxtimes Water will be applied to the load to reduce visible dust emissions if the material is not already sufficiently moist.
\boxtimes Haul trucks will be covered with a tarp or other suitable cover as needed for dust control.
\boxtimes Spills on roadways (unless deminimus) will be cleaned up in a timely manner using shovels, brooms, or other equipment appropriate for the amount of the spill. Collected materials shall be appropriately disposed.
Pneumatic Fly Ash Conveyance Equipment
P Pneumatic conveyance equipment will be periodically inspected to ensure that no leaking piping, flanges, or other equipment is present.
Leaking equipment will be repaired as soon as practicable.
\boxtimes Operations will cease if excessive fugitive emissions are observed until such time that the equipment is repaired.

Coleto Creek Power Station
 Coal Combustion Residuals Management Fugitive Dust Control Plan Section 3 - CCR Dust Control Methods - Page 1

| Facility Name: \quad Coleto Creek Power Station |
| :--- | :--- |
| 3-A \quad Dust Suppressant Products |
| These materials include, but are not limited to: hygroscopic suppressants (road salts), adhesives, petroleum
 emulsions, polymer emulsions, and bituminous materials (road oils). |

The following information is to be attached, if applicable, to describe dust control products that could potentially be used at this facility.
\square Product Specifications (MSDS, Product Safety Data Sheet, etc.)
\square Manufacturer's Usage Instructions (method, frequency, and intensity of application)
\square Environmental impacts and approvals or certifications related to the appropriate and safe use for ground application.

3-B Other CCR Dust Control Methods

Other types of dust control methods that may be employed at the site depending on conditions.

- Physical barriers:
\square PlasticTarpsGravel
\square Other:
W Wind barriers Describe:
Re-establish vegetation for temporarily stabilizing previously disturbed surfaces.
\square Other:

3-C Contingencies

Contingencies to be implemented if application equipment becomes inoperable, more equipment is needed to effectively control CCR fugitive dust emissions during active and inactive periods, accessibility limitations occur at the water sources, or staff is not available to operate the application equipment. Contingencies that will be in place and when they will be implemented include:

- Dust-causing operations will be limited to the extent practicable.
- Rental equipment may be obtained from local (Victoria, TX) locations, including United Rentals (361)578-5125, Hertz Equipment Rental (361)579-9425, Sunbelt Rentals (361)576-3434, or others as-needed.
- Various sources of water exist on site, the Health and Safety Coordinator may be contacted regarding alternate sources as-needed.
- Off-site support contractors may be contacted if sufficient staff is not available to operate equipment.

Coleto Creek Power Station
 Coal Combustion Residuals Management
 Fugitive Dust Control Plan
 Section 4 - Recordkeeping - Page 1

4-A Recordkeeping

Records and any other supporting documents for demonstrating compliance will be maintained in the facility operating record and on the publicly accessible internet site as required in $40 C F R \quad \S 257.105(g)$ and §257.107(g). Records shall be maintained for at least five (5) years ($\S 257.105(\mathrm{~b})$).

The following recordkeeping forms will be used to report the response to fugitive dust events (see attached).
Fugitive Dust Control Report (to be completed in the event that active CCR fugitive dust control methods, such as the application of water and/or dust suppressants, is utilized.
\boxtimes Citizen Complaint Log (40 CFR §257.80(3))

Coleto Creek Power Station
 Coal Combustion Residuals Management
 Fugitive Dust Control Report - Page 1 of 2

Site Area:

Cause of CCR Fugitive Dust

Water Application

Water Application Equipment:
\square
Sprinklers: Describe the activities that used sprinklers:

Minimum treated area:	\square Square Feet \square Acres	
Maximum treated area:	\square Square Feet \square Acres	
Minimum water flow rate:	\square	Gallons/minute Duration:
ater Truck, \square Water Trailer, \square	Water Wagon,	
Describe the activities that utilized this equipment:		

Number of application equipment used:
Application equipment capacity:
Application frequency:
Application rate: \qquad Gallons per acre per application
Hours of operation:

Water Supply:

\square Fire hydrantsStorage tanksWellsCanal, River, Pond, Lake, etc. Describe:
\square other:

CCR Dust Suppressant Application

Dust Suppression Product Application:

\square Dust Suppressant Product: Describe the dust suppressant. Attach MSDS and other information if not already contained within the facility's Fugitive Dust Control Plan:

Minimum treated area:	\square Square Feet \square Acres	
Maximum treated area:	\square	\square Square Feet \square Acres
Application rate:	\square	Duration:

Coleto Creek Power Station Coal Combustion Residuals Management Fugitive Dust Control Report - Page 2 of 2

Other CCR Dust Control Methods

Check below the other types of dust control methods that were employed at the site.
\square Physical barriers:TarpsGravelOther:
Wind barriers Describe:
Re-establish vegetation for temporarily stabilizing previously disturbed surfaces.
Explain: \qquad
\qquad Other:

Coleto Creek Power Station Coal Combustion Residuals Management Citizen CCR Fugitive Dust Complaint Record

Date:
Time: \qquad
Citizen Contact Information

Citizen Name:	
Address:	
City / State / Zip:	
Phone:	
E-mail:	
Employee Logging Complaint:	
Description: (Include as much information regarding location/conditions/nature of complaint (e.g., odor, respiratory issues, etc.) as possible)	

Weather Conditions:

| Temp (deg. F): | Avg. Wind
 Speed (mph): | | Wind Direction: |
| :--- | :--- | :--- | :--- | :--- |

Employee Signature:

Coleto Creek Power Station Coal Combustion Residuals Management Fugitive Dust Control Plan Section 5 - Certification

Coleto Creek Power Station
 Coal Combustion Residuals Management Fugitive Dust Control Plan

Figures

| Facility Name: \quad Coleto Creek Power Station |
| :---: | :--- |
| Figures |
| Figure 1. Area Map |
| Figure 2. Simplified CCR Management Process Flow Diagram |
| Figure 3. Potential Fugitive CCR Dust Sources |

Coleto Creek Power, LP
Figure 2
SIMPLIFIED CCR MANAGEMENT PROCESS FLOW DIAGRAM

PROJECT: 15214-2	BY: K2P-RR	DATE: OCT. 2017	CHECKED: DBB

Bullock, Bennett \& Associates, LLC
Engineering and Geoscience
Texas Registrations: Engineering F-8542, Geoscience 50127

Annual CCR Fugitive Dust Report

Coleto Creek Power Plant
Solid Waste Registration (SWR) \# 31911
Reporting Year: $\underline{2021}$
Date of Report: October 12, 2021

CCR Unit	CCR Material Managed	Dust Control Methods Used During the Reporting Year	Complaint	Date of Complaint	Summary of Corrective Measures Taken
Primary Ash Pond	 Bottom Ash	Water spray or fogging \bullet - Comptem • Vegetative cover \bullet Reduced vehicle speed limits	NONE	N/A	

In accordance with $\S 257.80$ (c), Luminant has reviewed the CCR fugitive dust control plan and prepared this annual report. Based upon this review, no changes or additional measures were determined to be necessary.

Reviewed by: Renee Collins, Sr Director of Environmental Services Printed Name, Title

\qquad

APPENDIX D - SURFACE IMPOUNDMENT DESIGN AND OPERATING CRITERIA

Alternative Closure Plan Demonstration - Part A
Hazard Potential Classification Assessment
Inflow Design Flood Control Plan
History of Construction Report
Structural Stability Assessment
Safety Factor Assessment

Cynthia Vodopivec
Coleto Creek Power, LLC

November 30, 2020
Sent via email
Mr. Andrew R. Wheeler, EPA Administrator
Environmental Protection Agency
1200 Pennsylvania Avenue, N.W.
Mail Code 5304-P
Washington, DC 20460

Re: Coleto Creek Power Plant Alternative Closure Demonstration

Dear Administrator Wheeler:
Coleto Creek Power, LLC (CCP) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § $257.103(\mathrm{f})(2)$ for the Primary Ash Pond located at the Coleto Creek Power Plant near Fannin, Texas. CCP is requesting an extension pursuant to 40 C.F.R. § $257.103(f)(2)$ so that the Primary Ash Pond may continue to receive CCR and non-CCR wastestreams after April 11, 2021, and complete closure no later than October 17, 2028.

CCP has elected to withdraw the alternate closure demonstration that was previously submitted to EPA on September 29, 2020 pursuant to 40 C.F.R. § $257.103(f)(1)$ and replace it with the enclosed demonstration prepared by Burns \& McDonnell pursuant to 40 C.F.R. § $257.103(f)(2)$. This demonstration addresses all of the criteria in 40 C.F.R. § 257.103 (f)(2)(i)-(iv) and contains the documentation required by 40 C.F.R. § $257.103(f)(2)(v)$. As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Renee Collins at 214-875-8338 or renee.collins@luminant.com. The demonstration is also available on CCP's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthia Vodopivec
VP - Environmental Health \& Safety
Enclosure
cc: Kirsten Hillyer
Frank Behan
Richard Huggins

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Coleto Creek Power, LLC

Coleto Creek Power Plant
Project No. 122702

Revision 0
11/30/2020

Coleto Creek CCR Surface Impoundment
 Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

prepared for

Coleto Creek Power, LLC Coleto Creek Power Plant Fannin, Texas

Project No. 122702

Revision 0
11/30/2020
prepared by

Burns \& McDonnell Engineering Company, Inc.
Kansas City, Missouri

INDEX AND CERTIFICATION

Coleto Creek Power, LLC

Coleto Creek CCR Surface Impoundment Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline Project No. 122702

Report Index

Chapter Number		Chapter Title
Number		
1.0	Executive Summary	
2.0	Introduction	1
3.0	Documentation of No Alternative Disposal Capacity	2
6.0	Documentation of Closure Completion Timeframe	7
7.0	Conclusion	4
Appendix A	Site Plan	1
		1

Certification

I hereby certify, as a Professional Engineer in the state of Texas, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Coleto Creek Power, LLC or others without specific verification or adaptation by the Engineer.

\qquad
Randell Lee Sedlacek, P.E. (Texas License No. 99506)

Date: $11 / 30 / 20$

Burns \& McDonnell Engineering Company, Inc.
Texas Registered Engineering Firm F-845

TABLE OF CONTENTS

Page No.
1.0 EXECUTIVE SUMMARY 1-1
2.0 INTRODUCTION 2-1
3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY 3-1
3.1 Site-Layout and Wastewater Processes 3-1
3.2 CCR Wastestreams 3-1
3.3 Non-CCR Wastestreams 3-5
4.0 RISK MITIGATION PLAN 4-1
5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE 5-1
5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1) 5-1
5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2) 5-1
5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3) 5-2
5.4 Description of site hydrogeology including stratigraphic cross-sections - § 257.103(f)(2)(v)(C)(4) 5-2
5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5) 5-2
5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6) 5-2
5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7) 5-2
5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8). 5-2
6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME 6-1
7.0 CONCLUSION 7-1
APPENDIX A - SITE PLAN AND NEARBY LANDFILLS
APPENDIX B - WATER BALANCE DIAGRAM
ATTACHMENT 1 - RISK MITIGATION PLAN
ATTACHMENT 2 - MAP OF GROUNDWATER MONITORING WELLLOCATIONSATTACHMENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLINGLOGS
ATTACHMENT 4 - MAPS OF THE DIRECTION OF GROUNDWATER FLOWATTACHMENT 5 - TABLES SUMMARIZING CONSTITUENTCONCENTRATIONS AT EACH MONITORING WELLATTACHMENT 6 - SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

ATTACHMENT 7 - STRUCTURAL STABILITY AND SAFETY FACTOR ASSESSMENTS
 ATTACHMENT 8 - CLOSURE PLAN

LIST OF TABLES

Page No.

Table 3-1: Coleto CCR Wastestreams ... 3-2
Table 3-2: Coleto Non-CCR Wastestreams..3-5
Table 3-3: Non-CCR Wastestream Offsite Disposal...3-7
Table 6-1: Coleto Primary Ash Pond Closure Schedule..6-2

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
CCP	Coleto Creek Power, LLC
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
Coleto Creek	Coleto Creek Power Plant
EPA	Environmental Protection Agency
GWPS	Publicly Owned Treatment Works
POTW	Prevention of Significant Deterioration
PSD	Tesource Conservation and Recovery Act
RCRA	

1.0 EXECUTIVE SUMMARY

Coleto Creek Power, LLC (CCP) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(2) -"Permanent Cessation of a Coal-Fired Boiler(s) by a Date Certain"- for the Primary Ash Pond located at the Coleto Creek Power Plant (Coleto) in Texas. The Primary Ash Pond is a 190-acre CCR surface impoundment used to manage CCR and non-CCR wastestreams at Coleto. As discussed herein, the boiler at the station will cease coal-fired operations no later than July 17, 2027, and the impoundment will complete closure no later than October 17, 2028. Therefore, CCP is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(2) so that the Primary Ash Pond may continue to receive CCR and non-CCR waste streams after April 11, 2021, and complete closure no later than October 17, 2028.

2.0 INTRODUCTION

Coleto is a 650-megawatt, single unit coal-fueled electrical generating facility located in Fannin, Texas. The Coleto Creek facility includes a CCR unit (the Primary Ash Pond) that is the subject of this demonstration. Coleto uses the 190-acre Primary Ash Pond to manage sluiced bottom ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and non-CCR wastewaters. The impoundment was constructed between 1976 and 1977 and has been in service for the life of the plant. The boiler is scheduled to cease coal-fired operations no later than July 17, 2027. Fly ash is currently collected dry and normally hauled offsite for beneficial use; however, periodically, the market will not accept the fly ash due to varying properties or seasonal demand, in which case the ash is sluiced from the storage silo and disposed of in the Primary Ash Pond. The various non-CCR wastewaters received originate from the demineralizer sump (including, reverse osmosis reject and demineralizer regeneration flows) and the boiler sump (including flows from laboratory drains, hopper overflow (ash contact/quench water), boiler blowdown condensate polisher regeneration, water pretreatment filter backwash, oil/water separator discharge, transformer area sump, stormwater from ash piping trench, fabric filter area wash, air heater wash, and boiler wash). A site plan is provided in Appendix A, and the plant water balance diagram is included in Appendix B.

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257 , Subpart D, to regulate the disposal of CCR materials generated at coal-fueled units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 et seq.). On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may continue to receive CCR and non-CCR wastestreams if the facility will cease operation of the coal-fired boiler(s) and complete closure of the impoundments within certain specified timeframes. 40 C.F.R. § 257.103(f)(2). To qualify for an alternative closure deadline under $\S 257.103(\mathrm{f})(2)$, a facility must meet the following four criteria:

1. § $\mathbf{2 5 7 . 1 0 3 (f) (2) (i) ~ - ~ N o ~ a l t e r n a t i v e ~ d i s p o s a l ~ c a p a c i t y ~ i s ~ a v a i l a b l e ~ o n - s i t e ~ o r ~ o f f - s i t e . ~ A n ~ i n c r e a s e ~ i n ~}$ costs or the inconvenience of existing capacity is not sufficient to support qualification.
2. § $\mathbf{2 5 7 . 1 0 3 (f) (2) (i i) - P o t e n t i a l ~ r i s k s ~ t o ~ h u m a n ~ h e a l t h ~ a n d ~ t h e ~ e n v i r o n m e n t ~ f r o m ~ t h e ~ c o n t i n u e d ~}$ operation of the CCR surface impoundment have been adequately mitigated;
3. $\S \mathbf{2 5 7 . 1 0 3 (f) (2) (i i i) ~ - ~ T h e ~ f a c i l i t y ~ i s ~ i n ~ c o m p l i a n c e ~ w i t h ~ t h e ~ C C R ~ r u l e , ~ i n c l u d i n g ~ t h e ~ r e q u i r e m e n t ~}$ to conduct any necessary corrective action; and
4. $\S \mathbf{2 5 7 . 1 0 3 (f) (2) (i v) ~ - ~ T h e ~ c o a l - f i r e d ~ b o i l e r s ~ m u s t ~ c e a s e ~ o p e r a t i o n ~ a n d ~ c l o s u r e ~ o f ~ t h e ~ i m p o u n d m e n t ~}$ must be completed within the following timeframes:
a. For a CCR surface impoundment that is 40 acres or smaller, the coal-fired boiler(s) must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2023.
b. For a CCR surface impoundment that is larger than 40 acres, the coal-fired boiler(s) must cease operation, and the CCR surface impoundment must complete closure no later than October 17, 2028.

Section 257.103(f)(2)(v) sets out the documentation that must be provided to EPA to demonstrate that the four criteria set out above have been met. Therefore, this demonstration is organized based on the documentation requirements of §§ 257.103(f)(2)(v)(A) - (D).

3.0 DOCUMENTATION OF NO ALTERNATIVE DISPOSAL CAPACITY

To demonstrate that the criteria in § 257.103(f)(2)(i) has been met, the following provides documentation that no alternative disposal capacity is currently available on-site or off-site for each CCR and non-CCR wastestream that CCP seeks to continue placing into the Primary Ash Pond after April 11, 2021. Consistent with the regulations, neither an increase in costs nor the inconvenience of existing capacity was used to support qualification under this criteria. Instead, as EPA explained in the preamble to the proposed Part A revisions, "it would be illogical to require [] facilities [ceasing power generation] to construct new capacity to manage CCR and non-CCR wastestreams." 84 Fed. Reg. 65,941 , 65,956 (Dec. 2, 2019). EPA again reiterated in the preamble to the final revisions that " $[i] n$ contrast to the provision under § $257.103(\mathrm{f})(1)$, the owner or operator does not need to develop alternative capacity because of the impending closure of the coal fired boiler. Since the coal-fired boiler will shortly cease power generation, it would be illogical to require these facilities to construct new capacity to manage CCR and non-CCR wastestreams." 85 Fed. Reg. at 53,547 . Thus, new construction or the development of new alternative disposal capacity was not considered a viable option for any wastestream discussed below.

3.1 Site-Layout and Wastewater Processes

As shown on Figure 1 in Appendix A, Coleto Creek is bounded by Sulfur Creek to the north, the Coleto Creek Reservoir to the east, and Perdido Creek to the south. The western boundary is formed by FM 2987 (farm to market road). The Ash Pond receives both the CCR sluice flows and a portion of the non-CCR wastewater flows onsite. The plant process flows are shown in Appendix B. The remaining impoundments onsite (the Secondary Pond, Evaporation Pond and Coal Pile Runoff Pond) are not authorized to receive CCR material and are not large enough to independently treat the total volume of the plant process water flows.

3.2 CCR Wastestreams

CCP evaluated each CCR wastestream placed in the Primary Ash Pond at Coleto. For the reasons discussed below in Table 3-1, each of the following CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 3-1: Coleto CCR Wastestreams

CCR Wastestreams	Estimated Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Bottom Ash, Economizer Ash, and nonCCR mill rejects Sluice	1.26	NO	Alternative capacity is not currently available on or off-site and would have to be developed. Alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks to support transport of sluice material offsite for disposal. Refer to the discussion below for a more detailed evaluation on the development of alternative capacity. Some bottom ash/economizer ash/mill reject materials removed from the Primary Ash Pond for off-site beneficial reuse ($\sim 21,000$ tons in 2019); however, the transport water remains within the pond.
Dry Fly Ash	Normally Dry Handled with Intermittent Sluices from Silo for Disposal (0.57 when sluicing) ~ 550 tons/year to Primary Ash Pond based on 2019 rates	NO	The fly ash is collected dry and conveyed to a storage silo near the Primary Ash Pond. Normally, the ash is sent offsite for beneficial reuse. Periodically, the market will not accept the ash due to varying properties or seasonal demand, in which case the ash is sluiced from the silo to the Primary Ash Pond. No conditioning equipment is currently installed to allow for trucking the material offsite for disposal. The existing sluicing system must be removed from service no later than December 31, 2023, to comply with the ELG Rule. CCP must continue its beneficial use marketing efforts to allow for 100% beneficial reuse or install a pug mill to condition any fly ash that must be disposed after that date. CCP does not have a CCR landfill or another CCR surface impoundment located onsite that is available or ready to accept this material. Consequently, there are currently no on-site alternatives for this wastestream, and alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity is not currently available as discussed below.

CCP evaluated the following on-site and off-site alternative capacity options for these CCR wastestreams:

- Bottom ash, economizer ash, and non-CCR mill rejects sluice (1.26 MGD):
- On-site alternative capacity is currently not available and would need to be developed. The remaining impoundments onsite (Coal Pile Runoff Pond, Evaporation Pond, and the

Secondary Pond) are not authorized to receive the CCR materials.

- Development of on-site alternative capacity would require the design, permitting, and installation of a new dry ash handling system or a treatment system including CCR ponds, clarifiers, and/or storage $\operatorname{tank}(\mathrm{s})$, to provide the necessary retention time to meet the TPDES permit limits. The environmental permitting might require a modification to the site's current individual TPDES permit (if rerouting of this wastestream to another outfall), general TPDES stormwater construction permit (includes evaluation of threatened and endangered species and historic preservation assessments), and an updated Stormwater Pollution Prevention Plan (SWPPP) at a minimum. Based on our experience with environmental permitting, this effort could require two to four years.
- Off-site alternative capacity is currently not available and would need to be developed. Developed off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks), and off-site transportation, via tanker trucks. With an average daily flow of 1.26 MGD of sluice water, approximately 60 frac tanks and 168 daily tanker trucks (~ 7500 gallons per truck to maintain DOT weight restrictions) would be required, if a Publicly Owned Treatment Works (POTW) could be identified to receive it. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a Prevention of Significant Deterioration (PSD) permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up contractual arrangements for a local POTW to accept the wastewater would prove to be difficult since this amount of wastewater would potentially upset their treatment systems causing them to exceed their TPDES discharge limits. The potential for leaks/spills from the tank system or transportation of the wastewater offsite exist as well. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, CCP has determined that offsite disposal is not feasible for these flows at Coleto.
- Fly ash (0.57 MGD when sluicing; ~ 550 tons/year based on 2019 rates):
- On-site alternative capacity is currently not available and would need to be developed. The remaining impoundments onsite (Coal Pile Runoff Pond, Evaporation Pond, and the Secondary Pond) are not authorized to receive the CCR materials.
- Development of on-site alternative capacity would require the design, permitting, and installation of a new CCR landfill and new conditioning equipment to support hauling and
disposal at the landfill. Based on our experience with environmental permitting, this effort could require a minimum of three to four years.
- Fly ash transport water cannot be disposed offsite per 40 C.F.R. § 423.16(f). The sluicing system is the only installed method onsite to allow for disposal of dry fly ash, and the Primary Ash Pond is the only CCR surface impoundment onsite to receive this wastestream.
- Off-site alternative capacity for dry fly ash is currently not available and would need to be developed. It should be noted that CCP is currently marketing 99% of the fly ash for beneficial reuse off-site. CCP is focused on expanding beneficial use marketing efforts to eliminate the sluicing of fly ash at Coleto prior to December 31, 2023. As a result, fly ash disposal is projected to be minimal, both in 2020 and over the next several years.
- Developed off-site alternative disposal capacity for fly ash would consist of off-site transportation to a contracted landfill and the installation of conditioning equipment on-site to prepare the material for offsite disposal. The fly ash would likely need to be conditioned (@ 10% moisture) in an on-site pug mill due to fugitive dusting concerns. Low-sulfur Powder River Basin Class C fly ash develops cementitious characteristics when conditioned with water rather quickly. Because of this, off-site transportation must be limited to less than a one-hour haul time, or within 40 miles of the station, to prevent the fly ash from setting up and hardening and causing adverse disposal / unloading issues at the offsite landfill. There is one landfill within approximately 40 miles of the station (see Figure 2 in Appendix A), so CCP is continuing to have discussions with these offsite landfills to determine if they have the capacity and the infrastructure to receive any future fly ash for disposal. This will also include efforts to characterize the waste. CCP will update EPA in forthcoming progress reports if offsite disposal capacity becomes available.

As stated previously, because CCP has elected to pursue the option to permanently cease coal-fired operations of the boiler no later than July 17,2027 , developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operations of the boiler and close the impoundment. As long as CCP continues to wet handle the bottom ash, economizer ash, and mill reject materials, there are no other onsite CCR impoundments available to receive and treat these flows and it is not feasible to dispose of the wet-handled material offsite. As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. See 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for
wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). As a result, the conditions at Coleto satisfy the demonstration requirement in § 257.103(f)(2)(i).

Consequently, in order to continue to operate and generate electricity, Coleto must continue to use the 190acre Primary Ash Pond to manage the CCR wastestreams discussed above. Accordingly, the nonmarketable fly ash must be placed in the only available onsite disposal location (i.e., the Primary Ash Pond) when not hauled offsite for beneficial use due to seasonal market impacts.

3.3 Non-CCR Wastestreams

CCP evaluated each non-CCR wastestream placed in the Primary Ash Pond at Coleto. For the reasons discussed below in Table 3-2, each of the following non-CCR wastestreams must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site.

Table 3-2: Coleto Non-CCR Wastestreams

Non-CCR Wastestreams	Estimated Average Flow (MGD)	Alternative Disposal Capacity Currently Available? YES/NO	Details
Demineralizer Sump Discharge (including Demineralizer Regeneration Flows and RO Reject)	0.07	NO	On-site alternative capacity would need to be designed, permitted, and installed. Off-site alternative capacity would include development of on-site temporary tanks and transporting of this sluice material offsite for disposal. See discussion below for more details.
Boiler Sump Discharges (normal operation)	1.56	NO	While onsite infrastructure exists to route this flow to the Evaporation Pond, the capacity of the Evaporation Pond would be exceeded by the addition of these flow rates. The average annual precipitation and evaporation rates for the site are 41 and 69 inches, respectively. The coal pile runoff is already routed to the Evaporation Pond, and consequently this pond is only capable of receiving approximately 5% of this boiler sump discharge without having the permit modified to allow for discharge from this pond. Such a modification would require sampling, wastestream characterization, and likely anti-degradation studies to generate a new outfall to Coleto Creek Reservoir. Off-site alternative capacity would include development of on-site temporary tanks and transporting of this sluice material offsite for disposal. See discussion below for more details.

| | | Alternative
 Disposal
 Capacity
 Currently
 Available?
 Non-CCR
 Wastestreams | Average
 Flow
 (MGD) |
| :---: | :---: | :---: | :---: | | YES/NO |
| :---: |\quad Details | Boiler Sump
 Discharges
 (during outage
 wash events) | ~ 1.2 million
 gallons per
 outage | YES |
| :---: | :---: | :---: |

CCP evaluated on-site and off-site alternative capacity options for the non-CCR wastestreams. Development of on-site alternative capacity would require the design, permitting, and installation of a new treatment system including non-CCR ponds, clarifiers, and/or storage $\operatorname{tank}(\mathrm{s})$ to provide the necessary retention time for TSS removal to meet the TPDES permit limits. For the demineralizer sump discharge, this would include installing a minimum of 1,000 feet of additional piping, and potentially replacing the demineralizer sump pumps and upsizing of the power feeds to reroute to the existing Secondary Pond and/or Evaporation Pond. A neutralization tank may also be required depending on the results of the characterization. The environmental permitting might include a modification to the current individual TPDES permit (if rerouting of this wastestream to another outfall), general TPDES stormwater construction permit (includes evaluation of threatened and endangered species and historic preservation assessments), a construction \& operating permit, and a SWPPP at a minimum which is expected to require two to four years to implement.

Development of off-site alternative capacity would consist of both temporary on-site wet storage (frac tanks) and off-site transportation via tanker trucks, assuming a local POTW could be identified to receive these streams. The required daily frac tanks and tanker trucks ($\sim 7,500$ gallons per truck to maintain DOT weight restrictions) for each wastestream is provided in Table 3-3. The daily tanker truck traffic would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a PSD permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions are over the PSD limits. Setting up arrangements for a local POTW to accept this wastewater could prove to be difficult if this amount of wastewater would upset their treatment systems, causing them to exceed their TPDES discharge limits. CCP is continuing to have discussions with local POTW's to determine if they have the capacity and the infrastructure to handle these daily volumes of wastewater. This will likely also include efforts to characterize the waste, and installation of a chemical treatment/neutralization process prior to hauling the demineralizer sump discharge offsite for disposal. CCP will update EPA in forthcoming progress reports if
offsite disposal capacity becomes available. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does also exist. Furthermore, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting which would require a minimum of two years to implement. For all of these reasons, CCP has determined that offsite disposal is not feasible for these flows at Coleto at this time.

Table 3-3: Non-CCR Wastestream Offsite Disposal

Non-CCR Wastestreams	Estimated Flow (MGD)	No. of Frac Tanks required $(21,000$ gallons each)	No. of Trucks required per day $(7,500$ gallons each $)$			
Demineralizer Sump Discharge	0.07	4	10			
Boiler Sump Discharges (normal operation)	1.56	75	208			
Total					79	218

As stated previously, since CCP has elected to pursue the option to permanently cease the use of the coal fired boilers by a certain date, developing alternative disposal capacity is "illogical," to use EPA's words, and also counterproductive to the work to cease coal-fired operations of the boilers and close the impoundment. There is currently no available infrastructure at the plant to support reroute of these flows. For the reasons discussed above, each of the non-CCR wastestreams (except the outage wash flows) must continue to be placed in the Primary Ash Pond due to lack of alternative capacity both on and off-site. Consequently, in order to continue to operate and generate electricity, Coleto must continue to use the 190acre Primary Ash Pond to manage the non-CCR wastestreams discussed above.

4.0 RISK MITIGATION PLAN

To demonstrate that the criteria in § 257.103(f)(2)(ii) has been met, CCP has prepared and attached a Risk Mitigation Plan for the Coleto Primary Ash Pond (see Attachment 1). Per § 257.103(f)(2)(v)(B), this Risk Mitigation Plan is only required for the specific CCR Unit(s) that are the subject of this demonstration.

5.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

In the Part A rule preamble, EPA reiterates that compliance with the CCR rule is a prerequisite to qualifying for an alternative closure extension, as it "provides some guarantee that the risks at the facility are properly managed and adequately mitigated." 85 Fed. Reg. at 53,543 . EPA further stated that it "must be able to affirmatively conclude that facility meets this criterion prior to any continued operation." 85 Fed. Reg. at 53,543. Accordingly, EPA "will review a facility's current compliance with the requirements governing groundwater monitoring systems." 85 Fed. Reg. at 53,543. In addition, EPA will also "require and examine a facility's corrective action documentation, structural stability documents and other pertinent compliance information." 85 Fed. Reg. at 53,543 . Therefore, EPA is requiring a certification of compliance and specific compliance documentation be submitted as part of the demonstration. 40 C.F.R. § 257.103(f)(2)(v)(C).

The Coleto Creek facility includes a CCR unit (the Primary Ash Pond) that is the subject of this demonstration. To demonstrate that the criteria in § $257.103(\mathrm{f})(2)(\mathrm{iii})$ has been met, CCP is submitting the following information as required by § 257.103(f)(2)(v)(C):

5.1 Owner's Certification of Compliance - § 257.103(f)(2)(v)(C)(1)

I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for Coleto Creek, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D - Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Coleto Creek's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

On behalf of CCP:

Cynthia Vodopivec
VP - Environmental Health \& Safety
November 30, 2020

5.2 Visual representation of hydrogeologic information - § 257.103(f)(2)(v)(C)(2)

Consistent with the requirements of § $257.103(\mathrm{f})(2)(\mathrm{v})(\mathrm{C})(2)(\mathrm{i})$ - (iii), CCP has attached the following items to this demonstration:

- Maps) of groundwater monitoring well locations in relation to the CCR unit (Attachment 2)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment 3)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment 4)

5.3 Groundwater monitoring results - § 257.103(f)(2)(v)(C)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment 5.

5.4 Description of site hydrogeology including stratigraphic cross-sections § 257.103(f)(2)(v)(C)(4)

A description of the site hydrogeology and stratigraphic cross-sections of the site are included as Attachment 6.

5.5 Corrective measures assessment - § 257.103(f)(2)(v)(C)(5)

Background sampling began at the Primary Ash Pond in March of 2017 and continued through July for eight rounds of background sampling. The first semiannual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in June 2018. The results, through the first 2020 semi-annual monitoring period, indicate the Primary Ash Pond is currently in assessment monitoring, with no exceedances of the Appendix IV parameters recorded. Accordingly, an assessment of corrective measures is not currently required. Coleto will continue to conduct groundwater monitoring in accordance with all state and federal requirements.

5.6 Remedy selection progress report - § 257.103(f)(2)(v)(C)(6)

As noted above, an assessment of corrective measures and the resulting selection of remedy are not currently required for the Primary Ash Pond.

5.7 Structural stability assessment - § 257.103(f)(2)(v)(C)(7)

Pursuant to § 257.73(d), the initial structural stability assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment 7.

5.8 Safety factor assessment - § 257.103(f)(2)(v)(C)(8)

Pursuant to § 257.73(e), the initial safety factor assessment report for the Primary Ash Pond was prepared in October 2016 and revised in January 2018 (to remove the Secondary Pond). The revised report is included as Attachment 7.

6.0 DOCUMENTATION OF CLOSURE COMPLETION TIMEFRAME

To demonstrate that the criteria in § $257.103(\mathrm{f})(2)(\mathrm{iv})$ has been met, "the owner or operator must submit the closure plan required by $\S 257.102(\mathrm{~b})$ and a narrative that specifies and justifies the date by which they intend to cease receipt of waste into the unit in order to meet the closure deadlines. The closure plan for the Primary Ash Pond is included as Attachment 8.

In order for a CCR surface impoundment over 40 acres to continue to receive CCR and non-CCR wastestreams after the initial April 11, 2021 deadline, the coal-fired boiler(s) at the facility must cease operation and the CCR surface impoundment must complete closure no later than October 17, 2028. As discussed below, Coleto will begin construction of the Primary Ash Pond closure by April 17, 2025, the boiler will cease coal-fired operations no later than July 17, 2027, and Coleto will cease placing wastestreams into the Primary Ash Pond by September 17, 2027, in order for closure to be completed by this deadline.

Table 6-1 is included below to summarize the major tasks and estimated durations associated with closing the Primary Ash Pond in place. These durations are consistent with the durations experienced with the closure of approximately 500 acres of other CCR impoundments already completed by CCP and its affiliates to date as noted below:

- Baldwin Fly Ash Pond System - 230 acres closed in-place with an approximate 30-month construction schedule
- Hennepin West Ash Ponds System - 35 acres closed in-place with an approximate 24-month construction schedule (includes closure by removal of an adjacent 6 -acre settling pond and installing a sheet pile wall)
- Hennepin East Ash Ponds 2 and 4 - 25 acres closed in-place with an approximate 6-month construction schedule
- Coffeen Ash Pond 2 - 60 acres closed in-place with an approximate 24 -month construction schedule
- Duck Creek Ash Ponds 1 and 2 - 130 acres closed in-place with an approximate 24-month construction schedule

Each CCR impoundment closure indicated above utilized a coordinated passive or gravity dewatering method, which consisted of the use of trenches excavated to lower the phreatic surface in portions of the impoundment to obtain a stable ash surface to permit the safe construction of the final cover system. The phreatic water in the trenches flows by gravity to sumps constructed within the impoundment. The major
benefit associated with this passive or gravity dewatering method is that the sumps are designed to provide holding time to allow the TSS to settle within the impoundment prior to discharge (an active dewatering method with wells would result in potential discharges of unsettled TSS). After solids settling, the water is discharged through the TPDES outfall in compliance with permitted limits.

Construction progressed sequentially as the dewatering of an area stabilized the ash surface. The CCR was graded to subgrade level, then overlain with the compacted clay layers and/or geomembrane liners. Vegetative soil cover was then placed on top of the infiltration layer. As each section of the impoundment was closed, this sequencing progressed to the completion of the pond closure. A similar process will be utilized to close the Coleto Primary Ash Pond in order to allow the final open section of the impoundment to be large enough for the impoundment to remain in operation until the pond ceases the receipt of waste. This would provide sufficient time for closure to be completed by October 17, 2028.

The first construction effort will involve modifying the pond operations by relocating the influent lines, minimizing the pond water levels, and isolating flow to a smaller portion of the current 190-acre impoundment that can be closed during the last two construction seasons. The smaller active portion of the pond will remain in operation while CCP begins dewatering and closing the impoundment as described above. This reduction in footprint may require the addition of chemical feeds to provide adequate treatment but that has not been the case at our other sequenced closures. This approach simultaneously allows for continued operation of the plant to maintain generating capacity for the ERCOT markets and minimizes the risk to the environment both by minimizing the pond size and the potential for any impacts to groundwater and by opening up a significant portion of the remaining impoundment to allow for dewatering, grading, and closure (in Phase 1).

Table 6-1 provides estimates for the durations required to close a portion of the pond footprint after the date noted to begin construction of closure (Phase 1), as well as the current estimates for the closure of the active area (Phase 2, remaining 40-50 acres). In order to dewater the impoundment, CCP will likely release pond water through the existing Outfall 003.

Table 6-1: Coleto Primary Ash Pond Closure Schedule

Action	Estimated Timeline (Months)
Spec, bid, and Award Engineering Services for CCR Impoundment Closure	3
Finalize CCR unit closure plan	12

Action	Estimated Timeline (Months)
Obtain environmental permits: - State Waste Pollution Control Construction/Operating Permit - TPDES Industrial Wastewater Permit Modification (modification could be required if there are changes to the quantity or quality of discharges or to allow reconfiguration of the various wastestreams to either other TPDESpermitted outfalls or newly constructed TPDESpermitted outfalls) - General TPDES Permit for Storm Water Discharges from Construction Site Activities and Storm Water Pollution Prevention Plan (SWPPP)	24
Spec, bid, and Award Construction Services for CCR Impoundment Closure	3
Begin Construction of Closure	April 17, 2025
Minimize Active Area of Impoundment / Dewater Phase 1 Area	6
Regrade CCR Material in Phase 1 Area	18
Install Cover System - Phase 1 Area*	13
Establish Vegetation - Phase 1 Area**	2
Cease Coal-Fired Operations of Remaining Boiler Onsite (No Later Than)	July 17, 2027
Begin Dewatering Impoundment - Phase 2 Area	2
Cease Placement of Waste (No Later Than, allowing for plant cleanup and dredging of impoundments following coal pile and plant closure)	September 17, 2027
Continue Dewatering Impoundment - Phase 2 Area	1
Regrade CCR Material - Phase 2 Area	6
Install Cover System - Phase 2 Area	5
Establish Vegetation, Perform Site Restoration Activities, Complete Closure, and Initiate Post-Closure Care**	2
Total Estimated Time to Complete Closure	84 months

Action	Estimated Timeline (Months)
Date by Which Closure Must be Complete	October 17, 2028

* Activity expected to overlap with grading operations, finishing 2 months after grading is completed.
${ }^{* *}$ Activity expected to overlap with cover system installation, finishing 1 month after cover installation is completed.

7.0 CONCLUSION

Based upon the information included in and attached to this demonstration, CCP has demonstrated that the requirements of 40 C.F.R. § 257.103 (f)(2) are satisfied for the 190 -acre Primary Ash Pond at Coleto. This CCR surface impoundment is needed to continue to manage the CCR and non-CCR wastestreams identified in Section 3.2 and 3.3 above, is larger than 40 acres, the coal-fired boiler at the station will cease coal-fired operation no later than July 17, 2027, and the Primary Ash Pond will be closed by the October 17, 2028 deadline. Therefore, this CCR unit qualifies for the site-specific alternative deadline for the initiation of closure authorized by 40 C.F.R. § 257.103(f)(2).

Therefore, it is requested that EPA approve CCP's demonstration and authorize the Primary Ash Pond at Coleto to continue to receive CCR and non-CCR wastestreams notwithstanding the deadline in § 257.101(a)(1) and to grant the alternative deadline of October 17, 2028, by which to complete closure of the impoundment.

APPENDIX A - SITE PLAN AND NEARBY LANDFILLS

MSW Facility Viewer
(San Antionia
Esri, HERE, Garmin, FAO, USGS, NGA, EPA, NPS

APPENDIX B - WATER BALANCE DIAGRAM

ATTACHMENT 1 - RISK MITIGATION PLAN

RISK MITIGATION PLAN - 40 C.F.R. § 257.103(f)(2)(v)(B)

Introduction

To demonstrate that the criteria in 40 C.F.R. § $257.103(f)$ (2)(ii) has been met, Coleto Creek Power, LLC ("CCP") has prepared this Risk Mitigation Plan for the Primary Ash Pond located at the Coleto Creek Power Plant ("Coleto Creek") located near Fannin, Texas.

- EPA is requiring a risk mitigation plan to "address the potential risk of continued operation of the CCR surface impoundment while the facility moves towards closure of their coal-fired boiler(s), to be consistent with the court's holding in USWAG that RCRA requires EPA to set minimum criteria for sanitary landfills that prevent harm to either human health or the environment." 85 Fed. Reg. 53,516, 53,548 (Aug. 28, 2020).

As required by $\S 257.103(f)(2)(v)(B)$, the Risk Mitigation Plan must describe the "measures that will be taken to expedite any required corrective action," and contain the three following elements:

- First, "a discussion of any physical or chemical measures a facility can take to limit any future releases to groundwater during operation." § $257.103(f)(2)(v)(B)(1)$. In promulgating this requirement, EPA explained that this "might include stabilization of waste prior to disposition in the impoundment or adjusting the pH of the impoundment waters to minimize solubility of contaminants [and that] [t]his discussion should take into account the potential impacts of these measures on Appendix IV constituents." 85 Fed. Reg. at 53,548.
- Second, "a discussion of the surface impoundment's groundwater monitoring data and any found exceedances; the delineation of the plume (if necessary based on the groundwater monitoring data); identification of any nearby receptors that might be exposed to current or future groundwater contamination; and how such exposures could be promptly mitigated." § 257.103(f)(2)(v)(B)(2).
- Third, "a plan to expedite and maintain the containment of any contaminant plume that is either present or identified during continued operation of the unit." § $257.103(\mathrm{f})(2)(\mathrm{v})(\mathrm{B})(3)$. In promulgating this final requirement, EPA explained that "the purpose of this plan is to demonstrate that a plume can be fully contained and to define how this could be accomplished in the most accelerated timeframe feasible to prevent further spread and eliminate any potential for exposures." 85 Fed. Reg. at 53,549. In addition, EPA stated that "this plan will be based on relevant site data, which may include groundwater chemistry, the variability of local hydrogeology, groundwater elevation and flow rates, and the presence of any surface water features that would influence rate and direction of contamination movement. For example, based on the rate and direction of groundwater flow and potential for diffusion of the plume, this plan could identify the design and spacing of extraction wells necessary to prevent further downgradient migration of contaminated groundwater." 85 Fed. Reg. at 53,549.

Consistent with these requirements and guidance, CCP plans to continue to mitigate the risks to human health and the environment from the Coleto Creek Primary Ash Pond as detailed in this Risk Mitigation Plan.

1 Operational Measures to Limit Future Releases to Groundwater-40 C.F.R. § 257.101(F)(2)(V)(B)(1)

The Coleto Creek Primary Ash Pond is a 190-acre CCR surface impoundment. Consistent with the requirements of the CCR rule, compliance documents on Coleto Creek's CCR public website reflect the characterization of the Primary Ash Pond as a single unit for purposes of groundwater monitoring and closure activities.

The Primary Ash Pond receives sluiced bottom ash, economizer ash, and mill rejects, as well as non-marketable dry fly ash and various non-CCR wastewaters.

At the Coleto Creek Primary Ash Pond, none of the Appendix IV parameter have reported statistically significant levels (SSLs) above their respective Ground Water Protection Standards (GWPSs), as sampled and analyzed per the CCR surface impoundment's groundwater monitoring program. Therefore, Coleto Creek's current physical treatment operation adequately limits potential risks to human health and the environment during operation. Coleto Creek will continue this treatment process for the CCR surface impoundment until such time as closure is required per 40 C.F.R. Part 257. The facility's current physical treatment process is discussed below, followed by a discussion of other treatment processes that could be implemented, as required per § 257.103(f)(2)(v)(B)(1).

1.1 Current Operation of Physical Treatment

Fly ash is currently collected dry and normally hauled offsite for beneficial use; however, periodically, the market will not accept the fly ash due to varying properties or seasonal demand, in which case the ash is sluiced from the storage silo and disposed of in the Primary Ash Pond.

As part of normal operations, bottom ash, economizer ash, and mill rejects are transported through the sluice lines into the CCR surface impoundment where they are either removed for beneficial use or remain. The CCR surface impoundment serves as a wastewater treatment settling system which allows the solids to settle.

The various non-CCR wastewaters received originate from the demineralizer sump (including, reverse osmosis reject and demineralizer regeneration flows) and the boiler sump (including flows from laboratory drains, hopper overflow (ash contact/quench water), boiler blowdown condensate polisher regeneration, water pretreatment filter backwash, oil/water separator discharge, transformer area sump, stormwater from ash piping trench, fabric filter area wash, air heater wash, and boiler wash).

Therefore, since fly ash transport water is not routinely conveyed to the CCR surface impoundment, the current operation of Coleto Creek's CCR surface impoundment limits future releases to groundwater during operation, and consequently no potential safety impacts or exposure to human health or environmental receptors are expected to result. This is supported by CCR groundwater monitoring results, which show no SSLs above GWPS(s).

If Appendix IV releases are discovered per the facility's groundwater monitoring program, CCP will test, evaluate, and implement a chemical treatment method (i.e., pH adjustment, coagulation, precipitation, or other method as determined) for the Coleto Creek Primary Ash Pond to limit potential risks to human health and the environment during operation as a supplement to other corrective measures discussed in Section 3.

2 Groundwater Impacts, Receptors, and Potential Exposure Mitigation 40 C.F.R. § 257.101(F)(2)(V)(B)(2)

The Coleto Creek Primary Ash Pond, with a footprint of approximately 190 acres (Figure 1), currently remains in assessment monitoring. There have been no SSLs of Appendix IV parameter concentrations since assessment monitoring was established on May 9, 2018 in accordance with 40 C.F.R. § 257.95. The most recent summary of groundwater monitoring activities is provided in the " 2019 Annual Groundwater Monitoring and Corrective Action Report, Coleto Creek Primary Ash Pond - Fannin, Texas" (Golder, 2020) [see Attachment 1]. A summary of the assessment monitoring program is provided in Table 1. Samples were collected for the second 2020 semi-annual monitoring period, but results are still under review.

Since there have been no SSLs exceedances of GWPS(s) to date, plume delineation has not been required. However, if one or more Appendix IV constituents are detected at SSLs above the GWPS(s), the nature and extent of the release would be characterized to delineate the contaminant plume. The existing conceptual site model and description of site hydrogeology provides site characterization data that will be used as the basis for executing supplemental plume delineation activities. A demonstration may also be made that a source other than the CCR unit caused the contamination, or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (§257.95(g)(3)(ii)).

Receptors

For constituents of potential concern (COPCs) found in groundwater to pose a risk to human health or the environment, a complete exposure pathway must be present to a receptor with elevated concentrations of COPCs via that pathway.

Should a release of one or more Appendix IV parameters from the Coleto Creek Primary Ash Pond to groundwater occur in the future, the two primary risks to human health and the environment are via groundwater exposure and surface water exposure. Groundwater exposure would be via ingestion or dermal contact, both of which are likely an incomplete exposure pathway for the reasons discussed below. Impacted groundwater potentially migrating to nearby surface water bodies - specifically the Coleto Creek Reservoir and Sulphur Creek - is another potential exposure pathway; however, this is also likely incomplete for the reasons discussed below.

Ambient groundwater flow in the Uppermost Aquifer beneath the Primary Ash Pond is east and southeast towards Sulphur Creek and the Coleto Creek Reservoir. Groundwater elevations indicate minimal seasonal variation of water levels; however, water levels fluctuate in response to drought conditions and may be approximately 5 feet lower. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot ($\mathrm{ft} / \mathrm{ft}$) and $0.0029 \mathrm{ft} / \mathrm{ft}$ across the northern and southern boundaries of the Primary Ash Pond. The average groundwater flow velocity was between 0.13 and 0.14 feet per day (ft/day) east and southeast towards Sulphur Creek and the Coleto Creek Reservoir (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

Based on water well survey results completed in 2019 (Golder, 2019) there are three active potable water supply wells owned by Coleto Creek Power Station that provide potable water to the plant. All three wells are located greater than 0.25 miles from the Primary Ash Pond and are completed in a deeper water-bearing zone than the Uppermost Aquifer. A fourth well, owned by Coleto Creek Power Station and located approximately 0.25 miles
from the Primary Ash Pond, is inactive. Available well construction information for the production wells completed near the Primary Ash Pond indicate that these wells are completed at total depths ranging from 150 feet to 700 feet bgs, which is significantly deeper than the Uppermost Aquifer that is generally about 20 to 70 feet bgs (Golder, 2019). Three domestic wells are located more than 0.25 miles from the Primary Ash Pond, two of which are located upgradient of the Primary Ash Pond and the third is located on the opposite side of the Coleto Creek Reservoir. Thus, these wells could not plausibly be affected by impacted groundwater and, therefore, pose no risk concern to human health.

Should impacted groundwater migrate to nearby surface water bodies, there is no risk concern to human health because there are no surface-water intakes for community water supply (CWS) withdrawing from the Coleto Creek Reservoir or Sulfur Creek identified within a one-mile radius of the Coleto Creek property line. In addition, there are no known non-CWS surface water intakes withdrawing from the Coleto Creek Reservoir or Sulphur Creek within 2,500 feet of the site boundary.

Since there have been no SSLs above the GWPS, there is no risk to ecological receptors located near the Primary Ash Pond. If a release to groundwater were to occur, ecological receptors could potentially be exposed to COPCs through ingestion or direct contact with impacted groundwater; however, should any surface water or sediment come into contact with impacted groundwater, the risk of exposure is likely low due to expected attenuation and dilution. Depending on the magnitude of the release and other factors, it may or may not be possible to estimate potential increases in COPC concentrations in surface water using mixing calculations.

Although current conditions do not pose a risk concern to human health or the environment, measures presented in the Contaminant Plume Containment Plan (Section 3.1 of this RMP) would address any future potential exposures and risks by containing potential groundwater impacts and mitigating impacts to potential receptors.

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts.

Exposure Mitigation

Mitigation of future potential exposures to groundwater contamination from continued operation of the Coleto Creek Primary Ash Pond is discussed in detail in the following section.

3 Contaminant Plume Containment: Options Evaluation and Plan- 40 C.F.R. § 257.101(F)(2)(V)(B)(3)

Appropriate corrective measure(s) to address future potential impacted groundwater associated with the Coleto Creek Primary Ash Pond are based on impacts to the Uppermost Aquifer. The Uppermost Aquifer consists mostly of sand and silty sand with intermittent discontinuous layers of clay. Mineral zones containing caliche and calcareous nodules are also prominent throughout this unit. The top of the aquifer is approximately 11 to 25 ft bgs and is 40 to 54 ft thick. The lower limit of the Uppermost Aquifer is defined by a basal clay stratum consisting primarily of clay and silty clay with periodic sandy clay zones. The basal unit is greater than 25 feet thick (refer to the description of hydrogeology attached to the alternative closure demonstration letter).

If one or more Appendix IV parameters are detected and confirmed in groundwater at a SSL above GWPS(s), and the SSL is not attributed to an alternate source, via an alternate source demonstration (ASD), the first steps to mitigating risk will involve the immediate implementation of source control, which, if necessary, could include installation and operation of a groundwater extraction well or recovery trench system. This immediate source control would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors. Furthermore, to characterize the nature and extent of the release, plume delineation wells will be installed as necessary to define the magnitude and limits of the groundwater impacts. If applicable, notifications will be made to all persons who own the land or reside on the land that directly overlies any part of the groundwater plume. Additional soil and groundwater data will be collected as necessary to support a Corrective Measures Assessment (CMA), which will be initiated within 90 days of detecting the SSL. Further discussion of short-term and long-term corrective measures is further discussed in Section 3.1.

Since there has been no release of Appendix IV parameters to groundwater above GWPS(s), which would trigger a CMA under 40 C.F.R. § 257.96 based on specific parameter concentrations and contaminant plume dimensions, several options are evaluated to address potential future plume containments. The evaluation criteria for assessing remedial options are the following: performance; reliability; ease of implementation; potential impacts of the remedies (safety, cross-media, and control of exposure to residual contamination); time required to begin and complete the remedy; and, institutional requirements that may substantially affect implementation of the remedy(s), such as permitting, environmental or public health requirements.

Although future potential source control measures (e.g., closure in place, closure by removal to on-site or off-site landfill, in-situ solidification/stabilization) to mitigate groundwater impacts are typically considered as part of a CMA process upon closure of the Coleto Creek Primary Ash Pond, the shorter-term options considered for mitigating groundwater impacts relative to a potential future release of one or more Appendix IV parameters at Coleto Creek are as follows:

- Groundwater Extraction
- Groundwater Cutoff Wall
- Permeable Reactive Barrier
- In-Situ Chemical Treatment
- Monitored Natural Attenuation

These same groundwater remedial corrective measures will be evaluated for all Appendix IV constituents that present a future risk to human health or the environment.

Groundwater Extraction

This corrective measure includes installation of one or more groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary project components:

- Designing and constructing a groundwater extraction system consisting of one or more extraction wells or trenches located operating at a rate to allow capture of CCR impacted groundwater.
- Management of extracted groundwater, which may include modification to the existing NPDES permit, including treatment prior to discharge, if necessary.
- Ongoing inspection and maintenance of the groundwater extraction system.

Installation of a groundwater extraction system, whether wells or trenches, can be expedited with the assumption that there is a good conceptual site model (CSM) of the hydrogeological system around the CCR unit, groundwater flow and transport model, and aquifer testing. Upon notification of an SSL exceedance of a GWPS for one or more Appendix IV parameters, an aquifer test will be conducted, and groundwater model developed for designing a groundwater extraction system for optimization of contaminant plume capture.

A schematic of a typical groundwater extraction well is shown on Figure 2. Based on site specific hydrogeology and future potential plume width and depth, a groundwater extraction system would likely consist of one to three extraction wells with pitless adapter's manifolded together with high-density polyethylene (HDPE) conveyance pipe to a common tank or lined collection vault prior to treatment at the on-site wastewater treatment plant and discharge via the TPDES permitted outfall.

Groundwater Cutoff Wall

Vertical cutoff walls are used to control and/or isolate impacted groundwater. Low permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to migration of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish a reverse gradient within the cutoff wall. The reverse gradient imparted by the pumping system maintains an inward flow through the wall, keeping it from acting as a groundwater dam and controlling potential end-around or breakout flow of contaminated groundwater.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the soils excavated from the trench. The trench is temporarily supported with bentonite slurry that is pumped into the trench as it is excavated. Excavation for cutoff walls is conducted with conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (i.e., long-stick excavators), or chisels and clamshells, depending upon the depth of the trench and the material to be excavated.

Permeable Reactive Barrier

Chemical treatment via a Permeable Reactive Barrier (PRB) is defined as an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a flow path through the reactive media, and transform or otherwise render the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (EPRI, 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron has been shown to effectively immobilize CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium, and sulfate. Zero-valent iron has not been proven effective for boron, antimony, or lithium (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where barrier walls are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of PRB systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006).

This is a potentially viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

In-Situ Chemical Treatment

In-situ chemical treatment for inorganics are being tested and applied with increasing frequency. In-situ chemical treatment includes the targeted injection of reactive media into the subsurface to mitigate groundwater impacts. Inorganic contaminants are typically remediated through immobilization by reduction or oxidation followed by precipitation or adsorption (EPRI, 2006). Chemical reactants that have been applied or are in development for application in treating inorganic contaminants include ferrous sulfate, nanoscale zero-valent iron, organo-phosphorus nutrient mixture (PrecipiPHOS ${ }^{\text {TM }}$) and sodium dithionite (EPRI, 2006). Zero-valent iron has been shown to effectively immobilize cobalt and molybdenum. Implementation of in-situ chemical treatment requires detailed technical analysis of field hydrogeological and geochemical conditions along with laboratory studies.

This is a potentially viable option for groundwater corrective measures, to be evaluated further, but is not a short-term solution that can be implemented expeditiously.

Monitored Natural Attenuation (MNA)

Upon notification of a release of one or more Appendix IV constituent(s) to groundwater, MNA will be evaluated with site-specific characterization data and geochemical analysis as a long term remedial option, combined with source control measures, through application of the USEPA's tiered approach to MNA (USEPA 1999, 2007 and 2015):

1. Demonstrate that the area of groundwater impacts is not expanding.
2. Determine the mechanisms and rates of attenuation.
3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform adequately.

MNA is not regarded as a short-term remedial option for contaminant plume containment, but as a potential long-term option following implementation of shorter-term control measures.

3.1 Containment Plan

Based on the options evaluated for containment of a future potential groundwater contaminant plume originating from the Coleto Creek Primary Ash Pond for one or more Appendix IV constituents exceeding their GWPS(s), the most viable short-term option of those evaluated is a groundwater extraction well or recovery trench system, which would allow for capture of impacted groundwater and prevention of further plume migration towards the principal potential receptors, which have been identified as Sulphur Creek and the Coleto Creek Reservoir.

In circumstances where there is not an immediate concern of endangerment to human health or the environment, other longer-term corrective measures may be more viable and will be further evaluated at the Coleto Creek Primary Ash Pond.

Depending on the location, depth, and plume geometry of any future potential Appendix IV exceedances of GWPSs, the specific constituent(s) with exceedances, and distance from potential receptors, the other groundwater corrective measures discussed as part of the corrective options evaluation - groundwater extraction, groundwater cutoff wall, permeable reactive barrier, in-situ chemical treatment, and MNA - are all secondary remedial alternatives available for consideration following the current primary options of groundwater extraction for short-term application.

4 References

Electric Power Research Institute (EPRI), 2006. Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites, Overview of Technologies, Focusing on Permeable Reactive Barriers. Electric Power Research Institute, Palo Alto, California. Final Report 1012584, October 2006.

Golder, 2019. Drinking water Survey Report, Coleto Creek Power Station, Goliad County, Texas. May 24, 2019.
Golder, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Coleto Creek Primary Ash Pond - Fannin, Texas. January 31, 2020.

USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

USEPA, 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 - Technical Basis for Assessment. EPA/600/R-07/139. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No. 9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

TABLES
Table 1 - Assessment Monitoring Program Summary, Coleto Creek Primary Ash Pond

Sampling Dates	Analytical Data Receipt Date	Parameters Collected	SSL(s) Appendix IV	SSL(s) Determination	ASD Completion Date	CMA Completion / Status
June 18-25, 2018	August 7, 2018	Appendix III Appendix IV	None	NA	NA	
September 18, 2018	October 12, 2018	Appendix III Appendix IV Detected1	None	NA	NA	
June 3-5, 2019	July 12, 2019	Appendix III Appendix IV	None	NA	NA	
October 2-3,2019	November 5,2019	Appendix III Appendix IV Detected1	None	NA	NA	
June 9,2020	July 15, 2020	Appendix III Appendix IV	None	NA	NA	
October 7,2020	November 9,2020	Appendix III Appendix IV Detected1	TBD	NA	TBD	

[^0]FIGURES

NOTES

1. NOT TO SCALE

TYPICAL HYDRAULIC GRADIENT CONTROL WELL DETAIL

ATTACHMENT 1

2019 Annual Groundwater Monitoring and Corrective Action Report

2019 Annual Groundwater Monitoring and Corrective Action Report
 Coleto Creek Primary Ash Pond - Fannin, Texas

Prepared for:

Coleto Creek Power, LLC

Submitted by:

Golder Associates Inc.

2201 Double Creek Dr, Suite 4004, Round Rock, Texas, USA 78664
+1512 671-3434

January 31, 2020

TABLE OF CONTENTS

LIST OF FIGURES II
LIST OF TABLES II
ACRONYMS AND ABBREVIATIONS III
1.0 INTRODUCTION 1
2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS 2
3.0 KEY ACTIONS COMPLETED IN 2019 4
4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS 5
5.0 KEY ACTIVITIES PLANNED FOR 2020 6
6.0 REFERENCES 7

LIST OF FIGURES

Figure 1 Primary Ash Pond Detailed Site Plan

LIST OF TABLES

Table 1 Statistical Background Values
Table 2 Groundwater Protection Standards
Table 3 Appendix III Analytical Results
Table 4 Appendix IV Analytical Results

ACRONYMS AND ABBREVIATIONS

CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
GWPS	Groundwater Protection Standard
MCL	Maximum Concentration Level
mg/L	Milligrams per Liter
NA	Not Applicable
OBG	O'Brien \& Gere Engineers, Inc.
SSI	Statistically Significant Increase
SSL	Statistically Significant Levels
USEPA	United States Environmental Protection Agency

1.0 INTRODUCTION

Golder Associates, Inc. (Golder) has prepared this report on behalf of Coleto Creek Power, LLC to satisfy annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule for the Primary Ash Pond at the Coleto Creek Power Station in Fannin, Texas. The CCR units and CCR monitoring well network are shown on Figure 1.

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per 40 CFR 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:
(1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
(3) In addition to all the monitoring data obtained under $\S \S 257.90$ through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
(4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
(5) Other information required to be included in the annual report as specified in $\S \S 257.90$ through 257.98.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

O'Brien \& Gere Engineers, Inc. (OBG) collected the initial Detection Monitoring Program groundwater samples from the Primary Ash Pond CCR monitoring well network in November 2017. OBG completed an evaluation of those data in 2018 to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary

Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established
November 7-8, 2017	Appendix III	Yes	May 9, 2018

Alternate source evaluations were inconclusive for one or more of the SSIs. Consequently, an Assessment Monitoring Program was initiated and established for the Primary Ash Pond CCR units in 2018 in accordance with 40 CFR § 257.94(e)(2).

Assessment Monitoring groundwater samples were collected from the CCR groundwater monitoring network in 2018, as required by the CCR Rule. OBG collected the initial 2018 Assessment Monitoring Program groundwater samples in June 2018. Subsequent Assessment Monitoring Program sampling events have been conducted by Golder on a semi-annual basis, as required by the CCR Rule. All CCR groundwater monitoring wells were sampled for Appendix III and Appendix IV constituents during the first semi-annual sampling events of each year. During the second semi-annual sampling events, the CCR wells were sampled for all Appendix III parameters and for the Appendix IV parameters that were detected during the first semi-annual sampling events in accordance with 40 CFR § $257.95(\mathrm{~d})(1)$. The Assessment Monitoring Program sampling dates and parameters are summarized in the following table:

Assessment Monitoring Program Summary					
Sampling Dates Analytical Data Receipt Date Parameters Collected SSL(s)SSL(s) Determination Date	Corrective Measures Assessment Initiated				
June 19-25, 2018	August 7, 2018	Appendix III Appendix IV	No	NA	NA
Sept. 18, 2018	October 12, 2018	Appendix III Appendix IV 1	No	NA	NA
June 3-5, 2019	July 12, 2019	Appendix III Appendix IV	No	NA	NA
October 2-3,2019	November 5, 2019	Appendix III Appendix IV	No	NA	NA

Notes:
NA: Not Applicable

1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 CFR § 257.95(d)(1).

The statistical background values and Groundwater Protection Standards (GWPSs) are summarized in Tables 1 and 2 , respectively. Appendix III and Appendix IV analytical data are summarized in Tables 3 and 4 , respectively. Statistical analysis of the 2019 data was performed in accordance with the Statistical Analysis Plan for CCR Groundwater Monitoring (PBW 2017) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009). The statistical analysis included an evaluation of confidence intervals for each of the Appendix IV parameter data sets to evaluate whether constituent concentrations were present at concentrations above GWPSs. Based on the sample data collected in 2019, Appendix IV parameters were not observed at SSLs above GWPSs

3.0 KEY ACTIONS COMPLETED IN 2019

Assessment Monitoring Program groundwater monitoring events were completed in June and October 2019. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 3 (Appendix III parameters) and Table 4 (Appendix IV parameters). A map showing the CCR units and monitoring wells is provided as Figure 1.

No CCR wells were installed or decommissioned in 2019.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2019.

5.0 KEY ACTIVITIES PLANNED FOR 2020

The following key activities are planned for 2020:

- Continue the Assessment Monitoring Program in accordance with 40 CFR § 257.95.
- Complete statistical evaluation of Appendix IV analytical data from the downgradient wells and compare results to GWPSs to determine whether an SSL has occurred.
- If an SSL is identified, notification will be prepared as required under 40 CFR § 257.95(g). The notification will be placed in the operating record per 40 CFR § $257.105(\mathrm{~h})(8)$ and will be subsequently placed on the public website per 40 CFR § 257.107 (d). Potential alternate sources (i.e., a source other than the CCR unit caused the SSL or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is identified to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the Annual Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSL, the applicable requirements of 40 CFR $\S \S 257.94$ through 257.98 (e.g., assessment of corrective measures) will be met, including associated recordkeeping/notifications required by 40 CFR §§ 257.105 through 257.108.

6.0 REFERENCES

O'Brien and Gere Engineers, Inc. (OBG), 2017. Statistical Analysis Plan, Coleto Creek Power Station.

Signature Page

Golder Associates Inc.

Pat Behling
Principal Engineer

Golder and the G logo are trademarks of Golder Associates Corporation.

FIGURES
\rightarrow GOLDER


```
LEGEND
DOWNGRADIENT MONITORING WELL LOCATION
    UPGRADIENT MONITORING WELL LOCATION
|- - - - | CCR MONITORING UNIT
```

CLIENT
COLETO CREEK POWER LP

PROJECT

COLETO CREEK POWER STATION FANNIN, TEXAS

TITLE

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

CONSULTANT	YYYY-MM-DD		2019-01-14	
	DESIGNED		AJD	
	PREPARED		AJD	
	REVIEWED		WFV	
	APPROVED		WFV	
$\begin{aligned} & \hline \text { PROJECT NO. } \\ & 18106453 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { REV. } \\ & 0 \end{aligned}$		$\begin{array}{r} \text { FIGURE } \\ 1 \\ \hline \end{array}$

TABLES

Table 1
Statistical Background Values Coleto Creek Primary Ash Pond

Parameter	Statistical Background Value
Boron (mg/L)	1.26
Calcium $(\mathrm{mg} / \mathrm{L})$	143
Chloride $(\mathrm{mg} / \mathrm{L})$	118
Fluoride $(\mathrm{mg} / \mathrm{L})$	0.61
field $\mathrm{pH}(\mathrm{s} . \mathrm{u})$.	6.51
Sulfate $(\mathrm{mg} / \mathrm{L})$	7.33
Total Dissolved Solids $(\mathrm{mg} / \mathrm{L})$	148

Table 2 Groundwater Protection Standards Coleto Creek Primary Ash Pond

Parameter	Groundwater Protection Standard
Antimony $(\mathrm{mg} / \mathrm{L})$	0.006
Arsenic $(\mathrm{mg} / \mathrm{L})$	0.128
Barium $(\mathrm{mg} / \mathrm{L})$	2
Beryllium $(\mathrm{mg} / \mathrm{L})$	0.004
Cadmium $(\mathrm{mg} / \mathrm{L})$	0.005
Chromium $(\mathrm{mg} / \mathrm{L})$	0.10
Cobalt $(\mathrm{mg} / \mathrm{L})$	0.0499
Fluoride $(\mathrm{mg} / \mathrm{L})$	4
Lead $(\mathrm{mg} / \mathrm{L})$	0.015
Lithium $(\mathrm{mg} / \mathrm{L})$	0.04
Mercury $(\mathrm{mg} / \mathrm{L})$	0.002
Molybdenum $(\mathrm{mg} / \mathrm{L})$	0.10
Selenium $(\mathrm{mg} / \mathrm{L})$	0.05
Thallium $(\mathrm{mg} / \mathrm{L})$	0.002
Radium $226 \mathrm{t} 228(\mathrm{pCi} / \mathrm{L})$	5

TABLE 3
APPENDIX III ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Upgradient Wells								
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97	--	147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9	123	0.769	6.89	146	828
	10/03/19	1.31	72.2	141	0.753	7.11	145	806
BV-21	03/28/17	0.651	6.89	36	0.61	7.09	69	490
	05/09/17	0.687	65.2	38	0.61	7.04	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62	--	38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540
	06/25/18	1.25	80.3	65.9	0.52	--	95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541

TABLE 3
APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Downgradient Wells								
MW-4	03/28/17	0.287	9.14	102	0.61	9.81	157	794
	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267	92.5	104	0.6	--	159	665
	09/18/18	0.28	91.8	102	0.582	6.63	155	720
	06/05/19	0.379	85.3	108	0.67	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
MW-5	03/30/17	0.11	110	140	0.51	6.85	184	830
	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56	--	183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
MW-6	03/29/17	1.67	73.9	69	0.38	7.34	99	510
	05/11/17	1.94	70.6	70	0.37	7.1	110	490
	05/16/17	1.84	76.3	70	0.36	7.23	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	103	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
	06/28/17	1.74	81.8	69	0.37	7.16	99	570
	07/12/17	1.76	81.6	69	0.35	7.24	98	557
	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
	11/07/17	1.72	76.4	69	0.39	7.41	101	483
	06/22/18	0.0171	76.6	70.7	0.41	--	107	490
	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
	06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507

TABLE 3
APPENDIX III ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5	--	35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88	--		550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96	--	61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355

Notes:

1. All concentrations in $\mathrm{mg} / \mathrm{L} . \mathrm{pH}$ in standard units.
2. J - concentration is below sample quantitation limit; result is an estimate.

เヨาดヤ1

APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

$\begin{array}{\|c\|} \hline \text { Sample } \\ \text { Location } \end{array}$	$\begin{gathered} \hline \hline \text { Date } \\ \text { Sampled } \\ \hline \end{gathered}$	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
Upgradient Wells																		
BV-5	03/29/17	<0.0025	0.00856	0.04510	<0.001	<0.001	<0.005	0.0497	0.540	<0.001	0.0206	<0.0002	0.00925	<0.005	<0.0015	--	--	1.503
	05/11/17	<0.0025	0.00786	0.03680	<0.001	<0.001	<0.005	0.0462	0.570	<0.001	0.018	<0.0002	0.0101	<0.005	<0.0015	--	--	1.555
	05/16/17	<0.0025	0.00885	0.04520	<0.001	<0.001	<0.005	0.0495	0.550	0.00151	0.0171	<0.0002	0.0102	<0.005	<0.0015	--	--	0.7550
	06/07/17	<0.0025	0.00829	0.03760	<0.001	<0.001	<0.005	0.0483	0.560	<0.001	0.0207	<0.0002	0.01	<0.005	<0.0015	--	--	1.457
	06/20/17	<0.0025	0.00841	0.04010	<0.001	<0.001	<0.005	0.0499	0.580	<0.001	0.0208	<0.0002	0.0114	<0.005	<0.0015	--	--	0.4920
	06/27/17	<0.0025	0.0083	0.04120	<0.001	<0.001	<0.005	0.046	0.550	<0.001	0.0198	<0.0002	0.00942	<0.005	<0.0015	--	--	2.247
	07/12/17	<0.0025	0.00849	0.04160	<0.001	<0.001	<0.005	0.0484	0.560	<0.001	0.0188	<0.0002	0.0096	<0.005	<0.0015	--	--	2.139
	07/18/17	<0.0025	0.00951	0.05780	<0.001	<0.001	0.00739	0.0453	0.560	0.00288	0.022	<0.0002	0.0083	<0.005	<0.0015	--	--	1.260
	06/19/18	<0.0025	0.0106	0.0336	<0.001	<0.001	0.0022 J	0.0513 J	0.970	<0.00074 J	0.016	<0.0002	0.0139	<0.005	<0.0015	0.327	<1.680	2.01
	09/18/18	NA	0.00949	0.0436	NA	NA	0.00228 J	0.0487	0.667	0.00039 J	0.0206	NA	0.0102	NA	NA	0.302	<0.608	0.91
	06/05/19	<0.0008	0.0092	0.042	<0.0003	0.0009 J	<0.002	0.0466	0.769	0.00144	0.0201	<0.00008	0.0109	<0.0020	<0.0005	<0.687	<1.130	<1.82
	10/03/19	<0.0008	0.00941	0.0441	<0.0003	<0.0003	0.00285 J	0.0437	0.753	0.0039	0.0172	<0.00008	0.0122	<0.0020	<0.0005	0.928	1.35	2.28
BV-21	03/28/17	<0.0025	0.0954	0.09630	<0.001	<0.001	<0.005	0.0083	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	1.390
	05/09/17	<0.0025	0.108	0.09720	<0.001	<0.001	<0.005	0.00852	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.7460
	05/17/17	<0.0025	0.117	0.09440	<0.001	<0.001	<0.005	0.00878	0.580	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.9190
	06/06/17	<0.0025	0.118	0.09540	<0.001	<0.001	<0.005	0.00806	0.590	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.6710
	06/20/17	<0.0025	0.121	0.1010	<0.001	<0.001	<0.005	0.00744	0.610	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	1.672
	06/27/17	<0.0025	0.128	0.1040	<0.001	<0.001	<0.005	0.00841	0.600	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.5200
	07/10/17	<0.0025	0.123	0.1100	<0.001	<0.001	<0.005	0.0086	0.580	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	0.8050
	07/18/17	<0.0025	0.115	0.1010	<0.001	<0.001	<0.005	0.00784	0.600	<0.001	<0.010	<0.0002	<0.005	<0.005	<0.0015	--	--	4.812
	06/25/18	<0.0025	0.0697	0.104	<0.001	<0.001	<0.005	0.00682	0.620	<0.00074 J	0.00513 J	<0.0002	0.00428 J	<0.005	<0.0015	0.267	<1.417	1.68
	09/18/18	NA	0.0625	0.109	NA	NA	<0.002	0.0064	0.479	0.000555 J	0.00624 J	NA	0.00450 J	NA	NA	<0.31	<0.528	<0.838
	06/05/19	<0.0008	0.0531	0.105	<0.0003	<0.0003	<0.002	0.00574	0.602	0.000354	0.00558 J	<0.00008	0.00685	<0.0020	<0.0005	0.65	<0.687	1.337
	10/03/19	<0.0008	0.049	0.0963	<0.0003	<0.0003	<0.002	0.00542	0.588	0.000333 J	<0.005	<0.00008	0.00784	<0.0020	<0.0005	0.346	1.54	1.89
MW-8	03/28/17	<0.0025	0.00839	0.0623	<0.001	<0.001	<0.005	0.0236	0.490	<0.001	0.0111	<0.0002	0.0154	<0.005	<0.0015			0.4520
	05/09/17	<0.0025	0.00848	0.064	<0.001	<0.001	<0.005	0.0272	0.440	<0.001	0.0111	<0.0002	0.0157	<0.005	<0.0015	--	--	0.4740
	05/15/17	<0.0025	0.00926	0.064	<0.001	<0.001	<0.005	0.0311	0.440	<0.001	0.0112	<0.0002	0.016	<0.005	<0.0015	--	--	0.6140
	06/06/17	<0.0025	0.00912	0.0616	<0.001	<0.001	0.00744	0.0308	0.450	<0.001	0.0107	<0.0002	0.0157	<0.005	<0.0015			0.1320
	06/20/17	<0.0025	0.00885	0.0669	<0.001	<0.001	<0.005	0.0297	0.430	<0.001	0.0121	<0.0002	0.0171	<0.005	<0.0015	--	--	0.5380
	06/27/17	<0.0025	0.00939	0.0633	<0.001	<0.001	<0.005	0.0314	0.440	<0.001	0.0115	<0.0002	0.0163	<0.005	<0.0015	--	--	0.9390
	07/10/17	<0.0025	0.00902	0.0631	<0.001	<0.001	<0.005	0.031	0.440	<0.001	0.0112	<0.0002	0.0165	<0.005	<0.0015	--	--	0.8040
	07/18/17	<0.0025	0.00937	0.0635	<0.001	<0.001	<0.005	0.0352	0.460	<0.001	0.0118	<0.0002	0.0185	<0.005	<0.0015	--	--	2.113
	06/25/18	<0.0025	0.0101	0.0632	<0.001	<0.001	<0.005	0.029	0.520	0.0011	0.0107	<0.0002	0.017	<0.005	<0.0015	<0.234	<1.204	<1.44
	09/18/18	NA	0.00896	0.0582	NA	NA	<0.00200	0.0237	0.402	<0.0003	0.0117	NA	0.0178	NA	NA	<0.281	<0.558	<0.84
	06/05/19	<0.0008	0.00946	0.0596	<0.0003	<0.0003	<0.002	0.0217	0.497	0.000355 J	0.011	<0.00008	0.0156	<0.0020	<0.0005	0.528	<0.619	1.147
	10/03/19	<0.0008	0.0083	0.0607	<0.0003	<0.0003	<0.002	0.231	0.419	<0.0003	0.0106	<0.00008	0.0144	<0.0020	<0.0005	0.224	0.241	0.465

เヨาดヤ1
APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample	Date Sampled	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	$\begin{gathered} \hline \text { Ra 226/228 } \\ \text { Combined } \\ \hline \end{gathered}$
MW-9̈	0̈3/30/17	<0.0025	0.00909	0.121	<0.001	<0.001	<0.005	<0.005	1.130	0.00217	<0.010	<0.0002	0.0747	<0.005	<0.0015	--	--	1.353
	05/10/17	<0.0025	0.00996	0.105	<0.001	<0.001	<0.005	<0.005	1.290	0.00433	<0.010	<0.0002	0.0900	<0.005	<0.0015	--	--	0.4800
	05/17/17	<0.0025	0.00958	0.101	<0.001	<0.001	<0.005	<0.005	1.260	0.00377	<0.010	<0.0002	0.0899	<0.005	<0.0015	--	--	0.3600
	06/07/17	<0.0025	0.0093	0.100	<0.001	<0.001	<0.005	<0.005	1.260	<0.001000	<0.010	<0.0002	0.0926	<0.005	<0.0015	--	--	0.4760
	06/21/17	<0.0025	0.00937	0.119	<0.001	<0.001	<0.005	<0.005	1.390	0.00136	<0.010	<0.0002	0.1020	<0.005	<0.0015	--	--	1.579
	06/26/17	<0.0025	0.0107	0.114	<0.001	<0.001	0.0102	<0.005	1.400	0.00217	<0.010	<0.0002	0.1060	<0.005	<0.0015	--	--	1.023
	07/11/17	<0.0025	0.0105	0.103	<0.001	<0.001	0.00566	<0.005	1.300	0.00124	<0.010	<0.0002	0.1050	<0.005	<0.0015	--	--	0.8630
	07/19/17	<0.0025	0.0103	0.101	<0.001	<0.001	<0.005	<0.005	1.400	<0.001000	<0.010	<0.0002	0.1130	<0.005	<0.0015	--	--	0.5840
	06/21/18	<0.0025	0.0104	0.100	<0.001	<0.001	<0.005	<0.005	1.500	<0.00072 J	<0.01	<0.0002	0.0617	<0.005	<0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0103	0.0985	NA	NA	<0.002	<0.003	1.100	<0.000300	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0109	0.102	<0.0003	<0.0003	<0.002	<0.003	1.380	<0.0003	0.00545 J	<0.00008	0.0683	<0.002	<0.0005	<0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.128	0.000689 J	<0.0003	<0.002	0.00337 J	1.410	0.00876	0.0064 J	<0.00008	0.0507	0.0041 J	<0.0005	0.577	0.747	1.32
MW-10	03/30/17	<0.0025	0.0110	0.0844	<0.001	<0.001	<0.005	<0.005	0.540	<0.001	0.0179	<0.0002	0.0342	<0.005	<0.0015	--	--	1.439
	05/10/17	<0.0025	0.0146	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	<0.001	0.0122	<0.0002	0.102	<0.005	<0.0015	--	--	0.8880
	05/16/17	<0.0025	0.0150	0.0598	<0.001	<0.001	<0.005	<0.005	0.810	<0.001	0.0123	<0.0002	0.0987	<0.005	<0.0015	--	--	0.1830
	06/08/17	<0.0025	0.0144	0.0544	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0115	<0.0002	0.1060	<0.005	<0.0015	--	--	0.06700
	06/21/17	<0.0025	0.0149	0.054	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0133	<0.0002	0.1130	<0.005	<0.0015	--	--	0.7090
	06/26/17	<0.0025	0.0160	0.0587	<0.001	<0.001	0.0177	<0.005	0.840	<0.001	0.0137	<0.0002	0.1160	<0.005	<0.0015	--	--	0.7180
	07/11/17	<0.0025	0.0149	0.0508	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0119	<0.0002	0.1140	<0.005	<0.0015	--	--	1.713
	07/19/17	<0.0025	0.0146	0.0633	<0.001	<0.001	0.00963	<0.005	0.860	<0.001	0.0127	<0.0002	0.1210	<0.005	<0.0015	--	--	2.132
	06/22/18	<0.0025	0.0154	0.0692	<0.001	<0.001	<0.005	<0.005	0.88	<0.00095 J	0.0122	<0.0002	0.134	<0.005	<0.0015	<0.212	<1.192	<1.40
	09/18/18	NA	0.0140	0.0446	NA	NA	<0.002	<0.003	0.759	<0.0003	0.0141	NA	0.125	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0142	0.0420	<0.0003	<0.0003	<0.002	<0.003	0.953	<0.0003	0.0139	<0.00008	0.109	<0.002	<0.0005	<0.203	0.814	1.017
	10/02/19	<0.0008	0.0139	0.0406	<0.0003	<0.0003	<0.002	<0.003	0.891	<0.0003	0.0127	<0.00008	0.106	<0.002	<0.0005	-0.0288	0.901	0.901
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.001	<0.001	<0.005	<0.005	0.82	0.00239	0.0125	<0.0002	0.0082	<0.005	<0.0015	--	--	0.4560
	05/16/17	<0.0025	0.018	0.0869	<0.001	<0.001	0.00731	<0.005	0.85	0.0113	0.0144	<0.0002	0.00841	<0.005	<0.0015	--	--	1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	<0.001	<0.005	<0.005	0.94	0.00204	0.0122	<0.0002	0.00781	<0.005	<0.0015	--	--	0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	<0.001	<0.005	<0.005	0.93	0.00171	0.0137	<0.0002	0.00744	<0.005	<0.0015	--	--	0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	<0.001	<0.005	<0.005	1.04	0.00322	0.0136	<0.0002	0.00659	<0.005	<0.0015	--	--	1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	<0.001	0.0131	<0.005	1.00	0.00593	0.0176	<0.0002	0.00796	<0.005	<0.0015	--	--	3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	<0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015	--	--	0.7530
	07/19/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.0137	<0.0002	0.00783	<0.005	<0.0015	--	--	1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	<0.005	<0.005	0.96	0.00241	0.0135	<0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA	NA	<0.002	<0.003	0.754	<0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	<0.0003	<0.0003	<0.002	<0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	<0.0003	<0.0003	<0.002	<0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040

golder.com

ATTACHMENT 2 - MAP OF GROUNDWATER MONITORING WELL LOCATIONS


```
LEGEND
DOWNGRADIENT MONITORING WELL LOCATION
    UPGRADIENT MONITORING WELL LOCATION
|- - - - | CCR MONITORING UNIT
```

CLIENT
COLETO CREEK POWER LP

PROJECT

COLETO CREEK POWER STATION FANNIN, TEXAS

TITLE

DETAILED SITE PLAN - COLETO CREEK PRIMARY ASH POND

CONSULTANT	YYYY-MM-DD		2019-01-14	
	DESIGNED		AJD	
	PREPARED		AJD	
	REVIEWED		WFV	
	APPROVED		WFV	
$\begin{aligned} & \hline \text { PROJECT NO. } \\ & 18106453 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { REV. } \\ & 0 \end{aligned}$		$\begin{array}{r} \text { FIGURE } \\ 1 \\ \hline \end{array}$

ATTACHMENT 3 - WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

MONITORING WELL BORING LOGS

Appendix B: CCR Groundwater Monitoring Well System Boring Logs
Wells W-4 to W-6 and Well W-8
by Sargent \& Lundy Engineers (March and April 1978). These monitoring wells are also designated as MW-4 to MW-6 and MW-8, respectively.

Wells W-9 and W-10
by Bullock, Bennett \& Associates, LLC (May 2016). These monitoring wells are also designated as MW-9 and MW-10, respectively.

Well MW-11
by Bullock, Bennett \& Associates, LLC (April 2017)
Wells BV-5 and BV-21
by Black \& Veatch (August and September 2008)

1/45/2009 4:19 PM Coleto Creek 2.
BLACK \& VEATCH
PRELIMINARY
BORING NO. BV-5
BORING LOG
SHEET 1 OF 3

辰
PRELIMHNARY
International Power America，Inc
PROJECT
PROJECT NO．

International Power A	
PROJECT LOCATION	
Victoria，Texas	

COORDINATES
Coleto Creek Unit Two 149116

PROJECT LOCATION	
Victoria，Texas	
SURFACE CONDITIONS	

N 327129.3^{1}
GROUND ELEVATION（DATUM） SURFACE CONDITIONS $\rightarrow \mid c$

SOIL SAMPLING						
	炭䍃				$=\frac{4}{3}$	
ROCK CORING						
						号

LOGGED BY

BY
hadriraju
State

V 1 \square CHECKED BY TOTAL DEPTH
80.0 （feet） $+$ Grassy，level，tan clayey sand

grading medium dense；wet；fine to medium grained； well graded

CLASSIFICATION OF MATERIALS
driven along w／
spoon．
Below 28．5＇
continued w／ rotary wash method using 4＂ drag bit \＆ bentonite slurry as drilling fluid． Driller reported trace gravel from $28.5^{\prime}-38.5^{\prime}$ ．
grading very dense
＠38．5＇－39．3＇yellow siliy clay layer
＠39．3＇grading grayish white w／fine grained sand \＆
some silt
Clayey SAND；light gray；dense；moist；fine grained； poorly graded
grading light brown；silt grades out
1／15／2009 4：19 PM Coleto Creek 2

N
17
20
SPT
12
13

Sns \qquad 16
21
37

万
50／3
>50
0.3

grading fine to medium grained
some angular gravel
grading w／white fine sand；some clay cementation

REMARKS
Based on driller＇s comments．
Driller reported alternating hard and soft drilling efforts．

International Power America, Inc
Coleto Creek Unit Two
PROJECT NO.

Internat
PROJECT LOCATION

COORDINATES | PROJECT |
| :--- |
| Victoria, Texas |
| SURFACE CONDITIONS |

E 2571578.7' GROUND ELEVATION (DATUM) TOTAL DEPTH
CLASSIFICATION OF MATERIALS
REMARKS
Level, loose, silty sand
SAND; dark brown; loose; moist; fine grained; poorly
graded
Boring advanced
Clayey SAND; light brown; medium dense; moist; fine w/3-1/4" ID
hollow stem auger. SPT performed w/auto grained; poorly graded
grading light gray; some black motting \& trace roots hammer.

MONITORING WELL CONSTRUCTION FORMS

$689 \varepsilon-75$
い 1 IIIHX
TYPICAL MONITORING WELL DETAILS THREADED STEEL PIPE CAP

$6 \cdot 7 L$	8．76
T．0s	6.72
て・ss	$\tau \cdot \varsigma L$
$\varepsilon \cdot 09$	t．08
でカ9	$8 \cdot$ ¢8
て．0く	5.68
て＇s9	0.58
$0 \cdot 09$	2．08
$\begin{array}{ll} \text { ITəM } \\ \text { ¥0 mo770g } \end{array}$ иотұеләтя	иотұچләтี

$$
\begin{array}{ll}
\text { NOTES: } & \text { 1. ELEVATIONS ARE IN FT ABOVE MSL } \\
\text { 2. MONITORING WELLS WERE INSTALLED USING TEMPORARY } \\
\text { STEEL CASING TO EXCLUDE CAVING SOILS FROM } \\
\text { CONTAMINATING WELL } \\
\text { 3. MONITORING WELLS WERE INSTALLED AND DISINFECTED } \\
\text { TO THE REQUIREMENTS OF SARGENT \& LUNDY TECHNICAL } \\
\text { SPECIFICATION FOR SOIL BORING AND MONITORING WELL } \\
\text { WORK }
\end{array}
$$

STATE OF TEXAS WELL REPORT for Tracking \#423117			
Owner:	IPA Operations, Inc.	Owner Well \#:	W-9Renamed MW-9
Address:	$\begin{aligned} & \text { Coleto Creek Power LP } \\ & \text { PO Box } 8 \\ & \text { Fannin, TX } 77960 \end{aligned}$	Grid \#: Latitude:	$\begin{aligned} & 79-23-2 \\ & 28^{\circ} 43^{\prime} 27^{\prime \prime} \mathrm{N} \end{aligned}$
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:	097 ${ }^{\circ} 12{ }^{\prime \prime} 19$ W
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:	Top Depth (ft.)	Bottom Depth (tt.)	Filter Material	Size
	38	60	Sand	16/30
	Top Depth (tt.)	Bottom Depth (ft.)	Description (number of sacks \& material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	38	Bentonite 15 Bags/Sacks	
Seal Method: Hand Mixed Distance to Property Line (ft): No Data				
Sealed By: Driller		Distance to Septic Field or other concentrated contamination (ft.): No Data		
		Distance to Septic Tank (ft.): No Data		
		Method of Verification: No Data		
Surface Completion:	Surface Slab Installed		Surface Completion by Driller	

Water Level: $\quad 25.2 \mathrm{ft}$. below land surface on 2015-09-18 Measurement Method: water level meter
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17930

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (t.)	Bottom (t.).
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation
 P.O. Box 12157
 Austin, TX 78711
 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#423118				
Owner:	IPA Operations, Inc.	Owner Well \#:	W-10Renamed MW-10	
Address:	$\begin{aligned} & \text { Coleto Creek Power LP } \\ & \text { PO Box } 8 \\ & \text { Fannin, TX } 77960 \end{aligned}$	Grid \#: Latitude:	$\begin{aligned} & 79-23-2 \\ & 28^{\circ} 43^{\prime} 27^{\prime \prime} \mathrm{N} \end{aligned}$	
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:	0970 12' 19" W	
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/15/2015 Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	$16 / 30$

Annular Seal Data: No Data

Seal Method: Hand Mixed
Sealed By: Driller

$$
\begin{aligned}
& \text { Distance to Property Line (ft.): No Data } \\
& \text { Distance to Septic Field or other } \\
& \text { concentrated contamination (ft.): No Data } \\
& \text { Distance to Septic Tank (ft.): No Data } \\
& \text { Method of Verification: No Data } \\
& \text { Surface Completion by Driller }
\end{aligned}
$$

Water Level:	$\mathbf{2 4 . 8} \mathrm{ft}$. below land surface on 2015-09-18	Measurement Method: water level meter
Packers:	No Data	
Type of Pump:	No Data	
Well Tests:	No Test Data Specified	

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17931

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (tt.)	Bottom (t.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation
 P.O. Box 12157
 Austin, TX 78711
 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#462686			
Owner:	Dynegy Inc.	Owner Well \#:	MW-11
Address:	Coleto Creek Power Station PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2 28
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097 ${ }^{\circ} 12{ }^{\text {1 }} 18.36{ }^{\prime \prime} \mathrm{W}$
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{4 9}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Water Level: No Data

Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.
7525 Idle Hour Dr.
Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
$\mathbf{2}$	Riser	New Plastic (PVC)	40	-3	29
$\mathbf{2}$	Screen	New Plastic (PVC)	$\mathbf{4 0} 10$	$\mathbf{2 9}$	$\mathbf{4 9}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 334-5540

1/45/2009 4:19 PM Coleto Creek 2.
BLACK \& VEATCH
PRELIMINARY
BORING NO. BV-5
BORING LOG
SHEET 1 OF 3

辰
PRELIMHNARY
International Power America，Inc
PROJECT
PROJECT NO．

International Power A	
PROJECT LOCATION	
Victoria，Texas	

COORDINATES
Coleto Creek Unit Two 149116

PROJECT LOCATION	
Victoria，Texas	
SURFACE CONDITIONS	

N 327129.3^{1}
GROUND ELEVATION（DATUM） SURFACE CONDITIONS $\rightarrow \mid c$

SOIL SAMPLING						
	炭䍃				$=\frac{4}{3}$	
ROCK CORING						
						号

LOGGED BY

BY
hadriraju
State

V 1 \square CHECKED BY TOTAL DEPTH
80.0 （feet） $+$ Grassy，level，tan clayey sand

grading medium dense；wet；fine to medium grained； well graded

CLASSIFICATION OF MATERIALS
driven along w／
spoon．
Below 28．5＇
continued w／ rotary wash method using 4＂ drag bit \＆ bentonite slurry as drilling fluid． Driller reported trace gravel from $28.5^{\prime}-38.5^{\prime}$ ．
grading very dense
＠38．5＇－39．3＇yellow siliy clay layer
＠39．3＇grading grayish white w／fine grained sand \＆
some silt
Clayey SAND；light gray；dense；moist；fine grained； poorly graded
grading light brown；silt grades out
1／15／2009 4：19 PM Coleto Creek 2

N
17
20
SPT
12
13

Sns \qquad 16
21
37

万
50／3
>50
0.3

grading fine to medium grained
some angular gravel
grading w／white fine sand；some clay cementation

REMARKS
Based on driller＇s comments．
Driller reported alternating hard and soft drilling efforts．

International Power America, Inc
Coleto Creek Unit Two
PROJECT NO.

Internat
PROJECT LOCATION

COORDINATES | PROJECT |
| :--- |
| Victoria, Texas |
| SURFACE CONDITIONS |

E 2571578.7' GROUND ELEVATION (DATUM) TOTAL DEPTH
CLASSIFICATION OF MATERIALS
REMARKS
Level, loose, silty sand
SAND; dark brown; loose; moist; fine grained; poorly
graded
Boring advanced
Clayey SAND; light brown; medium dense; moist; fine w/3-1/4" ID
hollow stem auger. SPT performed w/auto grained; poorly graded
grading light gray; some black motting \& trace roots hammer.

STATE OF TEXAS
 WELL COMPLETION REPORTS

STATE OF TEXAS WELL REPORT for Tracking \#423117			
Owner:	IPA Operations, Inc.	Owner Well \#:	W-9Renamed MW-9
Address:	$\begin{aligned} & \text { Coleto Creek Power LP } \\ & \text { PO Box } 8 \\ & \text { Fannin, TX } 77960 \end{aligned}$	Grid \#: Latitude:	$\begin{aligned} & 79-23-2 \\ & 28^{\circ} 43^{\prime} 27^{\prime \prime} \mathrm{N} \end{aligned}$
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:	097 ${ }^{\circ} 12{ }^{\prime \prime} 19$ W
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 9/16/2015 Drilling End Date: 9/17/2015

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:	Top Depth (ft.)	Bottom Depth (tt.)	Filter Material	Size
	38	60	Sand	16/30
	Top Depth (tt.)	Bottom Depth (ft.)	Description (number of sacks \& material)	
Annular Seal Data:	0	2	Cement 1 Bags/Sacks	
	2	38	Bentonite 15 Bags/Sacks	
Seal Method: Hand Mixed Distance to Property				
Sealed By: Driller		Distance to Septic Field or other concentrated contamination (ft.): No Data		
		Distance to Septic Tank (ft.): No Data		
		Method of Verification: No Data		
Surface Completion:	Surface Slab Installed		Surface Completion by Driller	

Water Level: $\quad 25.2 \mathrm{ft}$. below land surface on 2015-09-18 Measurement Method: water level meter
Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17930

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	5.5	silty clay/clayey sand;brownish gray to white
5.5	10	silty clay; dark gray
10	20.5	caliche and silty clay;light gray to white
20.5	22	silty sand;brownish gray
22	44	sand; light orangish brown
44	47	silty sand; light gray
47	54	silty clay/clayey sand; light gray
54	60	silty, clayey sand; gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (t.)	Bottom (t.).
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation
 P.O. Box 12157
 Austin, TX 78711
 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#423118				
Owner:	IPA Operations, Inc.	Owner Well \#:	W-10Renamed MW-10	
Address:	$\begin{aligned} & \text { Coleto Creek Power LP } \\ & \text { PO Box } 8 \\ & \text { Fannin, TX } 77960 \end{aligned}$	Grid \#: Latitude:	$\begin{aligned} & 79-23-2 \\ & 28^{\circ} 43^{\prime} 27^{\prime \prime} \mathrm{N} \end{aligned}$	
Well Location:	Coletto Creek Power Plant Fannin, TX 77960	Longitude:	0970 12' 19" W	
Well County:	Goliad	Elevation:	No Data	
Type of Work:	New Well	Proposed Use:	Monitor	

Drilling Start Date: 9/15/2015 Drilling End Date: 9/15/2015

Borehole:

Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
$\mathbf{6}$	$\mathbf{0}$	$\mathbf{6 0}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Filter Pack Intervals:

Top Depth (ft.)	Bottom Depth (ft.)	Filter Material	Size
38	60	Sand	$16 / 30$

Annular Seal Data: No Data

Seal Method: Hand Mixed
Sealed By: Driller

$$
\begin{aligned}
& \text { Distance to Property Line (ft.): No Data } \\
& \text { Distance to Septic Field or other } \\
& \text { concentrated contamination (ft.): No Data } \\
& \text { Distance to Septic Tank (ft.): No Data } \\
& \text { Method of Verification: No Data } \\
& \text { Surface Completion by Driller }
\end{aligned}
$$

Water Level:	$\mathbf{2 4 . 8} \mathrm{ft}$. below land surface on 2015-09-18	Measurement Method: water level meter
Packers:	No Data	
Type of Pump:	No Data	
Well Tests:	No Test Data Specified	

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.

7525 Idle Hour Dr.

Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data
Report Amended on 5/26/2016 by Request \#17931

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	fill material
2	8	silty sandy clay; orangish brown
8	11	silty clay/clayey sand; light gray
11	19	silty sand; light gray
19	30	sand; light gray
30	32	silty clay/clayey sand; light gray
32	34	clayey sand; brownish gray
34	36	silty sand; light gray
36	52	silty, clayey sand; light gray
52	60	silty sand; light gray

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (tt.)	Bottom (t.)
2	Riser	New Plastic (PVC)	40	-3	40
2	Screen	New Plastic (PVC)	10	40	60

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation
 P.O. Box 12157
 Austin, TX 78711
 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking \#462686			
Owner:	Dynegy Inc.	Owner Well \#:	MW-11
Address:	Coleto Creek Power Station PO Box 8 Fannin, TX 77960	Grid \#: Latitude:	79-23-2 28
Well Location:	Coleto Creek Power Station Fannin, TX	Longitude:	097 ${ }^{\circ} 12{ }^{\text {1 }} 18.36{ }^{\prime \prime} \mathrm{W}$
Well County:	Goliad	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Monitor

Drilling Start Date: 4/25/2017 Drilling End Date: 4/25/2017

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{4 9}$

Drilling Method: Hollow Stem Auger
Borehole Completion: Filter Packed

Water Level: No Data

Packers: No Data
Type of Pump: No Data
Well Tests: No Test Data Specified

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No
Did the driller knowingly penetrate any strata which contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: EnviroCore, Inc.
7525 Idle Hour Dr.
Corpus Christi, TX 78414
Driller Name: Craig Schena License Number: 4694
Comments: No Data

Lithology:
DESCRIPTION \& COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	0-1.0 - Silty CLAY
1	6.5	Predominately Caliche and Silty Clay
6.5	13.8	Silty Clayey Sand
13.8	28.5	Sand with abundant gravel
28.5	38	Silty Clayey Sand
38	40	Silty Clay/Clayey Sand
40	46	Silty Clayey Sand
46	49	Silty Clay/Clayey Sand

Casing:
BLANK PIPE \& WELL SCREEN DATA

Dla (in.)	Type	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
$\mathbf{2}$	Riser	New Plastic (PVC)	40	-3	29
$\mathbf{2}$	Screen	New Plastic (PVC)	$\mathbf{4 0} 10$	$\mathbf{2 9}$	$\mathbf{4 9}$

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY
TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.
Texas Department of Licensing and Regulation
P.O. Box 12157

Austin, TX 78711
(512) 334-5540

MONITORING WELL DEVELOPMENT DOCUMENTATION

WELL DEVELOPMENT RECORD									E＿＿1＿＿of＿＿1			
Project Number：		15215	Project Name：Coleto Creek Power，LP						Date：9，22．2315			
ell Location（well ID，etc．）：W－9 Ren				Renamed MW－9			Starting Water Level（ft．BMP）： Casing Stickup（ft．）： $\qquad$$\qquad$					
Developed by：C．Winkler／E，Fleker MW－9												
Measuring Point（MP）of Well：TOC／PVC												
Screened Interval（ft．BGL）：\＆o－												
Filter Pack Interval（ft．BGL）：3，							Casing Diameter（in ID）： 2，$っ て$ Casing Volume（gal．）： ~ 5.8					
QUALITY ASSURANCE												
METHODS（describe）：Submersible pump and／or surge block cleaned between wells												
Cleaning Equipment：Deionized water triple rinse												
Water quality stabilization						Surge Equipment：Submersible pump						
Disposal of Discharged Water：Temporarily stored on－site in 55－gallon drums until authorized disposal												
INSTRUMENTS（Indicate make，model，l．d．）												
Water Level：Water lin pH Meter：Horiba U Conductivity Meter： Other：		300				Thermometer：Horiba U50． Field Calibration：Horiba U50 Autocal Field Calibration：Horiba U50 Autocal						
		Horiba U50										
DEVELOPMENT MEASUREMENTS												
$102^{\text {Time }}$	Flow		Water Quality				Appearance		Remarks			
	$\begin{aligned} & \text { Cum. Vol. } \\ & \text { (gal./L) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Purge Rate } \\ & \text { (gal. } / \mathrm{L} \mathrm{pm} \text {) } \\ & \hline \end{aligned}$	Temp．（ ${ }^{\circ} \mathrm{C}$ ）	pH		Spec．Cond． （ $\mu \Sigma / \mathrm{cm}$ ）	Color	$\begin{gathered} \text { Turbidity \& } \\ \text { Sediment } \end{gathered}$				
1330	－	1.25	23.49	7.35		0.663	TAN， Caxcysp	$10=0$	D． 0.0 .92			
1.34	5	$1)$	23.40	7.26		0,657	》	（0）	D，3，0， 65			
1038	10	η	23.40	7.26		0.652	ग）	1000	D0．0．54			
1045	15	10.8	2346	7,25		0.650	Csmeken ${ }^{\text {a }}$	1．900	WNL $=29.80$			
1051	20	70.85	23.40	7.25		0.654	$1)$	） 000	\＄．O． 0.78			
1059	25	20.65	23.56	7.25		$0.65,3$	わ	1000	WLe 29.80			
1108	30	10，55	23,78	7.25		0.647^{7}	\cdots	1077	PN． 0.42			
1130	40	20．45	24.10	7.28		0.652	22	ノ0ッ？	D． 2.0 .40			
1142	50	20．85	23.39	7.24		0.656	11	rovor	10， 0.0 .35			
1156	60	10.70	23.54	7.24		0.659	11	\％000	D． 0.0 .31			
1206	70	~ 1.00	23.49	7.21		0.662	NuETEAN	725	00.0 .30			
1212	73	0.85	23.47	7.21		0.663	$\mu^{\prime \prime}$	946	D．2．0．29			
1216	$\gamma \bigcirc$	1.25	23.41	7.2		0.663	n	8.43	Dns 0.25			
Total Discharge（gallons）： 8 \％												
Observations／Comments：												
							Bullock，Bennett，\＆Associates，LLC					
DRAN on GQN．，SurTCHk to vgillcher．							Bertram，TX 78605 （512）355－9198 Fax（512）355－9197					

ATTACHMENT 5 - TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & 6.51 \\ & 7.33 \end{aligned}$	148	966
Upgradient Wells								
BV-5	03/29/17	1.15	90.5	118	0.54	7.01	147	860
	05/11/17	1.03	81.6	106	0.57	6.89	148	862
	05/16/17	1.17	99	107	0.55	6.9	145	832
	06/07/17	1.11	88.8	109	0.56	6.64	147	810
	06/20/17	1.02	90.7	106	0.58	6.54	145	716
	06/27/17	1.14	100	114	0.55	6.76	144	743
	07/12/17	1.07	96.8	112	0.56	6.88	140	430
	07/18/17	1.17	143	117	0.56	6.68	142	817
	11/07/17	1.10	94.2	109	0.62	6.96	136	850
	06/19/18	1.18	56.4	112	0.97	--	147	775
	09/18/18	1.27	86.2	145	0.667	6.53	146	904
	06/05/19	1.26	82.9	123	0.769	6.89	146	828
	10/03/19	1.31	72.2	141	0.753	7.11	145	806
	06/09/20	1.35	90.4	171	0.498	6.97	159	951
BV-21	03/28/17	0.651	6.89	36	0.61	7.09	69	490
	05/09/17	0.687	65.2	38	0.61	7.04	55	410
	05/17/17	0.709	74.3	39	0.58	7.05	53	454
	06/06/17	0.657	69	40	0.59	7.11	49	452
	06/20/17	0.642	77	40	0.61	6.7	45	356
	06/27/17	0.727	84.9	40	0.6	6.97	46	420
	07/10/17	0.674	90.6	39	0.58	7.22	45	427
	07/18/17	0.618	84.4	39	0.6	6.91	44	380
	11/07/17	0.515	73.6	42	0.64	7.12	46	423
	06/25/18	0.543	69.3	38.4	0.62	--	38.4	380
	09/18/18	0.624	72.1	33.3	0.479	6.64	36.4	416
	06/05/19	0.576	61.3	30.3	0.602	7.1	34.2	379
	10/03/19	0.534	63.4	23.9	0.588	6.82	33.2	342
	06/09/20	0.447	72.5	34.2	0.522	6.96	18.5	362
MW-8	03/28/17	1.2	7.76	79	0.49	7.06	76	626
	05/09/17	1.21	77.5	77	0.44	7.15	79	564
	05/15/17	1.16	81.2	76	0.44	7.01	79	558
	06/06/17	1.26	78.1	72	0.45	6.92	83.5	570
	06/20/17	1.24	86.5	67	0.43	6.7	89	476
	06/27/17	1.23	89.6	66	0.44	6.85	97	533
	07/10/17	1.24	92.6	63	0.44	7.13	97	533
	07/18/17	1.25	92.9	61	0.46	6.91	100	533
	11/07/17	1.21	78.8	61	0.49	7.08	100	540
	06/25/18	1.25	80.3	65.9	0.52	--	95.2	565
	09/18/18	1.29	76.5	53.7	0.402	6.70	94.8	543
	06/05/19	1.11	65.2	51.4	0.497	7.10	79	515
	10/03/19	1.2	76.7	58.3	0.419	6.76	90.1	541
	06/09/20	1.33	73.1	46.4	0.392 J	7.04	72.3	511

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & \hline 6.51 \\ & 7.33 \\ & \hline \end{aligned}$	148	966
Downgradient Wells								
MW-4	03/28/17	0.287	9.14	102	0.61	9.81	157	794
	05/09/17	0.395	88.7	101	0.61	7.27	156	668
	05/17/17	0.251	92.1	101	0.6	6.93	157	702
	06/06/17	0.243	90.7	101	0.63	7.13	157	728
	06/20/17	0.254	99.3	101	0.62	6.71	157	626
	06/27/17	0.254	102	101	0.63	6.87	157	690
	07/10/17	0.271	111	101	0.62	7.16	158	670
	07/18/17	0.292	108	101	0.63	6.82	157	717
	11/07/17	0.255	94.5	99	0.62	7.12	155	700
	06/21/18	0.267	92.5	104	0.6	--	159	665
	09/18/18	0.28	91.8	102	0.582	6.63	155	720
	06/05/19	0.379	85.3	108	0.67	6.92	161	718
	10/03/19	0.367	93.1	102	0.559	6.7	155	693
	06/09/20	0.241	94.9	24.6	0.205 J	6.88	26.8	400
MW-5	03/30/17	0.11	110	140	0.51	6.85	184	830
	05/10/17	0.115	114	139	0.54	6.86	183	900
	05/16/17	0.215	121	139	0.5	6.81	183	848
	06/08/17	0.122	118	139	0.55	6.8	182	862
	06/21/17	0.122	124	138	0.53	6.6	182	813
	06/26/17	0.121	129	139	0.54	6.79	184	900
	07/11/17	0.111	120	138	0.52	6.91	184	797
	07/19/17	0.001	0.005	137	0.53	6.84	181	857
	11/08/17	0.149	116	138	0.52	6.92	183	883
	06/25/18	0.119	114	140	0.56	--	183	820
	09/18/18	0.146	114	136	0.493	6.70	183	824
	06/03/19	0.146	113	143	0.596	7.06	187	864
	10/02/19	0.179	111	147	0.543	7.06	202	842
	09/06/20	0.152	117	138	0.370 J	6.84	182	858
MW-6	03/29/17	1.67	73.9	69	0.38	7.34	99	510
	05/11/17	1.94	70.6	70	0.37	7.1	110	490
	05/16/17	1.84	76.3	70	0.36	7.23	107	506
	06/07/17	1.8	73.8	70	0.37	6.97	103	492
	06/22/17	1.97	79.9	69	0.37	7.11	100	510
	06/28/17	1.74	81.8	69	0.37	7.16	99	570
	07/12/17	1.76	81.6	69	0.35	7.24	98	557
	07/20/17	0.005	0.0002	69	0.39	6.9	97	530
	11/07/17	1.72	76.4	69	0.39	7.41	101	483
	06/22/18	0.0171	76.6	70.7	0.41	--	107	490
	09/18/18	2.09	70.8	72.5	0.353 J	6.97	114	505
	06/03/19	1.9	73.9	73	0.043	7.31	103	514
	10/02/19	1.83	73.6	76.4	0.357 J	7.29	115	507
	06/09/20	2.51	69.7	80.9	0.4	6.95	122	507

APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	B	Ca	Cl	FI	field pH	SO_{4}	TDS
Prediction Limit:		1.26	143	118	0.61	$\begin{aligned} & 6.51 \\ & 7.33 \\ & \hline \end{aligned}$	148	966
MW-9	03/30/17	3.38	54.5	71	1.13	7.35	62	406
	05/10/17	3.16	52.7	66	1.29	7.48	59	410
	05/17/17	3.18	53.3	67	1.26	7.34	58	440
	06/07/17	3.12	52	67	1.26	7.03	57	380
	06/21/17	3.44	60.7	66	1.39	7.09	60	393
	06/26/17	3.31	60.6	67	1.4	7.23	61	407
	07/11/17	3.35	52.1	64	1.3	7.51	60	927
	07/19/17	3.4	50.2	63	1.4	7.29	62	407
	11/08/17	2.84	49.4	62	1.56	7.54	50	397
	06/21/18	2.94	46.9	71.5	1.5	--	35.7	370
	09/18/18	2.79	51.7	71.4	1.1	6.99	49.1	394
	06/05/19	4.26	48	74.7	1.38	7.4	66.3	421
	10/03/19	3.97	71.3	70.9	1.41	7.37	63.6	462
	09/06/20	4.10	47.4	63.7	1.58	7.21	54.9	397
MW-10	03/30/17	3.74	92.1	151	0.54	6.99	130	804
	05/10/17	7.32	56.1	82	0.83	7.23	96	582
	05/16/17	7.45	62.7	81	0.81	7.28	95	612
	06/08/17	7.54	58.1	77	0.84	7.23	92	604
	06/21/17	9.22	60.7	77	0.84	6.97	92	550
	06/26/17	8.21	63.4	78	0.84	7.14	92	530
	07/11/17	7.99	49.5	76	0.84	7.4	88	617
	07/19/17	8.74	56.6	74	0.86	7.25	86	533
	11/08/17	8.72	77.7	74	0.88	7.35	81	590
	06/22/18	8.47	84.4	76.7	0.88	--		550
	09/18/18	8.45	51.9	81.4	0.759	6.98	95.1	577
	06/03/19	8.28	43.1	87.2	0.953	7.52	97.7	587
	10/02/19	8.28	44.2	85.5	0.891	7.46	104	575
	06/09/20	7.58	46.9	76.9	0.818	7.13	96.5	575
MW-11	05/10/17	1.35	64.1	55	0.82	7.27	61	394
	05/16/17	1.39	62.3	52	0.85	7.29	58	362
	05/18/17	1.27	61.6	47.8	0.94		52.4	390
	06/07/17	1.23	59.8	48	0.93	7.25	50	372
	06/21/17	1.19	73.1	43.7	1.04	7.15	44	373
	06/26/17	1.15	82	44	1	7.3	43	407
	07/11/17	1.23	44.7	44	1	7.55	42	603
	07/19/17	1.17	48.6	43	1.01	7.21	42	360
	11/08/17	1.13	52.2	43	1.02	7.61	56	367
	06/21/18	1.07	69.6	44.3	0.96	--	61.4	355
	09/18/18	1.12	39.3	44.6	0.754	7.00	44.4	354
	06/03/19	1.27	43.4	42.2	0.837	7.55	44.8	372
	10/02/19	1.22	43.4	41.4	0.768	7.43	10.8	355
	06/09/20	1.20	56.6	44.4	0.571	6.88	67.7	414

Notes:

1. All concentrations in $\mathrm{mg} / \mathrm{L} . \mathrm{pH}$ in standard units.
2. J - concentration is below sample quantitation limit; result is an estimate.
APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

APPENDIX IV ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND

Sample Location	Date Sampled	Sb	As	Ba	Be	Cd	Cr	Co	FI	Pb	Li	Hg	Mo	Se	TI	Ra 226	Ra 228	Ra 226/228 Combined
GWPS:		0.006	0.128	2	0.004	0.005	0.10	0.0499	4	0.015	0.04	0.002	0.10	0.05	0.002	--	--	5
MW゙-9	03/30/17	<0.0025	0.00909	0.121	<0.001	<0.001	<0.005	<0.005	1.130	0.00217	<0.010	<0.0002	0.0747	<0.005	<0.0015	--	--	1.353
	05/10/17	<0.0025	0.00996	0.105	<0.001	<0.001	<0.005	<0.005	1.290	0.00433	<0.010	<0.0002	0.0900	<0.005	<0.0015	--	--	0.4800
	05/17/17	<0.0025	0.00958	0.101	<0.001	<0.001	<0.005	<0.005	1.260	0.00377	<0.010	<0.0002	0.0899	<0.005	<0.0015	--	--	0.3600
	06/07/17	<0.0025	0.0093	0.100	<0.001	<0.001	<0.005	<0.005	1.260	<0.001000	<0.010	<0.0002	0.0926	<0.005	<0.0015	--	--	0.4760
	06/21/17	<0.0025	0.00937	0.119	<0.001	<0.001	<0.005	<0.005	1.390	0.00136	<0.010	<0.0002	0.1020	<0.005	<0.0015	--	--	1.579
	06/26/17	<0.0025	0.0107	0.114	<0.001	<0.001	0.0102	<0.005	1.400	0.00217	<0.010	<0.0002	0.1060	<0.005	<0.0015	--	--	1.023
	07/11/17	<0.0025	0.0105	0.103	<0.001	<0.001	0.00566	<0.005	1.300	0.00124	<0.010	<0.0002	0.1050	<0.005	<0.0015	--	--	0.8630
	07/19/17	<0.0025	0.0103	0.101	<0.001	<0.001	<0.005	<0.005	1.400	<0.001000	<0.010	<0.0002	0.1130	<0.005	<0.0015	--	--	0.5840
	06/21/18	<0.0025	0.0104	0.100	<0.001	<0.001	<0.005	<0.005	1.500	$<0.00072 \mathrm{~J}$	<0.01	<0.0002	0.0617	<0.005	<0.0015	0.608	<1.303	1.91
	09/18/18	NA	0.0103	0.0985	NA	NA	<0.002	<0.003	1.100	<0.000300	0.00639 J	NA	0.0502	NA	NA	0.618	<0.638	1.26
	06/05/19	<0.0008	0.0109	0.102	<0.0003	<0.0003	<0.002	<0.003	1.380	<0.0003	0.00545 J	<0.00008	0.0683	<0.002	<0.0005	<0.402	<0.683	<1.085
	10/03/19	<0.0008	0.0109	0.128	0.000689 J	<0.0003	<0.002	0.00337 J	1.410	0.00876	0.0064 J	<0.00008	0.0507	0.0041 J	<0.0005	0.577	0.747	1.32
	06/09/20	<0.0008	0.0126	0.0865	<0.0003	<0.0003	<0.002	<0.003	1.58	0.000577 J	<0.005	<0.00008	0.0774	<0.002	<0.0005	0.132	-0.0432	0.132
MW-10	03/30/17	<0.0025	0.0110	0.0844	<0.001	<0.001	<0.005	<0.005	0.540	<0.001	0.0179	<0.0002	0.0342	<0.005	<0.0015	--	--	1.439
	05/10/17	<0.0025	0.0146	0.0554	<0.001	<0.001	0.00533	<0.005	0.830	<0.001	0.0122	<0.0002	0.102	<0.005	<0.0015	--	--	0.8880
	05/16/17	<0.0025	0.0150	0.0598	<0.001	<0.001	<0.005	<0.005	0.810	<0.001	0.0123	<0.0002	0.0987	<0.005	<0.0015	--	--	0.1830
	06/08/17	<0.0025	0.0144	0.0544	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0115	<0.0002	0.106	<0.005	<0.0015	--	--	0.06700
	06/21/17	<0.0025	0.0149	0.054	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0133	<0.0002	0.113	<0.005	<0.0015	--	--	0.7090
	06/26/17	<0.0025	0.0160	0.0587	<0.001	<0.001	0.0177	<0.005	0.840	<0.001	0.0137	<0.0002	0.116	<0.005	<0.0015	--	--	0.7180
	07/11/17	<0.0025	0.0149	0.0508	<0.001	<0.001	<0.005	<0.005	0.840	<0.001	0.0119	<0.0002	0.114	<0.005	<0.0015	--	--	1.713
	07/19/17	<0.0025	0.0146	0.0633	<0.001	<0.001	0.00963	<0.005	0.860	<0.001	0.0127	<0.0002	0.121	<0.005	<0.0015	--	--	2.132
	06/22/18	<0.0025	0.0154	0.0692	<0.001	<0.001	<0.005	<0.005	0.88	<0.00095 J	0.0122	<0.0002	0.134	<0.005	<0.0015	<0.212	<1.192	<1.40
	09/18/18	NA	0.0140	0.0446	NA	NA	<0.002	<0.003	0.759	<0.0003	0.0141	NA	0.125	NA	NA	0.151	<0.848	0.999
	06/03/19	<0.0008	0.0142	0.0420	<0.0003	<0.0003	<0.002	<0.003	0.953	<0.0003	0.0139	<0.00008	0.109	<0.002	<0.0005	<0.203	0.814	1.017
	10/02/19	<0.0008	0.0139	0.0406	<0.0003	<0.0003	<0.002	<0.003	0.891	<0.0003	0.0127	<0.00008	0.106	<0.002	<0.0005	-0.0288	0.901	0.901
	06/09/20	<0.0008	0.014	0.0444	<0.0003	<0.0003	<0.002	0.00334 J	0.818	<0.0003	0.013	<0.00008	0.088	<0.002	<0.0005	0.0959	1.22	1.31
MW-11	05/10/17	<0.0025	0.0156	0.0899	<0.001	<0.001	<0.005	<0.005	0.82	0.00239	0.0125	<0.0002	0.0082	<0.005	<0.0015	--	--	0.4560
	05/16/17	<0.0025	0.018	0.0869	<0.001	<0.001	0.00731	<0.005	0.85	0.0113	0.0144	<0.0002	0.00841	<0.005	<0.0015	--	--	1.418
	05/18/17	<0.0025	0.0188	0.0779	<0.001	<0.001	<0.005	<0.005	0.94	0.00204	0.0122	<0.0002	0.00781	<0.005	<0.0015	--	--	0.6390
	06/07/17	<0.0025	0.0175	0.0835	<0.001	<0.001	<0.005	<0.005	0.93	0.00171	0.0137	<0.0002	0.00744	<0.005	<0.0015	--	--	0.5020
	06/21/17	<0.0025	0.0203	0.0822	<0.001	<0.001	<0.005	<0.005	1.04	0.00322	0.0136	<0.0002	0.00659	<0.005	<0.0015	--	--	1.084
	06/26/17	<0.0025	0.0237	0.0954	<0.001	<0.001	0.0131	<0.005	1.00	0.00593	0.0176	<0.0002	0.00796	<0.005	<0.0015	--	--	3.067
	07/11/17	<0.0025	0.0212	0.0725	<0.001	<0.001	<0.005	<0.005	1.00	<0.001	0.012	<0.0002	0.00765	<0.005	<0.0015	--	--	0.7530
	07/19/17	<0.0025	0.0224	0.0709	<0.001	<0.001	0.00762	<0.005	1.01	0.0018	0.0137	<0.0002	0.00783	<0.005	<0.0015	--	--	1.551
	06/21/18	<0.0025	0.0367	0.0805	<0.001	<0.001	<0.005	<0.005	0.96	0.00241	0.0135	<0.0002	0.00465	<0.005	<0.0015	<0.234	<1.312	<1.55
	09/18/18	NA	0.0382	0.0645	NA	NA	<0.002	<0.003	0.754	<0.0003	0.0139	NA	0.00445 J	NA	NA	<0.188	0.597	0.785
	06/03/19	<0.0008	0.0379	0.0834	<0.0003	<0.0003	<0.002	<0.003	0.0837	<0.0003	0.0154	<0.00008	0.00316 J	<0.002	<0.0005	<0.481	0.991	1.472
	10/02/19	<0.0008	0.0379	0.0744	<0.0003	<0.0003	<0.002	<0.003	0.768	0.000391 J	0.014	<0.00008	0.00259 J	<0.002	<0.0005	1.57	0.478	2.040
	06/09/20	<0.0008	0.0293	0.0948	<0.0003	<0.0003	<0.002	<0.003	0.571	0.000675 J	0.0156	<0.00008	0.00215 J	<0.002	<0.0005	0.163	1.31	1.480

Notes:

1. All concentrations in mg / L. Ra 226/228 Combined in $\mathrm{pCi} / \mathrm{L}$.
[^1]ATTACHMENT 6 - SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSSSECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (PRIMARY ASH POND)

The Coleto Creek conceptual site model (CSM) and Description of Site Hydrogeology for the Primary Ash Pond (PAP), located near Fannin, Texas are described in the following sections.

REGIONAL SETTING

The Site is located on the Lissie Formation which is part of the Houston Group (BBA, 2017). The Lissie Formation is a deltaic plain that consists primarily of undifferentiated alluvium, fine-grained channel facies, and fine-grained overbank facies (Moore and Wermund, 1993). The Lissie Formation is middle Pleistocene in age and is described as primarily sands, silts, and clays containing iron and manganese nodules, calcareous concretions, and organic-rich lenses (Moore and Wermund, 1993). Below the Lissie Formation are the Goliad Formation, the Oakville Sandstone/Fleming Formation, and the Catahoula Formations which consist primarily of sand, clays, sands, and tuffs respectively (Nicot et. al, 2010).

Within the central coastal plain of Texas, the Lissie Formation's outcrop is a belt ranging from approximately 10 to 20 miles wide (Solis, 1981). Located within the western region of the Gulf Coast Basin, Lissie sediments extend into the subsurface, dipping southeast at 5 to 20 ft per mile (Doering, 1935). Maximum outcrop thickness is estimated to be about 600 ft in East Texas and 400 ft in South Texas (Plummer, 1932).

SITE GEOLOGY

The Site is located on the Lissie Formation described above (BBA, 2017). Surficial soils in the vicinity of the Site include the following (described in order from shallow to deep) based on Site soil borings (BBA, 2017):

- Upper Confining Unit (Unit 1) - a laterally continuous low permeability unit approximately 11 to 25 feet thick that contains primarily sandy clay and clayey sand with intermittent layers of silty clay.
- Intermediate Sand Unit (Unit 2, Uppermost Aquifer) - a laterally continuous sand and silty sand unit approximately 40 to 54 feet thick that contains discontinuous cohesive layers and variable mineralized zones.
- Lower Confining Unit (Unit 3) - a laterally continuous basal clay unit greater than 25 feet hick consisting primarily of clay and silty clay.
The geologic units discussed above are shown on cross-sections attached to this demonstration.

SITE HYDROGEOLOGY

The Site is located in the Coleto Creek Watershed, adjacent to Sulphur Creek, part of the Coleto Creek Reservoir. The Coleto Creek Reservoir was constructed in the 1970 s for use as a cooling pond. The Uppermost Aquifer is monitored by nine monitoring wells surrounding the PAP as part of the CCR groundwater monitoring system. All wells included in the CCR monitoring system are screened in the intermediate sand unit (i.e., uppermost aquifer) at the Site (BBA, 2017).

The CCR groundwater monitoring system consists of nine monitoring wells installed in the Uppermost Aquifer and adjacent to the PAP (BV-5, BV-21, MW-4, MW-5, MW-6, MW-8, MW-9, MW10, and MW-11) (see Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration). The unit utilizes three background monitoring wells (BV-5, BV-21, and MW-8) as part of the CCR groundwater monitoring system.

RAMBCLL

Hydraulic Conductivity

Hydraulic conductivity results from field testing (i.e., slug tests) at monitoring wells BV-5, BV-21, BV-22, MW-9, MW-10, and MW-11 in the intermediate sand unit (Uppermost Aquifer) ranged from approximately 5.14×10^{-4} to 1.37×10^{-2} centimeters per second (cm / s), with a geometric mean of approximately $3.35 \times 10^{-5} \mathrm{~cm} / \mathrm{s}(\mathrm{BBA}, 2017)$. Generally, hydraulic conductivities upgradient of the PAP were higher than hydraulic conductivities downgradient of the PAP, which was attributed to the varying clay and silt contents of the sandy soils (BBA, 2017).

Groundwater Elevations, Flow Direction and Velocity

Groundwater elevations adjacent to the Site for the eight CCR background monitoring events from March to July 2017 ranged from approximately 101.1 feet North American Vertical Datum of 1988 (NAVD88) to 113.5 feet NAVD88, corresponding to groundwater depths from approximately 14.3 to 29.9 feet below ground surface (BBA, 2017). Groundwater typically flows east to southeast across the PAP towards Sulphur Creek, part of the Coleto Creek Reservoir. During the background monitoring events, the average horizontal hydraulic gradient was calculated as 0.0027 feet per foot ($\mathrm{ft} / \mathrm{ft}$) and $0.0029 \mathrm{ft} / \mathrm{ft}$ across the northern and southern boundaries of the PAP. The average groundwater flow velocity was between 0.13 and 9.46 feet per day (ft/day) (BBA, 2017). These groundwater elevations, flow direction, and flow velocities are consistent with the groundwater potentiometric map for October 2, 2019 provided as an attachment to this demonstration.

REFERENCES

Doering, JA. 1935. Post-Fleming surface formations of coastal southeast Texas and southern Louisiana: American Association of Petroleum Geologists Bulletin, v.19, no.5, p. 651-688.

Moore, David W. and Wermund, E.G., Jr. 1993. Quaternary Geologic Map of Austin $4^{\circ} \times 6^{\circ}$ Quadrangle, United States. Quaternary Geologic Atlas of the United States. Map I-1420 (NH-14). Scale 1:1,000,000.

Nicot, Jean-Philippe, Bridget R Scanlon, Changbing Yang, and John B Gates. 2010. Geological and Geographical Attributes of the South Texas Uranium Province, Texas Commission on Environmental Quality and Bureau of Economic Geology. April 2010.

Plummer, FB. 1932. Cenozoic Systems in Texas, Part 3, in The Geology of Texas: University of Texas, Austin, Bulletin 3232, p.729-795.

Solis, Raul Fernando. 1981. Upper Tertiary and Quaternary Depositional Systems, Central Coastal Plain, Texas, University of Texas at Austin Bureau of Economic Geology Report of Investigations No. 108.

ATTACHMENT 7 - STRUCTURAL STABILITY AND SAFETY FACTOR

 ASSESSMENTS
Coal Combustion Residuals
 Surface Impoundment
 History of Construction and
 Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment
 (REV.1)

Coleto Creek Power Station

Fannin, TeXas

JANUARY 24, 2018
(ORIGINAL VERSION: OCTOBER 13, 2016)

Prepared for:

Coleto Creek Power, LP
Coleto Creek Power Station
Fannin, Texas

Prepared by:

Bullock, Bennett \& Associates, LLC
Engineering and Geoscience
Registrations: Engineering F-8542, Geoscience 50127

165 N. Lampasas Street
Bertram, Texas 78605
(512) 355-9198

BBA Project No. 17266

Certification Statement 40 CFR § 257.73(c) - Structural Integrity Criteria for Existing CCR Surface Impoundments, History of Construction

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73$ (c).

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(a) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Potential Hazard Classification Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Potential Hazard Classification Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73(\mathrm{a})$.

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(d) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Structural Stability Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Structural Stability Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73(\mathrm{~d})$.

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(e) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Safety Factor Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Safety Factor Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73$ (e).

Daniel B. Bullock, P.E. (TX 82596)

TABLE OF CONTENTS
LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
1.0 INTRODUCTION 1
2.0 HISTORY OF CONSTRUCTION 2
2.1 Owner and Operator of CCR Unit 2
2.2 CCR Unit Location 2
2.3 Primary Ash Pond Statement of Purpose 2
2.4 Watershed Description 3
2.5 Primary Ash Pond Foundation and Abutment Material Description 4
2.6 Primary Ash Pond Construction Summary 4
2.7 Primary Ash Pond Drawings 7
2.8 Primary Ash Pond Instrumentation 7
2.9 Primary Ash Pond Area-Capacity Curves 7
2.10 Primary Ash Pond Spillway and Diversion Design Features 7
2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions 8
2.12 Primary Ash Pond Structural Stability History 8
3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT 9
3.1 Dam Breach Analysis 10
3.2 Loss of Life Evaluation 12
3.3 Economic and/or Environmental Loss Evaluation 12
3.4 Hazard Potential Classification 13
4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT 14
5.0 INITIAL SAFETY FACTOR ASSESSMENTS 17
5.1 Liquefaction Assessment 24
5.2 Initial Safety Factor Assessment Summary 27
6.0 REFERENCES 28

LIST OF TABLES

Table 5-1 Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2 Required Factors of Safety
Table 5-3 Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A Site Location Map
Figure 1-1B Site Location Map
Figure 2-1 U.S.G.S. Area Map
Figure 2-2 Coleto Creek Watershed
Figure 2-3 Thickness Map of In-Situ Cohesive Soils
Figure 2-4 Surface Impoundment Configuration
Figure 2-5A Ash Pond Plan and Cross Sections
Figure 2-5B Bathymetric Survey Plan View
Figure 2-5C Bathymetric Survey Sections
Figure 2-6 Capacity for Primary Ash Pond

LIST OF APPENDICES

Appendix A Geotechnical Borelogs
Appendix B Geotechnical Laboratory Data
Appendix C Slide 7.0 Stability Analysis Models
Appendix D Liquefaction Assessment Calculations
Appendix E Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1-1A and 1-1B provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules codified in 40 CFR Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in §257.73 Structural Integrity Criteria for Existing CCR Surface Impoundments ${ }^{1}$. Section 2.0 of the report provides the History of Construction (\$257.73(c)(1)(i - xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (§257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (§257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (\$257.73(e)(1).

[^2]
2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in $\S 257.73$ (c)(1)(i - xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station
45 FM 2987
PO Box 8
Fannin, Texas 77960
Primary Ash Pond SWR No. 31911, Unit No. 001

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundment (Primary Ash Pond) is located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet (S\&L, December 1978). The Primary Ash Pond is located adjacent to the facility's Evaporation Pond and Secondary Pond. Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundment on the most recent US Geological Survey (USGS) $71 / 2$ minute quadrangle topographic map.

2.3 Primary Ash Pond Statement of Purpose

The Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during the Power Station site development. The pond was designed and constructed to accommodate wastes from two coal-fired boilers (S\&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From
there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial reuse. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the treated water overflows stoplogs within an outlet (weir box) structure then flows through a 30" diameter pipe to the smaller Secondary Pond as needed to control water levels. Water from the Secondary Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit. The Secondary Pond has never received more than deminimis quantities of CCR; therefore, it is not subject to the CCR Rule.

Other plant wastes may also reportedly be sluiced into the Coleto Creek Primary Ash Pond including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S\&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the Power Station in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek Power Station. The Power Station discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Primary Ash Pond Foundation and Abutment Material Description

The Coleto Creek Primary Ash Pond was designed and constructed under the guidance of Sargent \& Lundy Engineers (S\&L). As part of the design process, S\&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the pond. Based on the information collected, the pond is constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 9 feet beneath the Primary Ash Pond and Secondary Pond (average thickness data for the Primary Ash Pond only is not provided in the report) (S\&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils in the vicinity of the Primary Ash Pond. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Primary Ash Pond Construction Summary

As noted in Section 2.3, the Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S\&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary Ash Pond dikes have a total interior circumference of approximately 10,975 feet and a height ranging from approximately 4 feet up to 39 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond (S\&L, December 1978).

As further described below, a topographic and bathymetric survey was conducted for the Primary Ash Pond in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by $\mathrm{S} \& \mathrm{~L}$. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016 assessment, which is also the operating level identified in the S\&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the Primary Ash Pond lining and the geotechnical characteristics of those soils are documented in the S\&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected post-construction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as $3.8 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$. The average plasticity index, liquid limit, and fines content were listed as $23 \%, 42 \%$, and 40%, respectively. S\&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$ permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S\&L, December 1978).

Primary Ash Pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S\&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Primary Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Primary Ash Pond were constructed approximately 4 to 39 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Primary Ash Pond construction configuration are provided on Figure 2-5.

The Primary Ash Pond and Secondary Pond are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). An outlet structure intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Pond. The structure inlet is located in the Primary Ash Pond and consists of a 7 -feet wide by 9.5 -feet long concrete structure configured with
stoplogs supported by a 12 -feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary Ash Pond and Secondary Pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30 -inch diameter corrugated metal pipe (CMP) with 7 -feet by 7 -feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12-inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8 -inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20-inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

In 2012, Coleto Creek Power, LP contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Primary Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Primary Ash Pond dike system. According to the report, AECOM found that "the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Primary Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Primary Ash Pond as required in §257.73(c)(1)(vii).

2.8 Primary Ash Pond Instrumentation

The Coleto Creek Primary Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Primary Ash Pond.

2.9 Primary Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond.

2.10 Primary Ash Pond Spillway and Diversion Design Features

The Primary Ash Pond was not constructed with a conventional spillway. Water from the Primary Ash Pond is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through the Secondary Pond and subsequently through Outfall 003 in accordance with the plant's TPDES permit or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the pond. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or drought conditions. The Primary Ash Pond is currently
operated with more than four feet of freeboard to allow removal of bottom ash and fly ash for offsite beneficial reuse.

2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the pond are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by an independent consulting firm annually in accordance with $\S 257.83$ (b).

2.12 Primary Ash Pond Structural Stability History

There is no record or knowledge of structural instability of the Primary Ash Pond. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to 40 CFR $\S 257.73(\mathrm{a})(2)$, the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):

1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform a site assessment of the Primary Ash Pond at the Coleto Creek Power Station. As part of the assessment, CDM assigned the pond with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power, LP contracted AECOM to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Primary Ash Pond and Secondary Pond. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

The Coleto Creek Primary Ash Pond is the only CCR-regulated surface impoundment at the Coleto Creek Power Station and is therefore subject to the Hazard Classification Assessment under the CCR rules. Because the Primary Ash Pond is hydraulically connected to, and is separated by a dike system from, the Secondary Pond, it is necessary to include the Secondary Pond when evaluating potential failure scenarios as noted below. Although the Secondary Pond is not a CCR-regulated unit, it is subject to operational and safety standards established by the Texas Commission on Environmental Quality (TCEQ) in its Dam Safety rules (30 TAC Part 1 Chapter 299).

Bullock, Bennett \& Associates (BBA) performed a simplified dam breach analysis of the Primary Ash Pond and Secondary Pond to support the loss of life, and environmental and economic impact analyses. The Primary Ash Pond and Secondary Pond combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was completed in 1978 and the effective fluid storage capacity in the Primary Ash Pond has diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Primary Ash Pond has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Primary Ash Pond and Secondary Pond are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the Power Station. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQapproved Outfall 003 to the hot side of the lake. Cool water is pumped into the Power Station from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1

Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL.
Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Primary Ash Pond, Secondary Pond, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary Ash Pond and Secondary Pond dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of both ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google Earth ${ }^{\mathrm{TM}}$ profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the Evaporation Pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Primary Ash Pond and Secondary Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main Lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Primary Ash Pond and Secondary Pond is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Primary Ash Pond and Secondary Pond are located apart from the active industrial areas of the Power Station. Two fly-ash silos are located adjacent to the western border of the Primary Ash Pond and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash Pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary Ash Pond and Secondary Pond (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from Primary Ash Pond and Secondary Pond into the Coleto Creek Reservoir. Using the volume ratio of pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acre-feet $=\sim 18$ dilution factor of analytes in the Primary Ash Pond water). Discharge of Secondary Pond water is currently allowed to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at 20%-to- 80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Primary Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Primary Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Primary Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

Stable foundations and abutments. As noted in Section 2.5, the Primary Ash Pond was constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S\&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the pond should continue to be stable over its operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The Primary Ash Pond dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with $\S 257.83$ (a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in December 2016 in accordance with the requirements defined in $\S 257.83(\mathrm{~b})$ which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2018).

Dikes mechanically compacted to a density sufficient to withstand the range of loading

 conditions in the CCR unit. The dike system was engineered by S\&L and constructed in approximately 1978. As discussed in Section 2.6 - Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98% maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly mowed as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph $(d)(1)(v)(A)$ of the section of the rule. As is common with surface impoundments of this type, the Primary Ash Pond was not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, January 2018) showed that the Primary Ash Pond, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, has sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100 -year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in December of 2016 (BBA, 2018). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the outlet structure pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The dike that separates the Primary Ash Pond from the Secondary Pond was evaluated for stability in the event of rapid drawdown of the Secondary Pond, as further discussed in Section 5.0 Initial Safety Factor Assessments. As noted in the Initial Safety Factor Assessment, the modeled slope stability results indicate this divider dike exceeds the required safety factors under the max surcharge pool/rapid drawdown scenario.

Coal Combustion Residuals Surface Impoundment
History of Construction and Initial Hazard Potential Assessment,
Structural Integrity Assessment, and Safety Factor Assessment (Rev. 1)

No structural stability deficiencies were identified in this initial Structural Stability
Assessment that would require corrective measures.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The critical cross sections for the Primary Ash Pond, as shown in Figure 2-5A, are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S\&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S\&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

S\&L completed approximately 80 soil borings to document the subsurface soils in and around the Primary Ash Pond. All of the borings were reportedly completed prior to construction of the ponds, in support of the pond design. Following commissioning of Unit 1 and filling of the ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigations, laboratory data analysis, and slope stability modeling of the dike, short and long-term stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S\&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A and B as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given cross section A is near a location of historically observed seepage at the outside toe of the Primary Ash Pond dike and cross section B is located along the splitter dike that separates the Primary Ash Pond and Secondary Pond. It should be noted that due to recent reduction in water surface operational levels at the Primary Ash Pond, the historically observed seepage in the area of cross section A has recently been observed to be dry.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and
federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S\&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A and B for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A and B to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections at each location it was determined that the design sections were likely worse case than the as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing did result in minor changes in assumed soil properties - the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross section B and the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf. BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are
therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis were conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, shortterm loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event, or if the Secondary Pond was rapidly drained.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for the Coleto Creek Power Station based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1
Soil Strength Parameters used in Geotechnical Stability Analysis (color shading as shown in cross sections)

Cross Section A-A'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	$c^{\prime}(\mathrm{psf})$	$\varnothing \prime$	$\mathrm{c}(\mathrm{psf})$	\varnothing	
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
		\varnothing	$\mathrm{c}(\mathrm{psf})$	\varnothing	
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Based on field observations, the ash located within the Primary Ash Pond tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, January 2018) is 136.1 (NAVD88).

The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed historical seep location near the southeast corner of the Primary Ash Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection conducted in December 2016. Cross section B, located along the separator dike between the Primary Ash Pond and Secondary Pond, was modeled with the maximum storage and maximum surcharge pool elevations. Cross section B was also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately $1 / 3$ the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section B is at the same elevation as the assumed pond water levels.

Dikes should be designed with appropriate safety factors. Required safety factors per §257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 5-2
Required Factors of Safety

Condition	Required Factor of Safety
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.50
Maximum Surcharge Pool Loading Static Factor of Safety	1.40
Seismic Factor of Safety	1.00
Liquefaction Factor of Safety	1.20

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Eighteen stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Table 5-3
Slope Stability Analysis Summary

Cross Section	Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
	Block	Circular	Block	Circular	
A-A'	Max Storage Pool/Static	$1.8(1)$	$1.9(2)$	$4.9(3)$	$5.5(4)$
A-A'	Max Surcharge Pool/Static	$1.7(5)$	$1.8(6)$	$4.9(7)$	$5.5(8)$
A-A'	Max Storage Pool/Seismic	NA	NA	$4.3(9)$	$4.8(10)$
B-B'	Max Storage Pool /Static	$2.8(11)$	$2.8(12)$	$3.7(13)$	$5.1(14)$
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	$2.0(15)$	$2.1(16)$
B-B'	Max Storage Pool/Seismic	NA	NA	$3.0(17)$	$4.1(18)$

Note: (\#) = Case Number (referenced on model output data in Appendix C).
Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, \& C, respectively of this report.

As shown in Table 5-3, eighteen stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm , a liquid limit less than 35
percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

When available, site specific information such as SPT blow count and percent fines content (soils passing the \#200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the

USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

5.2 Initial Safety Factor Assessment Summary

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary Ash Pond at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steadystate seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary Ash Pond has an adequate factor of safety for all evaluated loading conditions.

6.0 REFERENCES

AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.

BBA. (2018, January 22). Letter to Mr. Robert Stevens from Mr. Dan Bullock. Coleto-Creek Power - September 2016 Primary Ash Pond and Secondary Pond Dike Inspection. Bullock, Bennett \& Associates, LLC.

BBA. (January 2018). Initial Inflow Design Flood Control System Report (Original Submittal Date September 2016). Bullock, Bennett \& Associates.

CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.

GBRA. (2013). Coleto Creek Watershed River Secments, Descriptions and Concerns. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf

S\&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power \& Light Company. Coleto Creek Power Station - Units 1 and 2. Sargent \& Lundy Engineers.

S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

TCEQ. (January 2007). Hydrologic and Hydraulic Guidelines for Dams in Texas. Dam Safety Program, Texas Commission on Environmental Quality.

URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power \& Light Company. Underground Resource Management, Inc.

URM. (July 29, 1981). Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station. Underground Resource Managment, Inc.

FIGURES

uen $\operatorname{bummeana~"~}$

Plot Date: $12 / 281 / 17-4: 11 \mathrm{pm}$, Plotted by: roodr
Drawing Path: K::clientsibbalColeto Ck|, Drawing Name: C-ST-PL106.dwg

APPENDIX A: GEOTECHNICAL BORELOGS

(6) Comments

| (7) Name of Person or Firm Doing Sealing Work | Date of Abandonment |
| :--- | :--- | :--- |
| AECOM Technical Services, Inc. | $11 / 6 / 11$ |
| Signature of Person Doing Work | Date Signed |
| | $11 / 6 / 11$ |
| Street or Route | Telephone Number |
| 1035 Kepler Drive | $920-468-1978$ |
| City, State, Zip Code | |
| Green Bay, Wisconsin 54311 | |

(6) Comments

(7) Name of Person or Firm Doing Sealing Work	Date of Abandonment	
AECOM Technical Services, Inc.	$11 / 4 / 11$	
Signature of Person Doing Work	Date Signed	
		$11 / 4 / 11$
Street or Route	Telephone Number	
1035 Kepler Drive	$920-468-1978$	
City, State, Zip Code		
Green Bay, Wisconsin 54311		

(6) Comments

| (7) Name of Person or Firm Doing Sealing Work | Date of Abandonment |
| :--- | :--- | :--- |
| AECOM Technical Services, Inc. | $11 / 2 / 11$ |
| Signature of Person Doing Work | Date Signed |
| | $11 / 2 / 11$ |
| Street or Route | Telephone Number |
| 1035 Kepler Drive | $920-468-1978$ |
| City, State, Zip Code | |
| Green Bay, Wisconsin 54311 | |

(6) Comments

(7) Name of Person or Firm Doing Sealing Work	Date of Abandonment	
AECOM Technical Services, Inc.	$11 / 8 / 11$	
Signature of Person Doing Work	Date Signed	
	$11 / 8 / 11$	
Street or Route	Telephone Number	
1035 Kepler Drive	$920-468-1978$	
City, State, Zip Code		
Green Bay, Wisconsin 54311		

(6) Comments

| (7) Name of Person or Firm Doing Sealing Work | Date of Abandonment |
| :--- | :--- | :--- |
| AECOM Technical Services, Inc. | $11 / 2 / 11$ |
| Signature of Person Doing Work | Date Signed |
| | $11 / 2 / 11$ |
| Street or Route | Telephone Number |
| 1035 Kepler Drive | $920-468-1978$ |
| City, State, Zip Code | |
| Green Bay, Wisconsin 54311 | |

(6) Comments

(7) Name of Person or Firm Doing Sealing Work	Date of Abandonment
AECOM Technical Services, Inc.	$11 / 7 / 11$
Signature of Person Doing Work	Date Signed
Street or Route	$11 / 7 / 11$
1035 Kepler Drive	Telephone Number
City, State, Zip Code	$920-468-1978$
Green Bay, Wisconsin 54311	

(6) Comments

| (7) Name of Person or Firm Doing Sealing Work | Date of Abandonment |
| :--- | :--- | :--- |
| AECOM Technical Services, Inc. | $11 / 2 / 11$ |
| Signature of Person Doing Work | Date Signed |
| | $11 / 2 / 11$ |
| Street or Route | Telephone Number |
| 1035 Kepler Drive | $920-468-1978$ |
| City, State, Zip Code | |
| Green Bay, Wisconsin 54311 | |

(6) Comments

(7) Name of Person or Firm Doing Sealing Work	Date of Abandonment
AECOM Technical Services, Inc.	$11 / 7 / 11$
Signature of Person Doing Work	Date Signed
Street or Route	$11 / 7 / 11$
1035 Kepler Drive	Telephone Number
City, State, Zip Code	$920-468-1978$
Green Bay, Wisconsin 54311	

AECOM General Notes

Drilling and Sampling Symbols:

SS : Split Spoon-1-3/8" I.D. 2" O.D. (Unless otherwise noted)	HS : Hollow Stem Auger
ST : Shelby Tube-2" O.D. (Unless otherwise noted)	WS : Wash Sample
PA : Power Auger	FT : Fish Tail
DB : Diamond Bit-NX, BX, AX	RB : Rock Bit
AS : Auger Sample	BS : Bulk Sample
JS : Jar Sample	PM : Pressuremeter Test
VS : Vane Shear	GS : Giddings Sampler
OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL : Water Level	WCI : Wet Cave In
WS : While Sampling	DCI : Dry Cave In
WD : While Drilling	BCR: Before Casing Removal
AB : After Boring	ACR : After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a \#200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a $\# 200$ sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	$1-9$
Cobbles	8 inches to 3 inches $(200 \mathrm{~mm}$ to 75 mm$)$	Little	$10-19$
Gravel	3 inches to $\# 4$ sieve $(75 \mathrm{~mm}$ to 4.76 mm$)$	Some	$20-34$
Sand	$\# 4$ to \#200 sieve $(4.76 \mathrm{~mm}$ to 0.074 mm$)$	And	$35-50$
Silt	Passing \#200 sieve $(0.074 \mathrm{~mm}$ to 0.005 mm$)$		
Clay	Smaller than 0.005 mm		

Consistency of Cohesive Soils:

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density	
<0.25	Very Soft	$0-3$	Very Loose	
$0.25-0.49$	Soft	$4-9$	Loose	
$0.50-0.99$	Medium (firm)	$10-29$	Medium Dense	
$1.00-1.99$	Stiff	$30-49$	Dense	
$2.00-3.99$	Very Stiff	$50-80$	Very Dense	
$4.00-8.00$	Hard	>80	Extremely Dense	
>8.00	Very Hard			

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140 -pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5 -foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5 -foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5 -foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

AECOM Laboratory Procedures

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (yd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.

1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
2. Reference: Unified Soil Classification Systems
3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

APPENDIX B: GEOTECHNICAL LABORATORY DATA

Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 89.0 \\ 55.5 \\ 39.5 \end{array}$		

(no specification provided)

Material Description

CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY

Atterberg Limits
LL= 38
$\mathrm{Pl}=24$
Coefficients
$\mathrm{D}_{90}=0.4902$
$\mathrm{D}_{50}=0.1036$
$\mathrm{D}_{10}=$
$\mathrm{D}_{85}=0.3732$
$\mathrm{D}_{30}=0.0564$
$\mathrm{C}_{\mathrm{U}}=$
$\mathrm{D}_{60}=0.1816$
$\mathrm{D}_{15}=$
$\mathrm{C}_{\mathrm{C}}=$
Classification
AASHTO $=$ A-6(4)
Remarks

Source of Sample: B-1-1
Sample Number: B-1-1 S-11
Date: 12/9/11

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Particle Size Distribution Report

$\begin{aligned} & \text { SIEVE } \\ & \text { SIZE } \end{aligned}$	PERCENT FINER	SPEC.* PERCENT	$\begin{aligned} & \text { PASS? } \\ & (X=N O) \end{aligned}$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.9 \\ 98.9 \\ 94.7 \\ 90.7 \end{array}$		

Material Description SILTY CLAY, TRACE SAND, BROWN		
$\mathrm{PL}=28$	Atterberg Limits $\mathrm{LL}=79$	$\mathrm{PI}=51$
$\begin{aligned} & \mathrm{D}_{90}=0.0724 \\ & \mathrm{D}_{50}=0.0020 \\ & \mathrm{D}_{10}= \end{aligned}$	$\begin{aligned} & \text { Coefficients } \\ & \mathrm{D}_{8} 85=0.0576 \\ & \mathrm{D}_{30}= \\ & \mathrm{C}_{\mathrm{U}}= \end{aligned}$	$\begin{aligned} & \mathrm{D}_{60}=0.0030 \\ & \mathrm{D}_{15}= \\ & \mathrm{C}_{\mathrm{C}}= \end{aligned}$
USCS $=\mathrm{CH}$	Classification AASHTO=	A-7-6(53)
	Remarks	

(no specification provided)
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. PERCENT	PASS? (X=NO)
$\# 4$	100.0		
$\# 10$	99.9		
$\# 40$	83.2		
$\# 100$	50.8		
$\# 200$	37.3		

Material Description CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN		
$\mathrm{PL}=14 \quad \frac{\text { Atterberg Limits }}{\mathrm{LL}=38} \quad \mathrm{PI}=24$		
$\begin{aligned} & \mathrm{D} 90=0.5520 \\ & \mathrm{D}_{50}=0.1389 \\ & \mathrm{D}_{10}= \end{aligned}$	$\begin{array}{ll} \mathrm{D}_{85}=0.4512 & \mathrm{D}_{60}=0.2202 \\ \mathrm{D}_{30}=0.0666 & \mathrm{D}_{\mathrm{u}}=0= \\ \mathrm{C}_{\mathrm{c}}= \end{array}$	
USCS $=$ SC	Classification$\text { AASHTO }=\mathrm{A}-6(3)$	
Remarks		

(no specification provided)

Client: IPR-GDF SUEZ
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 100.0 \\ 88.9 \\ 57.7 \\ 42.3 \end{array}$		

(no specification provided)

Material Description		
CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN		
$P L=13$	Atterberg Limits $\mathrm{LL}=41$	$\mathrm{PI}=28$
$\begin{aligned} & \mathrm{D}_{90}=0.4679 \\ & \mathrm{D}_{50}=0.0893 \\ & \mathrm{D}_{10}= \end{aligned}$	Coefficients $\mathrm{D}_{85}=0.3722$ $\mathrm{D}_{30}=0.0293$ $\mathrm{C}_{\mathrm{u}}=$	$\begin{aligned} & \mathrm{D}_{60}=0.1697 \\ & \mathrm{D}_{15}= \\ & \mathrm{C}_{\mathrm{C}}= \end{aligned}$
USCS= SC	Classification AASHTO $=$ Remarks	A-7-6(6)

AL

Coefficients

$\mathrm{D}_{85}=0.3722$
$\mathrm{D}_{60}=0.1697$
$\mathrm{D}_{50}=0.0893$
$\mathrm{D}_{10}=$

USCS $=\mathrm{SC}$

Classification

Remarks

Tested By: BCM \qquad Checked By: WPQ

Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(\mathrm{X}=\mathrm{NO})$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.6 \\ 83.8 \\ 51.4 \\ 38.4 \end{array}$		

(no specification provided)

Depth: 32'-34'

Material Description
CLAYEY FINE TO MEDIUM SAND, GRAY

Atterberg Limits

$\mathrm{PL}=14$	$\mathrm{LL}=29$	$\mathrm{PI}=15$
	Coefficients	
$\mathrm{D}_{90}=0.5414$	$\mathrm{D}_{85}=0.4433$	$\mathrm{D}_{60}=0.2165$
$\mathrm{D}_{50}=0.1251$	$\mathrm{D}_{30}=0.0637$	$\mathrm{D}_{15}=$
$\mathrm{D}_{10}=$	$\mathrm{C}_{\mathrm{U}}=$	
USCS $=\mathrm{SC}$	Classification	
AASHTO $=\mathrm{A}-6(2)$		

Remarks

Particle Size Distribution Report

(no specification provided)

Particle Size Distribution Report

(no specification provided)
Source of Sample: B-2-1
Sample Number: B-2-1 S-33
Depth: 85.0'-86.5'
AECOM
Client: IPR-GDF SUEZ
Project: COLETO CREEK
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. PERCENT	PASS? (X=NO)
$\# 4$	100.0		
$\# 10$	99.7		
$\# 40$	86.1		
$\# 100$	54.4		
$\# 200$	40.0		

(no specification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-9

Depth: $16.0^{\prime}-17.8^{\prime}$
Depth: 16.0-17.8

Material Description

CLAYEY FINE TO MEDIUM SAND, GRAY

Atterberg Limits

$P L=15$
LL= 44
$\mathrm{PI}=29$

Coefficients

$\mathrm{D}_{90}=0.5011$
$\mathrm{D}_{50}=0.1152$
$\mathrm{D}_{10}=$
USCS= SC
$\mathrm{D}_{85}=0.4085$
$\mathrm{D}_{30}=0.0416$
$\mathrm{C}_{\mathrm{u}}=$
$\mathrm{D}_{60}=0.1882$
$\mathrm{D}_{15}=$
$\mathrm{C}_{\mathrm{C}}=$

Classification

AASHTO $=$ A-7-6(6)
Remarks

Client: IPR-GDF SUEZ
Project: COLETO CREEK
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. * PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.6 \\ 79.5 \\ 46.5 \\ 34.8 \end{array}$		

(no specification provided)

Source of Sample: B-3-1
Sample Number: B-3-1 S-10
Depth: ${ }^{18}$ '-20'

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Tested By: BCM \qquad Checked By: WPQ

Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. * PERCENT	PASS? (X=NO)
$\# 10$	100.0		
$\# 40$	98.3		
$\# 100$	88.6		
$\# 200$	83.9		

(no specification provided)

Material Description

SILTY CLAY, LITTLE FINE TO MEDIUM SAND, WHITE AND GRAY

Atterberg Limits
$\mathrm{PL}=18$
$\mathrm{D}_{90}=0.1803$
$\mathrm{D}_{50}=0.0108$
$\mathrm{D}_{10}=$

USCS= CL
LL= 30
$\mathrm{Pl}=12$
Coefficients
$\mathrm{D}_{85}=0.0826$
$\mathrm{D}_{30}=0.0064$
$\mathrm{D}_{\mathrm{C}}^{\mathrm{C}}{ }_{\mathrm{U}}=0=0.0064$
$\mathrm{D}_{60}=0.0138$
$\mathrm{D}_{15}=$
$\mathrm{C}_{\mathrm{C}}=$
Classification
AASHTO $=\mathrm{A}-6(9)$
Remarks
Sample Number: B-5-1 S-14
Date: 12/9/11

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)
-	B-1-1	B-1-1 S-5	8 '-10'		14	22	8	USCS

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-1-1	B-1-1 S-34	90 '-90.4'		PLASTICITY INDEX (\%)	USCS		
					17	42	25	CL

Client: IPR-GDF SUEZ

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	$\begin{aligned} & \text { SAMPLE } \\ & \text { NO. } \end{aligned}$	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX $(\%)$	USCS
-	B-1-1	B-1-1 S-40	120'-121'		28	79	51	CH

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
-	B-2-1	B-2-1 S-6	$10^{\prime}-12$ USCS			14	38	24
						SC		

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USCS
-	B-2-1	B-2-1 S-10	$18^{\prime}-20^{\prime}$		13	41	28	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONENT $(\%)$	PLASTIC SIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-2-1	B-2-1 S-17	$32^{\prime}-34$			USCS		
					14	29	15	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT (\%)	LIQUID LIMIT $(\%)$
-	B-2-1	B-2-1 S-33	$85.0^{\prime}-86.5^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					25	59	34	CH

Client: IPR-GDF SUEZ
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-2-2	B-2-2 S-16	$59.0^{\prime}-60.5^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					18	41	23	CL

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX $(\%)$	uscs
-	B-2-2	B-2-2 S-18	69.0'-70.5'		26	63	37	CH

Client: IPR-GDF SUEZ
Project: COLETO CREEK
LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC SIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX (\%)
-	B-3-1	B-3-1 S-9	$16.0^{\prime}-17.8^{\prime}$		15	44	29	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX (\%)	USCS
	B-3-1	B-3-1 S-10	$18^{\prime}-20^{\prime}$		13	35	22	SC

Client: IPR-GDF SUEZ
A $=$ COM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST ASTM D4318

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	natural WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USCS
-	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL

AECOM

AECOM Project No.: 60225561

Project Name:	Coleto Creek Facility IPR-GDP Suez
Boring/Source:	$\frac{1-1}{16,17,18}$
Sample No.:	$\frac{30,0-36.7}{\text { Depth (ft.): }}$Description:

	Test 1
Flask No.	SG-3
Wt. Flask + Soil + Water (W2)	742.20
Wt. Flask + Water (W3)	677.46
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-4
Wt. Tare	578.17
Wt. Tare + Soil	681.20
Wt. Soil (W2-W3)	103.03
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	$\mathbf{2 . 6 9 0}$

Boring/Source:	
Sample No.:	
Depth (ft.):	
Description:	$\frac{4-1}{7}$

	Test 2
Flask No.	SG-10
Wt. Flask + Soil + Water (W2)	742.38
Wt. Flask + Water (W3)	668.44
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-4
Wt. Tare	576.51
Wt. Tare + Soil	695.11
Wt. Soil (W2-W3)	118.60
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	2.655

Test Date: 12/6/2011

Boring/Source: Sample No.: Depth (ft.): Description:	$\frac{2-1}{14}$
	$\frac{\text { Clayey F-M Sand Little Silt }}{}$

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	$\mathbf{2 . 6 7 2}$

Calculated Date

BCM
$12 / 2 / 11$

Checked \qquad

ORGANIC CONTENT TEST
ASTM D-2974
Method C

AECOM Project No.:	60225561
Project Name:	Coleto Creek Facility - IPR-GDP Suez
Date Tested:	$12 / 6 / 2011$

Sample Information

Boring / Source:
Sample No.:
Depth (ft.):

B-4-1
13
24.0-26.0

Organic Content Test Data

Tare No.:
Tare Wt. (gm): T
Wet Wt. + Tare (gm): A+T
Dry Wt. + Tare (gm): B+T
Moisture Content (\%):

Wt. of Ash + Tare (gm): D+T 44.65
Percent Ash: $(\mathrm{D}-\mathrm{T} / \mathrm{B}-\mathrm{T}) \times 100=\mathrm{E}$
99.81

Organic Content (\%):

N
17.71
48.27
44.70
13.23

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-2-1 S-14
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		10.4 PSI	17.4 PSI	24.3 PSI	
$\begin{aligned} & \overline{0} \\ & \frac{\bar{y}}{\overline{5}} \end{aligned}$	Diameter, in	2.8362	2.8441	2.8457	
	Height, in	5.9134	6.0831	6.0173	
	Water Content, \%	21.81	14.93	13.70	
	Dry Density, pcf	105.5	115.9	120.2	
	Saturation, \%	100.17	90.88	94.34	
	Void Ratio	0.58172	0.4389	0.38805	
$\begin{gathered} \frac{1}{0} \\ \frac{0}{\omega} \\ \frac{\Sigma}{\omega} \\ \frac{0}{2} \\ \frac{0}{0} \\ 0 \end{gathered}$	Water Content, \%	21.39	15.80	14.06	
	Dry Density, pcf	106.1	117.3	121.3	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.57165	0.42209	0.37567	
	Back Press., tsf	5.0449	5.0454	5.0404	
Minor Prin. Stress, tsf		0.74395	1.2474	1.7924	
Max. Dev. Stress, tsf		1.7444	3.0288	4.2889	
Time to Failure, min		1612.1	1613.1	1614.3	
Strain Rate, \%/min		0.02	0.02	0.03	
B-Value		. 98	. 97	. 95	
Measured Specific Gravity		2.67	2.67	2.67	
Liquid Limit		42	42	42	
Plastic Limit		24	24	24	
Plasticity Index		18	18	18	
Failure Sketch					

Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-2-1 S-14	Tested By: BCM	Checked By: WPQ
Sample No.: S-14	Test Date: $12 / 5 / 11$	Depth: 26.0'-28.0'
Test No.: B-2-1 S-14	Sample Type: 3 " ST	Elevation: ----
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

```
Specimen Height: 5.91 in
Specimen Area: 6.32 in^2
Specimen Volume: 37.36 in^3
```

Liquid Limit: 42
Time
min

Project: COLETO CREEK FACILITY
Sample No.: $\mathrm{S}-14$
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 5 / 11$
Sample Type: $3^{1 /}$ ST
project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 7b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Liquid Limit: 42

Measured Specific Gravity: 2.67

Plastic Limit: 24

Effective
Horizontal Stress Effective

1.000	0.74395	0
1.535	0.86072	0.18161
1.745	0.84856	0.23021
1.866	0.83504	0.25232
1.953	0.82413	0.26595
2.031	0.81857	0.2785
2.104	0.81545	0.28998
2.163	0.8126	0.29882
2.217	0.81044	0.30659
2.270	0.81055	0.31488
2.325	0.81235	0.32369
2.370	0.81262	0.33037
2.407	0.81358	0.33601
2.486	0.81822	0.34883
2.553	0.82248	0.35952
2.620	0.82842	0.37072
2.670	0.83347	0.37927
2.716	0.83966	0.3878
2.759	0.8459	0.39579
2.799	0.85159	0.40323
2.823	0.85582	0.40804
2.865	0.86201	0.41599
2.887	0.86681	0.42079
2.915	0.87315	0.42713
2.936	0.87902	0.43242
2.962	0.88592	0.43873
2.989	0.89553	0.44658
3.007	0.90305	0.45236
3.018	0.9079	0.45604
3.022	0.91449	0.45971
3.034	0.92205	0.46492
3.061	0.94479	0.47949
3.066	0.96501	0.49036
3.072	0.98784	0.50268
3.072	1.0069	0.51239
3.068	1.0249	0.521
3.083	1.0478	0.5346
3.079	1.0645	0.54253
3.077	1.0843	0.55243
3.080	1.104	0.56278
3.076	1.1232	0.57204
3.092	1.1457	0.58576
3.103	1.1703	0.59986
3.104	1.1886	0.60939
3.088	1.2018	0.61386
3.085	1.2201	0.62274
3.084	1.2387	0.63205
3.102	1.2621	0.6467
3.098	1.2802	0.65539
3.111	1.3035	0.66937
3.087	1.315	0.67158
3.095	1.3341	0.68246
3.099	1.3536	0.69322
3.111	1.3755	0.70632
3.105	1.3915	0.71356
3.089	1.4015	0.71602
3.091	1.4188	0.72512
3.090	1.4355	0.73363
3.087	1.4512	0.74111
3.086	1.4672	0.749
3.092	1.485	0.75916
3.085	1.4991	0.76505
3.100	1.5204	0.77881
3.090	1.5309	0.78225
3.103	1.5537	0.79631
3.088	1.5637	0.79871
3.092	1.5795	0.8075
3.080	1.5892	0.81019
3.087	1.6072	0.82062
3.077	1.6167	0.8237
3.073	1.628	0.82857
3.082	1.6447	0.83883
3.073	1.6556	0.84273
3.083	1.6736	0.85376
3.075	1.6838	0.85746
3.083	1.7026	0.86869
3.080	1.7108	0.87219

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: 12/5/11

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

```
Specimen Height: 6.08 in
Specimen Area: 6.35 in^2
Specimen Volume: 38.65 in^3
```

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.67

	Time min	Vertical Strain \%	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6.353	0	0	5.0454	6.2928	6.2928
2	5.0038	0.0388	6.3555	29.35	0.3325	5.1985	6.2928	6.6253
3	10.004	0.085062	6.3584	39.31	0.44513	5.2806	6.2928	6.7379
4	15.004	0.13132	6.3613	45.38	0.51363	5.3339	6.2928	6.8064
5	20.004	0.17908	6.3644	50.036	0.56606	5.3744	6.2928	6.8589
6	25	0.22683	6.3674	53.985	0.61044	5.4054	6.2928	6.9032
7	30	0.27459	6.3705	57.344	0.64811	5.4298	6.2928	6.9409
8	35	0.32234	6.3735	60.35	0.68176	5.4504	6.2928	6.9746
9	40	0.37159	6.3767	62.884	0.71004	5.4676	6.2928	7.0028
10	45	0.42083	6.3798	65.477	0.73895	5.482	6.2928	7.0317
11	50	0.46859	6.3829	67.658	0.76319	5.4936	6.2928	7.056
12	55.001	0.51634	6.386	70.074	0.79007	5.5042	6.2928	7.0829
13	60.001	0.5641	6.389	72.196	0.8136	5.513	6.2928	7.1064
14	70.001	0.65961	6.3952	76.204	0.85794	5.5269	6.2928	7.1507
15	80.001	0.75512	6.4013	80.27	0.90285	5.5375	6.2928	7.1957
16	90.001	0.85361	6.4077	84.573	0.9503	5.5436	6.2928	7.2431
17	100	0.95061	6.414	88.698	0.99568	5.5474	6.2928	7.2885
18	110	1.0491	6.4203	92.706	1.0396	5.5497	6.2928	7.3324
19	120	1.1446	6.4265	96.124	1.0769	5.5502	6.2928	7.3697
20	130	1.2401	6.4328	99.719	1.1161	5.5497	6.2928	7.4089
21	140	1.3356	6.439	104.26	1.1658	5.5474	6.2928	7.4586
22	150	1.4326	6.4453	108.32	1.2101	5.5452	6.2928	7.5029
23	160	1.5266	6.4515	111.57	1.2451	5.5408	6.2928	7.5379
24	170	1.6251	6.4579	115.28	1.2852	5.5369	6.2928	7.578
25	180	1.7206	6.4642	118.28	1.3175	5.5314	6.2928	7.6103
26	190	1.8162	6.4705	121.41	1.351	5.5258	6.2928	7.6438
27	200	1.9102	6.4767	124.71	1.3863	5.5197	6.2928	7.6791
28	210	2.0057	6.483	127.83	1.4197	5.5125	6.2928	7.7125
29	220	2.1012	6.4893	131.01	1.4536	5.5053	6.2928	7.7464
30	230	2.1967	6.4957	134.2	1.4875	5.4975	6.2928	7.7803
31	240	2.2907	6.5019	137.2	1.5193	5.4892	6.2928	7.8121
32	270	2.5817	6.5213	146.28	1.615	5.4637	6.2928	7.9078
33	300	2.8757	6.5411	152.23	1.6757	5.4365	6.2928	7.9685
34	330	3.1682	6.5608	158.3	1.7372	5.4082	6.2928	8.03
35	360	3.4592	6.5806	164.61	1.801	5.3805	6.2928	8.0938
36	390	3.7502	6.6005	169.79	1.8521	5.3527	6.2928	8.1449
37	420	4.0397	6.6204	175.22	1.9055	5.325	6.2928	8.1983
38	450	4.3292	6.6405	180.28	1.9547	5.2989	6.2928	8.2475
39	480	4.6202	6.6607	185.23	2.0023	5.2712	6.2928	8.2951
40	510	4.9127	6.6812	189.48	2.0419	5.2451	6.2928	8.3347
41	540	5.2082	6.702	194.43	2.0887	5.2201	6.2928	8.3815
42	570	5.5007	6.7228	199.32	2.1347	5.1957	6.2928	8.4275
43	600	5.7902	6.7434	204.39	2.1823	5.1702	6.2928	8.4751
44	630	6.0782	6.7641	209.28	2.2277	5.1469	6.2928	8.5205
45	660	6.3692	6.7851	213.41	2.2645	5.1242	6.2928	8.5573
46	690	6.6587	6.8062	217.65	2.3024	5.1014	6.2928	8.5952
47	720	6.9497	6.8275	222.13	2.3425	5.0798	6.2928	8.6353
48	750	7.2407	6.8489	226.9	2.3853	5.0582	6.2928	8.6781
49	780	7.5362	6.8708	231.56	2.4265	5.0382	6.2928	8.7193
50	810	7.8302	6.8927	234.5	2.4496	5.0188	6.2928	8.7424
51	840	8.1197	6.9144	238.39	2.4824	4.9982	6.2928	8.7752
52	870	8.4107	6.9364	243.17	2.5241	4.9805	6.2928	8.8169
53	900	8.6987	6.9583	247.82	2.5643	4.9622	6.2928	8.8571
54	930	8.9883	6.9804	250.54	2.5842	4.9444	6.2928	8.877
55	960	9.2793	7.0028	253.72	2.6086	4.9267	6.2928	8.9014
56	990	9.5718	7.0254	257.61	2.6401	4.9106	6.2928	8.9329
57	1020	9.8643	7.0482	261.97	2.6761	4.8945	6.2928	8.9689
58	1050	10.157	7.0712	265.5	2.7034	4.8806	6.2928	8.9962
59	1080	10.446	7.094	268.63	2.7264	4.8646	6.2928	9.0192
60	1110	10.736	7.1171	271.69	2.7486	4.8507	6.2928	9.0414
61	1140	11.024	7.1401	273.58	2.7587	4.8363	6.2928	9.0515
62	1170	11.31	7.1632	277	2.7842	4.8224	6.2928	9.077
63	1200	11.6	7.1866	280.18	2.807	4.8096	6.2928	9.0998
64	1230	11.889	7.2102	282.3	2.819	4.7969	6.2928	9.1118
65	1260	12.183	7.2344	285.01	2.8366	4.7836	6.2928	9.1294
66	1290	12.477	7.2587	287.49	2.8516	4.7714	6.2928	9.1444
67	1320	12.771	7.2831	291.2	2.8788	4.7608	6.2928	9.1716
68	1350	13.064	7.3076	293.85	2.8952	4.7492	6.2928	9.188
69	1380	13.355	7.3322	297.62	2.9226	4.7392	6.2928	9.2154
70	1410	13.643	7.3566	299.45	2.9308	4.7292	6.2928	9.2236
71	1440	13.932	7.3814	302.28	2.9485	4.7198	6.2928	9.2413
72	1470	14.226	7.4067	305.4	2.9688	4.7109	6.2928	9.2616
73	1500	14.519	7.432	307.76	2.9815	4.7015	6.2928	9.2743
74	1530	14.814	7.4578	309.29	2.986	4.6926	6.2928	9.2788
75	1560	15.107	7.4835	312.12	3.003	4.6837	6.2928	9.2958
76	1590	15.398	7.5092	314.54	3.0159	4.6743	6.2928	9.3087
77	1613.1	15.62	7.529	316.72	3.0288	4.6682	6.2928	9.3216

Project: COLETO CREEK FACILITY
Sample No.: S-14
Sample No.: S-14

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST
project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 7b

Filter Strip Correction: 0.00 tsf Membrane Correction: $0.00 \mathrm{hb} / \mathrm{in}$ Correction Type: Uniform

Measured Specific Gravity: 2.67

	Vertical	Total Vertical	Tota 1 Horizontal	Excess Pore	A	Effective Vertical	Effective Horizontal	Stress	Effective	
	Strain \%	Stress tsf	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	$\underset{\mathrm{tsf}}{\mathrm{p}}$	$\stackrel{q}{\operatorname{qf}}$
1	0.00	6.2928	6.2928	0	0.000	1.2474	1.2474	1.000	1.2474	0
2	0.04	6.6253	6.2928	0.15311	0.460	1.4268	1.0943	1.304	1.2605	0.16625
3	0.09	6.7379	6.2928	0.23521	0.528	1.4573	1.0122	1.440	1.2348	0.22257
4	0.13	6.8064	6.2928	0.28847	0.562	1.4726	0.95893	1.536	1.2158	0.25682
5	0.18	6.8589	6.2928	0.32896	0.581	1.4845	0.91844	1.616	1.2015	0.28303
6	0.23	6.9032	6.2928	0.36003	0.590	1.4978	0.88737	1.688	1.1926	0.30522
7	0.27	6.9409	6.2928	0.38444	0.593	1.5111	0.86296	1.751	1.187	0.32406
8	0.32	6.9746	6.2928	0.40496	0.594	1.5242	0.84244	1.809	1.1833	0.34088
9	0.37	7.0028	6.2928	0.42216	0.595	1.5353	0.82524	1.860	1.1803	0.35502
10	0.42	7.0317	6.2928	0.43658	0.591	1.5498	0.81082	1.911	1.1803	0.36947
11	0.47	7.056	6.2928	0.44823	0.587	1.5624	0.79917	1.955	1.1808	0.3816
12	0.52	7.0829	6.2928	0.45877	0.581	1.5787	0.78863	2.002	1.1837	0.39504
13	0.56	7.1064	6.2928	0.46765	0.575	1.5934	0.77975	2.043	1.1866	0.4068
14	0.66	7.1507	6.2928	0.48152	0.561	1.6238	0.76588	2.120	1.1949	0.42897
15	0.76	7.1957	6.2928	0.49206	0.545	1.6582	0.75534	2.195	1.2068	0.45143
16	0.85	7.2431	6.2928	0.49816	0.524	1.6995	0.74924	2.268	1.2244	0.47515
17	0.95	7.2885	6.2928	0.50204	0.504	1.741	0.74536	2.336	1.2432	0.49784
18	1.05	7.3324	6.2928	0.50426	0.485	1.7828	0.74314	2.399	1.263	0.51982
19	1.14	7.3697	6.2928	0.50482	0.469	1.8195	0.74258	2.450	1.281	0.53846
20	1.24	7.4089	6.2928	0.50426	0.452	1.8593	0.74314	2.502	1.3012	0.55806
21	1.34	7.4586	6.2928	0.50204	0.431	1.9111	0.74536	2.564	1.3283	0.5829
22	1.43	7.5029	6.2928	0.49982	0.413	1.9576	0.74758	2.619	1.3526	0.60504
23	1.53	7.5379	6.2928	0.49539	0.398	1.9971	0.75202	2.656	1.3746	0.62255
24	1.63	7.578	6.2928	0.4915	0.382	2.0411	0.7559	2.700	1.3985	0.64262
25	1.72	7.6103	6.2928	0.48596	0.369	2.0789	0.76145	2.730	1.4202	0.65874
26	1.82	7.6438	6.2928	0.48041	0.356	2.1179	0.76699	2.761	1.4425	0.67548
27	1.91	7.6791	6.2928	0.47431	0.342	2.1594	0.7731	2.793	1.4663	0.69317
28	2.01	7.7125	6.2928	0.46709	0.329	2.2	0.78031	2.819	1.4902	0.70984
29	2.10	7.7464	6.2928	0.45988	0.316	2.2411	0.78752	2.846	1.5143	0.72681
30	2.20	7.7803	6.2928	0.45212	0.304	2.2828	0.79529	2.870	1.539	0.74374
31	2.29	7.8121	6.2928	0.4438	0.292	2.3229	0.80361	2.891	1.5633	0.75966
32	2.58	7.9078	6.2928	0.41828	0.259	2.4441	0.82912	2.948	1.6366	0.8075
33	2.88	7.9685	6.2928	0.39109	0.233	2.532	0.85631	2.957	1.6941	0.83783
34	3.17	8.03	6.2928	0.3628	0.209	2.6218	0.8846	2.964	1.7532	0.86861
35	3.46	8.0938	6.2928	0.33507	0.186	2.7133	0.91234	2.974	1.8128	0.9005
36	3.75	8.1449	6.2928	0.30733	0.166	2.7922	0.94007	2.970	1.8661	0.92607
37	4.04	8.1983	6.2928	0.27959	0.147	2.8734	0.96781	2.969	1.9206	0.95277
38	4.33	8.2475	6.2928	0.25352	0.130	2.9486	0.99388	2.967	1.9713	0.97737
39	4.62	8.2951	6.2928	0.22578	0.113	3.0239	1.0216	2.960	2.0228	1.0012
40	4.91	8.3347	6.2928	0.19971	0.098	3.0896	1.0477	2.949	2.0686	1.021
41	5.21	8.3815	6.2928	0.17474	0.084	3.1614	1.0727	2.947	2.117	1.0444
42	5.50	8.4275	6.2928	0.15034	0.070	3.2318	1.0971	2.946	2.1644	1.0673
43	5.79	8.4751	6.2928	0.12482	0.057	3.3048	1.1226	2.944	2.2137	1.0911
44	6.08	8.5205	6.2928	0.10152	0.046	3.3735	1.1459	2.944	2.2597	1.1138
45	6.37	8.5573	6.2928	0.078774	0.035	3.4332	1.1686	2.938	2.3009	1.1323
46	6.66	8.5952	6.2928	0.056029	0.024	3.4938	1.1914	2.933	2.3426	1.1512
47	6.95	8.6353	6.2928	0.034394	0.015	3.5555	1.213	2.931	2.3842	1.1712
48	7.24	8.6781	6.2928	0.012759	0.005	3.62	1.2346	2.932	2.4273	1.1927
49	7.54	8.7193	6.2928	-0.0072117	-0.003	3.6811	1.2546	2.934	2.4679	1.2133
50	7.83	8.7424	6.2928	-0.026628	-0.011	3.7236	1.274	2.923	2.4988	1.2248
51	8.12	8.7752	6.2928	-0.047153	-0.019	3.777	1.2946	2.918	2.5358	1.2412
52	8.41	8.8169	6.2928	-0.064905	-0.026	3.8364	1.3123	2.923	2.5744	1.262
53	8.70	8.8571	6.2928	-0.083212	-0.032	3.895	1.3306	2.927	2.6128	1.2822
54	8.99	8.877	6.2928	-0.10096	-0.039	3.9325	1.3484	2.917	2.6404	1.2921
55	9.28	8.9014	6.2928	-0.11872	-0.046	3.9747	1.3661	2.910	2.6704	1.3043
56	9.57	8.9329	6.2928	-0.1348	-0.051	4.0223	1.3822	2.910	2.7022	1.32
57	9.86	8.9689	6.2928	-0.15089	-0.056	4.0744	1.3983	2.914	2.7363	1.338
58	10.16	8.9962	6.2928	-0.16476	-0.061	4.1156	1.4122	2.914	2.7639	1.3517
59	10.45	9.0192	6.2928	-0.18085	-0.066	4.1547	1.4282	2.909	2.7915	1.3632
60	10.74	9.0414	6.2928	-0.19472	-0.071	4.1907	1.4421	2.906	2.8164	1.3743
61	11.02	9.0515	6.2928	-0.20914	-0.076	4.2153	1.4565	2.894	2.8359	1.3794
62	11.31	9.077	6.2928	-0.22301	-0.080	4.2546	1.4704	2.893	2.8625	1.3921
63	11.60	9.0998	6.2928	-0.23577	-0.084	4.2902	1.4832	2.893	2.8867	1.4035
64	11.89	9.1118	6.2928	-0.24853	-0.088	4.3149	1.4959	2.884	2.9054	1.4095
65	12.18	9.1294	6.2928	-0.26184	-0.092	4.3458	1.5092	2.879	2.9275	1.4183
66	12.48	9.1444	6.2928	-0.27404	-0.096	4.3731	1.5214	2.874	2.9473	1.4258
67	12.77	9.1716	6.2928	-0.28458	-0.099	4.4108	1.532	2.879	2.9714	1.4394
68	13.06	9.188	6.2928	-0.29623	-0.102	4.4389	1.5436	2.876	2.9913	1.4476
69	13.35	9.2154	6.2928	-0.30622	-0.105	4.4762	1.5536	2.881	3.0149	1.4613
70	13.64	9.2236	6.2928	-0.3162	-0.108	4.4944	1.5636	2.874	3.029	1.4654
71	13.93	9.2413	6.2928	-0.32563	-0.110	4.5216	1.573	2.874	3.0473	1.4743
72	14.23	9.2616	6.2928	-0.33451	-0.113	4.5507	1.5819	2.877	3.0663	1.4844
73	14.52	9.2743	6.2928	-0.34394	-0.115	4.5729	1.5913	2.874	3.0821	1.4908
74	14.81	9.2788	6.2928	-0.35282	-0.118	4.5862	1.6002	2.866	3.0932	1.493
75	15.11	9.2958	6.2928	-0.36169	-0.120	4.6121	1.6091	2.866	3.1106	1.5015
76	15.40	9.3087	6.2928	-0.37112	-0.123	4.6344	1.6185	2.863	3.1265	1.5079
77	15.62	9.3216	6.2928	-0.37723	-0.125	4.6534	1.6246	2.864	3.139	1.5144

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: 12/5/11

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soi 1 Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Liquid Limit: 42
Time

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.67

Project: COLETO CREEK FACILITY
Sample No.: $\mathrm{S}-14$
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soi 1 Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.02 in Specimen Area: 6.36 in^2 Specimen Volume: 38.27 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.007 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: $0.007 \mathrm{~b} / \mathrm{in}$ Correction Type: Uniform

Measured Specific Gravity: 2.67

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-7
Sample Type: 3" ST

Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ
Sample No.: S-7	Test Date: $12 / 1 / 11$	Depth: $12.0^{\prime}-14.0^{\prime}$
Test No.: B-4-1 S-7	Sample Type: 3 " ST	Elevation: ----
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767		

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 1 / 11$
Sample Type: $3^{\prime \prime}{ }_{\text {ST }}$

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
 Specimen volume: 38.06 in^3
Liquid Limit: 27

	Time min	$\begin{array}{r} \text { Vertical } \\ \text { Strain } \\ \% \end{array}$	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	$\begin{array}{r} \text { Pore } \\ \text { Pressure } \\ \text { tsff } \end{array}$	Horizontal Stress tsf	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6.36	0	0	5.046	5.544	5.544
2	5	0.086461	6.3655	19.795	0.2239	5.1593	5.544	5.7679
3	10	0.18589	6.3719	24.744	0.2796	5.1856	5.544	5.8236
4	15	0.28388	6.3781	28.64	0.3233	5.2008	5.544	5.8673
5	20	0.38187	6.3844	31.851	0.3592	5.209	5.544	5.9032
6	25	0.47842	6.3906	34.536	0.38911	5.2137	5.544	5.9331
7	30.001	0.57785	6.397	37.116	0.41775	5.216	5.544	5.9618
8	35.001	0.6744	6.4032	40.064	0.4505	5.2166	5.544	5.9945
9	40.001	0.77094	6.4094	42.433	0.47667	5.216	5.544	6.0207
10	45.001	0.86893	6.4158	44.961	0.50456	5.2148	5.544	6.0486
11	50.001	0.96692	6.4221	47.488	0.5324	5.2125	5.544	6.0764
12	55.001	1.0649	6.4285	50.015	0.56017	5.2102	5.544	6.1042
13	60.001	1.1629	6.4349	52.436	0.58671	5.2078	5.544	6.1307
14	70.001	1.3589	6.4476	57.701	0.64434	5.2014	5.544	6.1883
15	80.001	1.5549	6.4605	63.545	0.70819	5.1932	5.544	6.2522
16	90.002	1.7494	6.4733	69.652	0.77472	5.1851	5.544	6.3187
17	100	1.9454	6.4862	75.812	0.84155	5.1751	5.544	6.3855
18	110	2.1399	6.4991	82.287	0.91162	5.1652	5.544	6.4556
19	120	2.333	6.5119	89.026	0.98433	5.1535	5.544	6.5283
20	130	2.5261	6.5248	95.87	1.0579	5.1407	5.544	6.6019
21	140	2.7178	6.5377	102.5	1.1289	5.1278	5.544	6.6729
22	150	2.9109	6.5507	109.3	1.2013	5.1126	5.544	6.7453
23	160	3.1054	6.5639	115.93	1.2716	5.0963	5.544	6.8156
24	170	3.2999	6.5771	122.56	1.3417	5.0793	5.544	6.8857
25	180	3.4959	6.5904	129.2	1.4115	5.0618	5.544	6.9555
26	190	3.6904	6.6037	135.46	1.4769	5.0443	5.544	7.0209
27	200	3.8879	6.6173	141.83	1.5432	5.0262	5.544	7.0872
28	210	4.0838	6.6308	148.15	1.6087	5.0081	5.544	7.1527
29	220	4.2798	6.6444	154.31	1.6721	4.9905	5.544	7.2161
30	230	4.4744	6.6579	160.52	1.7359	4.973	5.544	7.2799
31	240	4.6675	6.6714	166.1	1.7926	4.9555	5.544	7.3366
32	270	5.2482	6.7123	182.69	1.9596	4.9052	5.544	7.5036
33	300	5.839	6.7544	198.8	2.1191	4.8568	5.544	7.6631
34	330	6.4298	6.7971	214.22	2.2692	4.8118	5.544	7.8132
35	360	7.012	6.8396	228.12	2.4014	4.7674	5.544	7.9454
36	390	7.597	6.8829	242.18	2.5333	4.723	5.544	8.0773
37	420	8.1879	6.9272	255.97	2.6605	4.6786	5.544	8.2045
38	450	8.7758	6.9719	269.13	2.7794	4.6354	5.544	8.3234
39	480	9.3565	7.0165	281.45	2.8881	4.5921	5.544	8.4321
40	510	9.943	7.0622	293.66	2.9939	4.5506	5.544	8.5379
41	540	10.532	7.1087	305.19	3.0911	4.5098	5.544	8.6351
42	570	11.116	7.1554	316.25	3.1822	4.47	5.544	8.7262
43	600	11.698	7.2026	326.89	3.2677	4.428	5.544	8.8117
44	630	12.285	7.2508	337.63	3.3526	4.3812	5.544	8.8966
45	660	12.874	7.2998	347.58	3.4282	4.3368	5.544	8.9722
46	690	13.463	7.3495	357.84	3.5056	4.2901	5.544	9.0496
47	720	14.047	7.3994	367.48	3.5757	4.2381	5.544	9.1197
48	750	14.632	7.4501	376.32	3.6369	4.2264	5.544	9.1809
49	770.98	15.049	7.4867	383.16	3.6849	4.1663	5.544	9.2289

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

SO1 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in
Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

	Vertical	Total Vertical	Tota 1 Horizontal	Excess Pore	A	Effective Vertical	Effective Horizontal	Stress	Effective	
	Strain \%	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	$\begin{aligned} & \text { Stress } \\ & \text { tsf } \end{aligned}$	Pressure tsf	Parameter	Stress tsf	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	Ratio	$\operatorname{psf}_{\text {ts }}$	tsf
1	0.00	5.544	5.544	0	0.000	0.49798	0.49798	1.000	0.49798	0
2	0.09	5.7679	5.544	0.11333	0.506	0.60855	0.38465	1.582	0.4966	0.11195
3	0.19	5.8236	5.544	0.13962	0.499	0.63796	0.35836	1.780	0.49816	0.1398
4	0.28	5.8673	5.544	0.1548	0.479	0.66648	0.34317	1.942	0.50483	0.16165
5	0.38	5.9032	5.544	0.16298	0.454	0.6942	0.335	2.072	0.5146	0.1796
6	0.48	5.9331	5.544	0.16766	0.431	0.71943	0.33032	2.178	0.52488	0.19455
7	0.58	5.9618	5.544	0.16999	0.407	0.74574	0.32799	2.274	0.53686	0.20888
8	0.67	5.9945	5.544	0.17058	0.379	0.7779	0.3274	2.376	0.55265	0.22525
9	0.77	6.0207	5.544	0.16999	0.357	0.80466	0.32799	2.453	0.56632	0.23834
10	0.87	6.0486	5.544	0.16882	0.335	0.83372	0.32915	2.533	0.58144	0.25228
11	0.97	6.0764	5.544	0.16649	0.313	0.86389	0.33149	2.606	0.59769	0.2662
12	1.06	6.1042	5.544	0.16415	0.293	0.894	0.33383	2.678	0.61391	0.28009
13	1.16	6.1307	5.544	0.16181	0.276	0.92288	0.33616	2.745	0.62952	0.29336
14	1.36	6.1883	5.544	0.15539	0.241	0.98693	0.34259	2.881	0.66476	0.32217
15	1.55	6.2522	5.544	0.14721	0.208	1.059	0.35077	3.019	0.70486	0.35409
16	1.75	6.3187	5.544	0.13903	0.179	1.1337	0.35895	3.158	0.7463	0.38736
17	1.95	6.3855	5.544	0.1291	0.153	1.2104	0.36888	3.281	0.78965	0.42077
18	2.14	6.4556	5.544	0.11917	0.131	1.2904	0.37881	3.407	0.83462	0.45581
19	2.33	6.5283	5.544	0.10749	0.109	1.3748	0.39049	3.521	0.88265	0.49216
20	2.53	6.6019	5.544	0.094635	0.089	1.4612	0.40334	3.623	0.93229	0.52895
21	2.72	6.6729	5.544	0.081783	0.072	1.5451	0.4162	3.712	0.98063	0.56444
22	2.91	6.7453	5.544	0.066595	0.055	1.6327	0.43138	3.785	1.032	0.60064
23	3.11	6.8156	5.544	0.050238	0.040	1.7194	0.44774	3.840	1.0836	0.63582
24	3.30	6.8857	5.544	0.033297	0.025	1.8064	0.46468	3.887	1.1355	0.67085
25	3.50	6.9555	5.544	0.015772	0.011	1.8937	0.48221	3.927	1.1879	0.70573
26	3.69	7.0209	5.544	-0.0017525	-0.001	1.9766	0.49973	3.955	1.2382	0.73846
27	3.89	7.0872	5.544	-0.019862	-0.013	2.061	0.51784	3.980	1.2894	0.7716
28	4.08	7.1527	5.544	-0.037971	-0.024	2.1446	0.53595	4.002	1.3403	0.80433
29	4.28	7.2161	5.544	-0.055496	-0.033	2.2256	0.55347	4.021	1.3895	0.83606
30	4.47	7.2799	5.544	-0.073021	-0.042	2.3069	0.571	4.040	1.4389	0.86795
31	4.67	7.3366	5.544	-0.090546	-0.051	2.3811	0.58852	4.046	1.4848	0.89631
32	5.25	7.5036	5.544	-0.14078	-0.072	2.5983	0.63876	4.068	1.6186	0.97979
33	5.84	7.6631	5.544	-0.18927	-0.089	2.8063	0.68725	4.083	1.7468	1.0595
34	6.43	7.8132	5.544	-0.23425	-0.103	3.0014	0.73223	4.099	1.8668	1.1346
35	7.01	7.9454	5.544	-0.27865	-0.116	3.178	0.77663	4.092	1.9773	1.2007
36	7.60	8.0773	5.544	-0.32304	-0.128	3.3543	0.82102	4.086	2.0877	1.2667
37	8.19	8.2045	5.544	-0.36744	-0.138	3.5259	0.86542	4.074	2.1957	1.3302
38	8.78	8.3234	5.544	-0.41067	-0.148	3.688	0.90865	4.059	2.2983	1.3897
39	9.36	8.4321	5.544	-0.4539	-0.157	3.84	0.95187	4.034	2.3959	1.4441
40	9.94	8.5379	5.544	-0.49537	-0.165	3.9873	0.99335	4.014	2.4903	1.497
41	10.53	8.6351	5.544	-0.53626	-0.173	4.1254	1.0342	3.989	2.5798	1.5456
42	11.12	8.7262	5.544	-0.57599	-0.181	4.2562	1.074	3.963	2.6651	1.5911
43	11.70	8.8117	5.544	-0.61805	-0.189	4.3837	1.116	3.928	2.7499	1.6338
44	12.28	8.8966	5.544	-0.66478	-0.198	4.5154	1.1628	3.883	2.8391	1.6763
45	12.87	8.9722	5.544	-0.70918	-0.207	4.6354	1.2072	3.840	2.9213	1.7141
46	13.46	9.0496	5.544	-0.75591	-0.216	4.7595	1.2539	3.796	3.0067	1.7528
47	14.05	9.1197	5.544	-0.8079	-0.226	4.8816	1.3059	3.738	3.0937	1.7879
48	14.63	9.1809	5.544	-0.81958	-0.225	4.9544	1.3176	3.760	3.136	1.8184
49	15.05	9.2289	5.544	-0.87975	-0.239	5.0627	1.3777	3.675	3.2202	1.8425

Effective Vertical Horizont

	Vertical	Total Vertical	Tota 1 Horizontal	Excess Pore	A	Effective Vertical	effective Horizontal	Stress	Effective	
	Strain \%	Stress tsf	$\begin{gathered} \text { Stress } \\ \text { tsf } \end{gathered}$	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	$\underset{\text { tsf }}{p}$	tsf
1	0.00	5.544	5.544	0	0.000	0.49798	0.49798	1.000	0.49798	0
2	0.09	5.7679	5.544	0.11333	0.506	0.60855	0.38465	1.582	0.4966	0.11195
3	0.19	5.8236	5.544	0.13962	0.499	0.63796	0.35836	1.780	0.49816	0.1398
4	0.28	5.8673	5.544	0.1548	0.479	0.66648	0.34317	1.942	0.50483	0.16165
5	0.38	5.9032	5.544	0.16298	0.454	0.6942	0.335	2.072	0.5146	0.1796
6	0.48	5.9331	5.544	0.16766	0.431	0.71943	0.33032	2.178	0.52488	0.19455
7	0.58	5.9618	5.544	0.16999	0.407	0.74574	0.32799	2.274	0.53686	0.20888
8	0.67	5.9945	5.544	0.17058	0.379	0.7779	0.3274	2.376	0.55265	0.22525
9	0.77	6.0207	5.544	0.16999	0.357	0.80466	0.32799	2.453	0.56632	0.23834
10	0.87	6.0486	5.544	0.16882	0.335	0.83372	0.32915	2.533	0.58144	0.25228
11	0.97	6.0764	5.544	0.16649	0.313	0.86389	0.33149	2.606	0.59769	0.2662
12	1.06	6.1042	5.544	0.16415	0.293	0.894	0.33383	2.678	0.61391	0.28009
13	1.16	6.1307	5.544	0.16181	0.276	0.92288	0.33616	2.745	0.62952	0.29336
14	1.36	6.1883	5.544	0.15539	0.241	0.98693	0.34259	2.881	0.66476	0.32217
15	1.55	6.2522	5.544	0.14721	0.208	1.059	0.35077	3.019	0.70486	0.35409
16	1.75	6.3187	5.544	0.13903	0.179	1.1337	0.35895	3.158	0.7463	0.38736
17	1.95	6.3855	5.544	0.1291	0.153	1.2104	0.36888	3.281	0.78965	0.42077
18	2.14	6.4556	5.544	0.11917	0.131	1.2904	0.37881	3.407	0.83462	0.45581
19	2.33	6.5283	5.544	0.10749	0.109	1.3748	0.39049	3.521	0.88265	0.49216
20	2.53	6.6019	5.544	0.094635	0.089	1.4612	0.40334	3.623	0.93229	0.52895
21	2.72	6.6729	5.544	0.081783	0.072	1.5451	0.4162	3.712	0.98063	0.56444
22	2.91	6.7453	5.544	0.066595	0.055	1.6327	0.43138	3.785	1.032	0.60064
23	3.11	6.8156	5.544	0.050238	0.040	1.7194	0.44774	3.840	1.0836	0.63582
24	3.30	6.8857	5.544	0.033297	0.025	1.8064	0.46468	3.887	1.1355	0.67085
25	3.50	6.9555	5.544	0.015772	0.011	1.8937	0.48221	3.927	1.1879	0.70573
26	3.69	7.0209	5.544	-0.0017525	-0.001	1.9766	0.49973	3.955	1.2382	0.73846
27	3.89	7.0872	5.544	-0.019862	-0.013	2.061	0.51784	3.980	1.2894	0.7716
28	4.08	7.1527	5.544	-0.037971	-0.024	2.1446	0.53595	4.002	1.3403	0.80433
29	4.28	7.2161	5.544	-0.055496	-0.033	2.2256	0.55347	4.021	1.3895	0.83606
30	4.47	7.2799	5.544	-0.073021	-0.042	2.3069	0.571	4.040	1.4389	0.86795
31	4.67	7.3366	5.544	-0.090546	-0.051	2.3811	0.58852	4.046	1.4848	0.89631
32	5.25	7.5036	5.544	-0.14078	-0.072	2.5983	0.63876	4.068	1.6186	0.97979
33	5.84	7.6631	5.544	-0.18927	-0.089	2.8063	0.68725	4.083	1.7468	1.0595
34	6.43	7.8132	5.544	-0.23425	-0.103	3.0014	0.73223	4.099	1.8668	1.1346
35	7.01	7.9454	5.544	-0.27865	-0.116	3.178	0.77663	4.092	1.9773	1.2007
36	7.60	8.0773	5.544	-0.32304	-0.128	3.3543	0.82102	4.086	2.0877	1.2667
37	8.19	8.2045	5.544	-0.36744	-0.138	3.5259	0.86542	4.074	2.1957	1.3302
38	8.78	8.3234	5.544	-0.41067	-0.148	3.688	0.90865	4.059	2.2983	1.3897
39	9.36	8.4321	5.544	-0.4539	-0.157	3.84	0.95187	4.034	2.3959	1.4441
40	9.94	8.5379	5.544	-0.49537	-0.165	3.9873	0.99335	4.014	2.4903	1.497
41	10.53	8.6351	5.544	-0.53626	-0.173	4.1254	1.0342	3.989	2.5798	1.5456
42	11.12	8.7262	5.544	-0.57599	-0.181	4.2562	1.074	3.963	2.6651	1.5911
43	11.70	8.8117	5.544	-0.61805	-0.189	4.3837	1.116	3.928	2.7499	1.6338
44	12.28	8.8966	5.544	-0.66478	-0.198	4.5154	1.1628	3.883	2.8391	1.6763
45	12.87	8.9722	5.544	-0.70918	-0.207	4.6354	1.2072	3.840	2.9213	1.7141
46	13.46	9.0496	5.544	-0.75591	-0.216	4.7595	1.2539	3.796	3.0067	1.7528
47	14.05	9.1197	5.544	-0.8079	-0.226	4.8816	1.3059	3.738	3.0937	1.7879
48	14.63	9.1809	5.544	-0.81958	-0.225	4.9544	1.3176	3.760	3.136	1.8184
49	15.05	9.2289	5.544	-0.87975	-0.239	5.0627	1.3777	3.675	3.2202	1.8425

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.96 in
 Specimen Volume: $37.74 \mathrm{in} \wedge 3$

Liquid Limit: 27
Time
Vertical
Strain
$\%$
0
5.0001
10
15
20
25 30.001 35.001
40.001 45.001
50.001 50.001
60.001 70.001
80.002 90

100
110
0
0.088226
Corrected
area
in^2

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Pore	Horizonta1	Vertical
Pressure	Stress	Stress
tsf	tsf	tsf
5.0443	6.0408	6.0408
5.1902	6.0408	6.5251
5.2828	6.0408	6.6978
5.3416	6.0408	6.8014
5.381	6.0408	6.88
5.4104	6.0408	6.9452
5.4304	6.0408	7.0061
5.4431	6.0408	7.0628
5.4526	6.0408	7.1227
5.4565	6.0408	7.1799
5.4587	6.0408	7.2395
5.4581	6.0408	7.299
5.4554	6.0408	7.3608
5.4448	6.0408	7.4766
5.4271	6.0408	7.6041
5.406	6.0408	7.7328
5.3805	6.0408	7.8633
5.3527	6.0408	7.9933
5.3222	6.0408	8.1251
5.2895	6.0408	8.258
5.2534	6.0408	8.3871
5.219	6.0408	8.5155
5.1813	6.0408	8.6426
5.1441	6.0408	8.7675
5.107	6.0408	8.8869
5.0693	6.0408	9.0019
5.0321	6.0408	9.114
4.9949	6.0408	9.2232
4.9583	6.0408	9.3264
4.9222	6.0408	9.4276
4.8873	6.0408	9.5259
4.7863	6.0408	9.7987
4.6926	6.0408	10.052
4.6066	6.0408	10.279
4.5289	6.0408	10.496
4.454	6.0408	10.702
4.3803	6.0408	10.914
4.3087	6.0408	11.12
4.2377	6.0408	11.333
4.1678	6.0408	11.545
4.1007	6.0408	11.733
4.0319	6.0408	11.935
3.9659	6.0408	12.117
3.9004	6.0408	12.312
3.8366	6.0408	12.503
3.7706	6.0408	12.666
3.7068	6.0408	12.839
3.543	6.0408	13.006
3.5959	6.0408	13.132

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

```
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
```

Specimen Height: 5.96 in
Specimen Area: $6.33 \mathrm{in} \mathrm{\wedge 2}$
Specimen Volume: 37.74 in^3

Piston Area: 0.00 in^2
Piston Friction: 0.00 lb
Piston Weight: 0.00 lb
Plastic Limit: 11

Liquid Limit: 27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
\cdots

Effective
Effective Vertical Horizontal Stress Effective Filter Strip Correction: 0.00 ts
Membrane Correction: 0.00 ib/in
Correction Type: Uniform

Measured Specific Gravity: 2.65

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

soil Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

```
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
```

Specimen Height: 5.71 in Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27
Time
min
0
5.0038
10.004
Vertical
Strain
$\%$
Corrected
Area
in^2

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Pore	Horizontal	Vertical
Pressure	Stress	Stress
tsf	tsf	tsf
5.0958	6.5376	6.5376
5.2246	6.5376	7.0504
5.3665	6.5376	7.2455
5.4806	6.5376	7.3663
5.5686	6.5376	7.4524
5.636	6.5376	7.5156
5.6898	6.5376	7.5616
5.7316	6.5376	7.5985
5.7648	6.5376	7.6449
5.7909	6.5376	7.6739
5.8104	6.5376	7.7213
5.8262	6.5376	7.7526
5.8387	6.5376	7.7926
5.8539	6.5376	7.8543
5.8583	6.5376	7.9274
5.855	6.5376	7.9932
5.8463	6.5376	8.0716
5.8338	6.5376	8.1484
5.8186	6.5376	8.2227
5.7979	6.5376	8.2931
5.7762	6.5376	8.3741
5.7523	6.5376	8.4769
5.7278	6.5376	8.5521
5.7018	6.5376	8.6477
5.6735	6.5376	8.7263
5.6442	6.5376	8.8033
5.6148	6.5376	8.8828
5.5849	6.5376	8.9849
5.5534	6.5376	9.0877
5.5208	6.5376	9.1746
5.4876	6.5376	9.2583
5.3849	6.5376	9.5364
5.2746	6.5376	9.8297
5.1589	6.5376	10.121
5.0409	6.5376	10.419
4.9187	6.5376	10.72
4.7937	6.5376	11.033
4.6665	6.5376	11.349
4.535	6.5376	11.656
4.4035	6.5376	11.951
4.2698	6.5376	12.271
4.1361	6.5376	12.587
4.0008	6.5376	12.896
3.8687	6.5376	13.213
3.7378	6.5376	13.498
3.6073	6.5376	13.775
3.4807	6.5376	14.052
3.3563	6.5376	14.327
3.2617	6.5376	14.514

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in
Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27
1
1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
19
20
21
22
23
24
25
26
27
28
2

	Total	Total
Vertical	Vertical Strain	Horizontal
$\%$	tsf	Stress
0.00	6.5376	tsf
0.07	7.0504	6.5376
0.17	7.2455	6.5376
0.27	7.3663	6.5376
0.37	7.4524	6.5376
0.47	7.5156	6.5376
0.58	7.5616	6.5376
0.67	7.5985	6.5376
0.78	7.6449	6.5376
0.88	7.6739	6.5376
0.98	7.7213	6.5376
1.08	7.7526	6.5376
1.18	7.7926	6.5376
1.38	7.8543	6.5376
1.59	7.9274	6.5376
1.79	7.9932	6.5376
1.99	8.0716	6.5376
2.20	8.1484	6.5376
2.40	8.2227	6.5376
2.60	8.2931	6.5376
2.81	8.3741	6.5376
3.01	8.4769	6.5376
3.21	8.5521	6.5376
3.41	8.6477	6.5376
3.61	8.7263	6.5376
3.81	8.8033	6.5376
4.02	8.8828	6.5376
4.22	8.9849	6.5376
4.42	9.0877	6.5376
4.62	9.1746	6.5376
4.82	9.2583	6.5376
5.43	9.5364	6.5376
6.04	9.8297	6.5376
6.64	10.121	6.5376
7.24	10.419	6.5376
7.86	10.72	6.5376
8.46	11.033	6.5376
9.06	11.349	6.5376
9.67	11.656	6.5376
10.28	11.951	6.5376
10.89	12.271	6.5376
11.48	12.587	6.5376
12.08	12.896	6.5376
12.70	13.213	6.5376
13.30	13.498	6.5376
13.90	13.775	6.5376
14.50	14.052	6.5376
15.12	14.327	6.5376
15.61	14.514	6.5376

Excess	
Pore	A
Pressure	Parameter
tsf	
0.12879	0.000
0.27063	0.251
0.38475	0.382
0.47279	0.464
0.54018	0.517
0.59398	0.580
0.63582	0.599
0.66897	0.604
0.69506	0.612
0.71462	0.604
0.73038	0.601
0.74288	0.592
0.7581	0.576
0.76244	0.549
0.75918	0.522
0.75049	0.489
0.73799	0.458
0.72277	0.429
0.70212	0.400
0.68039	0.370
0.65647	0.339
0.63202	0.314
0.60593	0.287
0.57768	0.264
0.54833	0.242
0.51898	0.221
0.48909	0.200
0.45758	0.179
0.42497	0.161
0.39182	0.144
0.28911	0.096
0.17879	0.054
0.063039	0.018
-0.054887	-0.014
-0.17716	-0.042
-0.30215	-0.067
-0.42932	-0.089
-0.56083	-0.110
-0.69234	-0.128
-0.82603	-0.144
-0.95971	-0.159
-1.095	-0.172
-1.2271	-0.184
-1.3581	-0.195
-1.4885	-0.206
-1.6151	-0.215
-1.7395	
-1.8341	

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Effective Effective
Vertical Horizontal Stress Effective
$\begin{array}{rrr}\text { Horizontal } & \text { Stress } & \text { Effectiv } \\ \text { Stress } & \text { Ratio } & \text { ts }\end{array}$
$1.4418 \quad 1.000 \quad 1.4418$
1.31
1.
$\begin{array}{lll}1.057 & 1.604 & 1.5251 \\ 1.784 & 1.4714\end{array}$
$\begin{array}{lll}0.96898 & 1.944 & 1.426\end{array}$
$\begin{array}{lll}0.9016 & 2.085 & 1.3906 \\ 0.8478 & 2.208 & 1.3598\end{array}$
$0.80595 \quad 2.316 \quad 1.3364$
$\begin{array}{lll}0.87728 & 2.433 & 1.3364 \\ 0.77672 & 2.522 & 1.3149\end{array}$
$\begin{array}{lll}0.74672 & 2.522 & 1.3149 \\ 0.72715 & 2.628 & 1.319\end{array}$
$\begin{array}{lll}0.72715 & 2.708 & 1.319 \\ 0.71139 & 2.708 & 1.3189 \\ 0.69889 & 2.796 & 1.3264\end{array}$
$\begin{array}{lll}0.69889 & 2.796 & 1.3264 \\ 0.68368 & 2.926 & 1.342 \\ 0.67933 & 3.046 & 1.3742\end{array}$
$\begin{array}{lll}0.67933 & 3.046 & 1.3742 \\ 0.68259 & 3.132 & 1.4104\end{array}$
$\begin{array}{lll}0.68259 & 3.132 & 1.410 \\ 0.69129 & 3.219 & 1.458\end{array}$
$\begin{array}{rrr}0.70379 & 3.289 & 1.5092 \\ 0.719 & 3.344 & 1.5616\end{array}$
$\begin{array}{lll}0.73965 & 3.373 & 1.6174\end{array}$
$\begin{array}{rrr}0.76139 & 3.412 & 1.6797 \\ 0.7853 & 3.469 & 1.7549\end{array}$
$\begin{array}{lll}0.80976 & 3.488 & 1.817\end{array}$
$0.83584 \quad 3.524 \quad 1.8909$
$\begin{array}{lll}0.8641 & 3.533 & 1.9584 \\ 0.89345 & 3.536 & 2.0263 \\ 0.92279 & 3.541 & 2.0954\end{array}$
$\begin{array}{lll}0.89279 & 3.541 & 2.0954 \\ 0.925268 & 3.569 & 2.1763\end{array}$
0.95
0.95
0.98
1.01
1.01
1.15
1.1
1.26
1.37
1.49

1. 1.6
1.7
1.8
1.87
2.00
2.1
2.4
2.5
2.6
2.79
2.9303
3.0569
3.1813
3.1813
3.2759

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-13	Tested By: BCM	Checked By: WPQ
Sample No.: S-13	Test Date: $12 / 2 / 11$	Depth: $24.0^{\prime}-26.0^{\prime}$
Test No.: B-4-1 S-13	Sample Type: 3 " ST	Elevation: -----
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Project: COLETO CREEK FACILITY
Sample No.: $\mathrm{S}-13$
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 2 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.06 in
Specimen Area: 5.82 in^2
Specimen Volume: 35.25 in^3
```

Liquid Limit: 40
Time
min

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.66
0
5.0041
10
15
20
25
30

35.001 40.001

 45.001 50.00155.001
60.001 60.001
70.001
80.001 80.
90.
Vertical
Strain
$\%$

Corrected	Deviator	Deviator
Area	Load	Stress
in^2	$1 b$	tsf

Pore
Pressure
tsf
5.0425
$\begin{array}{rr}\text { rizontal } & \text { Verti } \\ \text { Stress } \\ \text { tsf } & \text { Str } \\ 5.7888 & \\ 5.7888 & 5.788 \\ 5.7888\end{array}$

5.7888	5.7
5.7888	5.8
5.7888	5.9
5.7888	5
5.7888	5
5.7888	6
5.7888	6
5.7888	6
5.7888	6
5.7888	6
5.7888	6
5.7888	6
5.7888	
5.7888	
5.7888	

5.7888
5.8741
5.9294
5.9678
5.9977
6.0211
6.0419
6.0594
6.0763
6.0905
6.1035
6.1157
6.128
6.15
6.17
6.1874
6.2041
6.2188

$$
\begin{aligned}
& 6.2041 \\
& 6.2188 \\
& 6.2329
\end{aligned}
$$

$$
\begin{aligned}
& 6.2457 \\
& 6.2585 \\
& 6 \quad 77
\end{aligned}
$$

$$
\begin{array}{r}
6.2585 \\
6.27 \\
6
\end{array}
$$

$$
\begin{aligned}
& 6.2808 \\
& 6.2916
\end{aligned}
$$

$$
\begin{aligned}
& 6.2916 \\
& 6.3024
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6.3044 } \\
& 6.3125 \\
& 6.3201
\end{aligned}
$$

$$
\begin{aligned}
& 6.3201 \\
& 6.3289 \\
& 6.3378 \\
& 6.3485 \\
& 6.3838
\end{aligned}
$$

$$
\begin{array}{r}
0.3483 \\
6.3838 \\
6.4069 \\
6.43
\end{array}
$$

$$
\begin{array}{r}
6.43 \\
6.4498
\end{array}
$$

$$
\begin{array}{rrr}
5.453 & 5.7888 & 6 \\
5.4506 & 5.7888 & 6 \\
5.4465 & 5.7888 &
\end{array}
$$

$$
\begin{array}{lll}
5.4506 & 5.7888 & 6 \\
5.4465 & 5.7888 & \\
5.4436 & 5.7888 & 6 \\
5.4407 & 5.7888 & 6
\end{array}
$$

$$
\begin{array}{r}
0.4490 \\
6.4702 \\
6.4899 \\
6 \quad 507
\end{array}
$$

2.0

2.20
2.3
2.31
2.4
2.5
in in
2.6
2.79
6π
nõ
nin
3.137
3.25
3.365
3.48
3.594
3.708
3.8238
3.9
4.1
4.2
4.4
4.5
4.7
4.8701
5.106
5.338
5.455
5.57
5.79
5.798
5.913
6.9136
6.0275 6.1428
6.2581
6.372
0.4801
6.6041

80	1740	6.7236	6.2389	109.93	1.2686	5.2185	5.7888	7.0574
81	1770	6.8418	6.2468	110.98	1.2791	5.2127	5.7888	7.0679
82	1800	6.9585	6.2547	111.82	1.2872	5.2057	5.7888	7.076
83	1830	7.0767	6.2626	112.56	1.2941	5.1998	5.7888	7.0829
84	1860	7.1948	6.2706	113.45	1.3027	5.1951	5.7888	7.0915
85	1890	7.3144	6.2787	114.24	1.3101	5.1887	5.7888	7.0989
86	1920	7.4326	6.2867	114.98	1.3168	5.184	5.7888	7.1056
87	1950	7.5493	6.2946	115.82	1.3248	5.1776	5.7888	7.1136
88	1980	7.6646	6.3025	116.61	1.3322	5.1723	5.7888	7.121
89	2010	7.7814	6.3105	117.24	1.3377	5.1665	5.7888	7.1265
90	2040	7.8953	6.3183	118.03	1.3451	5.1612	5.7888	7.1339
91	2070	8.0077	6.326	118.72	1.3512	5.1548	5.7888	7.14
92	2100	8.1216	6.3339	119.56	1.3591	5.1501	5.7888	7.1479
93	2130	8.2369	6.3418	120.35	1.3664	5.1443	5.7888	7.1552
94	2160	8.3522	6.3498	121.09	1.373	5.139	5.7888	7.1618
95	2190	8.4647	6.3576	121.77	1.3791	5.1326	5.7888	7.1679
96	2220	8.58	6.3656	122.56	1.3863	5.1279	5.7888	7.1751
97	2250	8.6939	6.3735	123.14	1.3911	5.1238	5.7888	7.1799
98	2280	8.8092	6.3816	124.14	1.4006	5.1185	5.7888	7.1894
99	2310	8.9259	6.3898	124.77	1.4059	5.1127	5.7888	7.1947
100	2340	9.0441	6.3981	125.3	1.41	5.1074	5.7888	7.1988
101	2370	9.1608	6.4063	126.04	1.4165	5.1022	5.7888	7.2053
102	2400	9.279	6.4147	126.67	1.4218	5.0981	5.7888	7.2106
103	2430	9.3957	6.4229	127.25	1.4264	5.0922	5.7888	7.2152
104	2460	9.5139	6.4313	127.83	1.4311	5.0881	5.7888	7.2199
105	2490	9.632	6.4397	128.41	1.4357	5.0829	5.7888	7.2245
106	2520	9.7516	6.4482	129.25	1.4432	5.0782	5.7888	7.232
107	2550	9.8698	6.4567	129.88	1.4483	5.0735	5.7888	7.2371
108	2580	9.9837	6.4649	130.35	1.4518	5.0688	5.7888	7.2406
109	2610	10.102	6.4734	131.04	1.4575	5.0648	5.7888	7.2463
110	2640	10.219	6.4818	131.46	1.4603	5.0601	5.7888	7.2491
111	2670	10.332	6.49	132.09	1.4654	5.056	5.7888	7.2542
112	2700	10.448	6.4984	132.72	1.4705	5.0525	5.7888	7.2593
113	2730	10.562	6.5066	133.46	1.4768	5.046	5.7888	7.2656
114	2760	10.677	6.515	134.2	1.4831	5.0414	5.7888	7.2719
115	2790	10.792	6.5235	134.46	1.484	5.0373	5.7888	7.2728
116	2820	10.909	6.532	134.88	1.4867	5.0338	5.7888	7.2755
117	2850	11.024	6.5405	135.41	1.4906	5.0297	5.7888	7.2794
118	2880	11.14	6.549	135.99	1.4951	5.0268	5.7888	7.2839
119	2910	11.256	6.5576	136.67	1.5006	5.0209	5.7888	7.2894
120	2940	11.373	6.5662	137.2	1.5044	5.0162	5.7888	7.2932
121	2970	11.491	6.575	137.88	1.5099	5.0127	5.7888	7.2987
122	3000	11.609	6.5838	138.25	1.5119	5.0098	5.7888	7.3007
123	3030	11.73	6.5928	138.83	1.5162	5.0063	5.7888	7.305
124	3060	11.847	6.6015	139.57	1.5222	5.0016	5.7888	7.311
125	3090	11.965	6.6104	139.94	1.5242	4.9981	5.7888	7.313
126	3120	12.083	6.6193	140.51	1.5284	4.9934	5.7888	7.3172
127	3150	12.2	6.6281	141.15	1.5333	4.9911	5.7888	7.3221
128	3180	12.317	6.6369	141.62	1.5364	4.9841	5.7888	7.3252
129	3210	12.432	6.6456	141.94	1.5378	4.9829	5.7888	7.3266
130	3240	12.55	6.6546	142.67	1.5437	4.98	5.7888	7.3325
131	3270	12.666	6.6634	143.52	1.5507	4.9759	5.7888	7.3395
132	3300	12.78	6.6721	144.09	1.555	4.9724	5.7888	7.3438
133	3330	12.893	6.6808	144.57	1.558	4.9689	5.7888	7.3468
134	3360	13.009	6.6897	144.99	1.5605	4.966	5.7888	7.3493
135	3390	13.124	6.6986	145.36	1.5624	4.9624	5.7888	7.3512
136	3420	13.238	6.7074	145.83	1.5654	4.9595	5.7888	7.3542
137	3450	13.355	6.7164	146.2	1.5673	4.9554	5.7888	7.3561
138	3480	13.471	6.7255	146.89	1.5725	4.9519	5.7888	7.3613
139	3510	13.588	6.7345	147.46	1.5766	4.9496	5.7888	7.3654
140	3540	13.706	6.7438	147.78	1.5778	4.9455	5.7888	7.3666
141	3570	13.823	6.7529	148.1	1.579	4.942	5.7888	7.3678
142	3600	13.938	6.7619	148.68	1.5831	4.9385	5.7888	7.3719
143	3630	14.058	6.7714	149.41	1.5887	4.9355	5.7888	7.3775
144	3660	14.175	6.7806	149.89	1.5916	4.9338	5.7888	7.3804
145	3690	14.291	6.7898	150.25	1.5933	4.9303	5.7888	7.3821
146	3720	14.411	6.7993	150.25	1.5911	4.9279	5.7888	7.3799
147	3750	14.529	6.8087	150.52	1.5917	4.9256	5.7888	7.3805
148	3780	14.645	6.8179	151.31	1.5979	4.9227	5.7888	7.3867
149	3810	14.76	6.8271	152.36	1.6068	4.9192	5.7888	7.3956
150	3840	14.875	6.8364	152.73	1.6085	4.9168	5.7888	7.3973
151	3870	14.99	6.8456	153.04	1.6097	4.9133	5.7888	7.3985
152	3900	15.104	6.8548	153.57	1.613	4.911	5.7888	7.4018
153	3930	15.218	6.864	153.94	1.6147	4.9092	5.7888	7.4035

Project: COLETO CREEK FACILITY
Sample No.: S-13
Sample No.: S-13
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 2 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: -----

Soi 1 Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.06 in Specimen Area: 5.82 in^2 Specimen Volume: 35.25 in^3

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.007 lb

Fi7ter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.66

	Vertical	Total Vertica1	$\begin{array}{r} \text { Total } \\ \text { Horizontal } \end{array}$	Excess Pore	A	Effective Vertical	Effective Horizontal	Stress	Effective	
	Strain \%	Stress tsf	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	$\mathrm{ps}_{\mathrm{ts}}^{\mathrm{p}}$	$\begin{gathered} \mathrm{q} \\ \mathrm{f} \end{gathered}$
1	0.00	5.7888	5.7888	0	0.000	0.74626	0.74626	1.000	0.74626	0
2	0.02	5.8741	5.7888	0.19936	2.337	0.63221	0.5469	1.156	0.58956	0.042657
3	0.04	5.9294	5.7888	0.23853	1.696	0.64837	0.50773	1.277	0.57805	0.070321
4	0.06	5.9678	5.7888	0.26543	1.483	0.65986	0.48083	1.372	0.57035	0.089512
5	0.08	5.9977	5.7888	0.28472	1.363	0.67047	0.46154	1.453	0.56601	0.10447
6	0.09	6.0211	5.7888	0.29992	1.291	0.67866	0.44634	1.520	0.5625	0.11616
7	0.11	6.0419	5.7888	0.31278	1.236	0.68657	0.43348	1.584	0.56002	0.12655
8	0.13	6.0594	5.7888	0.32331	1.195	0.69356	0.42295	1.640	0.55826	0.1353
9	0.15	6.0763	5.7888	0.33208	1.155	0.70165	0.41418	1.694	0.55792	0.14373
10	0.17	6.0905	5.7888	0.34026	1.128	0.70772	0.406	1.743	0.55686	0.15086
11	0.19	6.1035	5.7888	0.34669	1.102	0.71423	0.39957	1.787	0.5569	0.15733
12	0.21	6.1157	5.7888	0.35254	1.078	0.72067	0.39372	1.830	0.5572	0.16347
13	0.23	6.128	5.7888	0.3578	1.055	0.72769	0.38846	1.873	0.55808	0.16962
14	0.27	6.15	5.7888	0.36716	1.017	0.7403	0.37911	1.953	0.5597	0.1806
15	0.31	6.17	5.7888	0.37476	0.983	0.75268	0.37151	2.026	0.56209	0.19059
16	0.35	6.1874	5.7888	0.3806	0.955	0.76421	0.36566	2.090	0.56494	0.19928
17	0.39	6.2041	5.7888	0.38586	0.929	0.77566	0.3604	2.152	0.56803	0.20763
18	0.42	6.2188	5.7888	0.39113	0.910	0.78517	0.35514	2.211	0.57015	0.21501
19	0.46	6.2329	5.7888	0.39463	0.889	0.79576	0.35163	2.263	0.57369	0.22206
20	0.50	6.2457	5.7888	0.39814	0.871	0.80503	0.34812	2.313	0.57658	0.22846
21	0.54	6.2585	5.7888	0.40106	0.854	0.81488	0.3452	2.361	0.58004	0.23484
22	0.58	6.27	5.7888	0.40282	0.837	0.8246	0.34344	2.401	0.58402	0.24058
23	0.62	6.2808	5.7888	0.40516	0.824	0.83308	0.3411	2.442	0.58709	0.24599
24	0.66	6.2916	5.7888	0.40691	0.809	0.84214	0.33935	2.482	0.59075	0.25139
25	0.69	6.3024	5.7888	0.40866	0.796	0.85119	0.3376	2.521	0.59439	0.2568
26	0.73	6.3125	5.7888	0.41042	0.784	0.85957	0.33584	2.559	0.59771	0.26187
27	0.77	6.3201	5.7888	0.41159	0.775	0.86596	0.33467	2.587	0.60032	0.26565
28	0.81	6.3289	5.7888	0.41276	0.764	0.87363	0.3335	2.620	0.60357	0.27006
29	0.85	6.3378	5.7888	0.41393	0.754	0.8813	0.33233	2.652	0.60682	0.27448
30	0.89	6.3485	5.7888	0.41393	0.740	0.89206	0.33233	2.684	0.6122	0.27986
31	1.04	6.3838	5.7888	0.4151	0.698	0.92612	0.33117	2.797	0.62864	0.29748
32	1.16	6.4069	5.7888	0.4151	0.672	0.94925	0.33117	2.866	0.64021	0.30904
33	1.27	. 6.43	5.7888	0.41393	0.646	0.97349	0.33233	2.929	0.65291	0.32058
34	1.39	6.4498	5.7888	0.41276	0.624	0.99447	0.3335	2.982	0.66398	0.33048
35	1.50	6.4702	5.7888	0.41042	0.602	1.0172	0.33584	3.029	0.67653	0.34069
36	1.62	6.4899	5.7888	0.40808	0.582	1.0393	0.33818	3.073	0.68872	0.35054
37	1.73	6.507	5.7888	0.40399	0.563	1.0604	0.34227	3.098	0.70136	0.35909
38	1.85	6.5259	5.7888	0.40106	0.544	1.0823	0.3452	3.135	0.71377	0.36857
39	1.97	6.5449	5.7888	0.39814	0.527	1.1042	0.34812	3.172	0.72615	0.37803
40	2.08	6.5637	5.7888	0.39405	0.509	1.1271	0.35221	3.200	0.73967	0.38746
41	2.20	6.5806	5.7888	0.39054	0.493	1.1475	0.35572	3.226	0.75163	0.39591
42	2.32	6.5969	5.7888	0.38586	0.478	1.1685	0.3604	3.242	0.76443	0.40403
43	2.44	6.6143	5.7888	0.3806	0.461	1.1912	0.36566	3.258	0.77842	0.41276
44	2.55	6.6311	5.7888	0.37709	0.448	1.2115	0.36917	3.282	0.79031	0.42114
45	2.67	6.6459	5.7888	0.37183	0.434	1.2315	0.37443	3.289	0.80299	0.42856
46	2.79	6.6613	5.7888	0.36657	0.420	1.2522	0.37969	3.298	0.81596	0.43627
47	2.91	6.6767	5.7888	0.36131	0.407	1.2729	0.38495	3.307	0.82893	0.44397
48	3.02	6.6921	5.7888	0.35663	0.395	1.2929	0.38963	3.318	0.84128	0.45165
49	3.14	6.7043	5.7888	0.35137	0.384	1.3104	0.39489	3.318	0.85263	0.45774
50	3.25	6.719	5.7888	0.34611	0.372	1.3303	0.40015	3.324	0.86523	0.46508
51	3.37	6.733	5.7888	0.34026	0.360	1.3502	0.406	3.326	0.87808	0.47208
52	3.48	6.7476	5.7888	0.33558	0.350	1.3694	0.41068	3.335	0.89006	0.47938
53	3.59	6.7609	5.7888	0.33032	0.340	1.388	0.41594	3.337	0.90197	0.48603
54	3.71	6.7735	5.7888	0.32389	0.329	1.4071	0.42237	3.331	0.91473	0.49236
55	3.82	6.7886	5.7888	0.3198	0.320	1.4263	0.42646	3.344	0.92638	0.49991
56	3.94	6.8018	5.7888	0.31337	0.309	1.4459	0.43289	3.340	0.93941	0.50652
57	4.05	6.815	5.7888	0.30928	0.301	1.4632	0.43699	3.348	0.95008	0.5131
58	4.17	6.8256	5.7888	0.30343	0.293	1.4797	0.44283	3.341	0.96124	0.51841
59	4.29	6.8387	5.7888	0.29875	0.285	1.4974	0.44751	3.346	0.97246	0.52495
60	4.40	6.8492	5.7888	0.29349	0.277	1.5132	0.45277	3.342	0.983	0.53022
61	4.52	6.8616	5.7888	0.28823	0.269	1.5309	0.45803	3.342	0.99445	0.53642
62	4.64	6.874	5.7888	0.2818	0.260	1.5497	0.46446	3.336	1.0071	0.5426
63	4.75	6.8863	5.7888	0.27595	0.251	1.5678	0.47031	3.334	1.0191	0.54876
64	4.87	6.8973	5.7888	0.2701	0.244	1.5847	0.47616	3.328	1.0304	0.55427
65	4.99	6.9083	5.7888	0.26309	0.235	1.6027	0.48317	3.317	1.0429	0.55977
66	5.11	6.9218	5.7888	0.25841	0.228	1.6208	0.48785	3.322	1.0543	0.56649
67	5.22	6.9315	5.7888	0.25198	0.221	1.637	0.49428	3.312	1.0656	0.57135
68	5.34	6.9431	5.7888	0.24555	0.213	1.655	0.50071	3.305	1.0778	0.57713
69	5.46	6.9533	5.7888	0.24087	0.207	1.6699	0.50539	3.304	1.0877	0.58227
70	5.57	6.9636	5.7888	0.23444	0.200	1.6866	0.51182	3.295	1.0992	0.5874
71	5.68	6.9745	5.7888	0.22743	0.192	1.7045	0.51884	3.285	1.1117	0.59285
72	5.80	6.9829	5.7888	0.22333	0.187	1.717	0.52293	3.283	1.12	0.59703
73	5.91	6.9949	5.7888	0.21749	0.180	1.7349	0.52877	3.281	1.1318	0.60304
74	6.03	7.002	5.7888	0.20989	0.173	1.7496	0.53637	3.262	1.143	0.6066
75	6.14	7.0115	5.7888	0.20521	0.168	1.7638	0.54105	3.260	1.1524	0.61135
76	6.26	7.0222	5.7888	0.19878	0.161	1.7809	0.54748	3.253	1.1642	0.61671
77	6.37	7.0311	5.7888	0.19293	0.155	1.7956	0.55333	3.245	1.1745	0.62114
78	6.49	7.0381	5.7888	0.18767	0.150	1.8079	0.55859	3.236	1.1832	0.62463

6.72	7.0574	5.7888
6.84	7.0679	5.7888
6.96	7.076	5.7888
7.08	7.0829	5.7888
7.19	7.0915	5.7888
7.31	7.0989	5.7888
7.43	7.1056	5.7888
7.55	7.1136	5.7888
7.66	7.121	5.7888
7.78	7.1265	5.7888
7.90	7.1339	5.7888
8.01	7.14	5.7888
8.12	7.1479	5.7888
8.24	7.1552	5.7888
8.35	7.1618	5.7888
8.46	7.1679	5.7888
8.58	7.1751	5.7888
8.69	7.1799	5.7888
8.81	7.1894	5.7888
8.93	7.1947	5.7888
9.04	7.1988	5.7888
9.16	7.2053	5.7888
9.28	7.2106	5.7888
9.40	7.2152	5.7888
9.51	7.2199	5.7888
9.63	7.2245	5.7888
9.75	7.232	5.7888
9.87	7.2371	5.7888
9.98	7.2406	5.7888
10.10	7.2463	5.7888
10.22	7.2491	5.7888
10.33	7.2542	5.7888
10.45	7.2593	5.7888
10.56	7.2656	5.7888
10.68	7.2719	5.7888
10.79	7.2728	5.7888
10.91	7.2755	5.7888
11.02	7.2794	5.7888
11.14	7.2839	5.7888
11.26	7.2894	5.7888
11.37	7.2932	5.7888
11.49	7.2987	5.7888
11.61	7.3007	5.7888
11.73	7.305	5.7888
11.85	7.311	5.7888
11.97	7.313	5.7888
12.08	7.3172	5.7888
12.20	7.3221	5.7888
12.32	7.3252	5.7888
12.43	7.3266	5.7888
12.55	7.3325	5.7888
12.67	7.3395	5.7888
12.78	7.3438	5.7888
12.89	7.3468	5.7888
13.01	7.3493	5.7888
13.12	7.3512	5.7888
13.24	7.3542	5.7888
13.35	7.3561	5.7888
13.47	7.3613	5.7888
13.59	7.3654	5.7888
13.71	7.3666	5.7888
13.82	7.3678	5.7888
13.94	7.3719	5.7888
14.06	7.3775	5.7888
14.17	7.3804	5.7888
14.29	7.3821	5.7888
14.41	7.3799	5.7888
14.53	7.3805	5.7888
14.64	7.3867	5.7888
14.76	7.3956	5.7888
14.88	7.3973	5.7888
14.99	7.3985	5.7888
15.10	7.4018	5.7888
15.22	7.4035	5.7888

0.18124
0.17598

0.144	1.8231	0.56502
0.139	1.8389	0.57028
0.133	1.8553	0.57613
0.127	1.8704	0.58315
0.122	1.8831	0.58899
0.117	1.8964	0.59367
0.112	1.9102	0.6001
0.107	1.9216	0.60478
0.102	1.936	0.61121
0.097	1.9487	0.61647
0.093	1.96	0.62232
0.088	1.9726	0.62758
0.083	1.9852	0.63401
0.079	1.9978	0.63869
0.074	2.0109	0.64453
0.070	2.0228	0.6498
0.065	2.0353	0.65623
0.062	2.0472	0.6609
0.058	2.0561	0.665
0.054	2.0709	0.67026
0.050	2.082	0.6761
0.046	2.0914	0.68137
0.042	2.1031	0.68663
0.039	2.1125	0.69072
0.035	2.123	0.69657
0.032	2.1317	0.70066
0.028	2.1416	0.70592
0.025	2.1538	0.7106
0.021	2.1636	0.71528
0.018	2.1717	0.71995
0.015	2.1815	0.72404
0.012	2.189	0.72872
0.009	2.1982	0.73281
0.007	2.2069	0.73632
0.002	2.2196	0.74275
-0.001	2.2305	0.74743
-0.004	2.2356	0.75152
-0.006	2.2418	0.75503
-0.009	2.2497	0.75912
-0.011	2.2571	0.76205
-0.014	2.2685	0.76789
-0.017	2.277	0.77257
-0.020	2.286	0.77608
-0.022	2.2909	0.779
-0.024	2.2987	0.78251
-0.027	2.3094	0.78719
-0.029	2.3149	0.79069
-0.032	2.3238	0.79537
-0.034	2.331	0.79771
-0.038	2.3411	0.80473
-0.039	2.3437	0.80589
-0.041	2.3525	0.80882
-0.043	2.3636	0.81291
-0.045	2.3714	0.81642
-0.047	2.378	0.81993
-0.049	2.3834	0.82285
-0.051	2.3888	0.82636
-0.053	2.3947	0.82928
-0.056	2.4006	0.83337
-0.058	2.4094	0.83688
-0.059	2.4158	0.83922
-0.062	2.4211	0.84331
-0.064	2.4258	0.84682
-0.066	2.4334	0.85033
-0.067	2.442	0.85325
-0.068	2.4466	0.855
-0.070	2.4518	0.85851
-0.072	2.4519	0.86085
-0.073	2.4549	0.86319
-0.075	2.464	0.86611
-0.077	2.4764	0.86962
-0.078	2.4805	0.87196
-0.080	2.4851	0.87547
-0.082	2.4909	0.87781
-0.083	2.4943	0.87956

 0.62903
0.6343
0.63957
0.64361
0.64703
0.65135
0.65504
0.65842
0.66241
0.6661
0.66886
0.67253
0.67561
0.67956
0.68319
0.68651
0.68954
0.69314
0.69554
0.70031
0.70297
0.70502
0.70826
0.71088
0.71321
0.71553
0.71783
0.72158
0.72416
0.72588
0.72874
0.73013
0.73271
0.73527
0.73841
0.74153
0.74202
0.74337
0.74531
0.74753
0.7503
0.7522
0.75495
0.75595
0.75808
0.7611
0.76209
0.76421
0.76663
0.76818
0.76888
0.77183
0.77536
0.77748
0.77902
0.78025
0.7812

Project: COLETO CREEK FACILITY
Sample No.: S-13
Test No.: 17.4 PSI

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

	Time min	Vertical Strain \%	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1	0	0	6.2898	0	0	5.0399	6.2928	6.2928
2	5.0042	0.0151	6.2908	12.364	0.14151	5.111	6.2928	6.4343
3	10	0.035234	6.292	19.701	0.22544	5.1588	6.2928	6.5182
4	15	0.057045	6.2934	25.408	0.29068	5.1965	6.2928	6.5835
5	20	0.078856	6.2948	29.756	0.34035	5.2265	6.2928	6.6331
6	25	0.10067	6.2962	33.696	0.38533	5.2526	6.2928	6.6781
7	30	0.12248	6.2975	23.234	0.26563	5.2232	6.2928	6.5584
8	35.001	0.14261	6.2988	33.628	0.38439	5.2704	6.2928	6.6772
9	40.001	0.16442	6.3002	37.976	0.434	5.2948	6.2928	6.7268
10	45.001	0.18623	6.3016	28.533	0.32601	5.2676	6.2928	6.6188
11	50.001	0.20637	6.3028	37.297	0.42606	5.307	6.2928	6.7189
12	55.001	0.23154	6.3044	21.332	0.24362	5.2565	6.2928	6.5364
13	60.001	0.24999	6.3056	34.375	0.39251	5.3098	6.2928	6.6853
14	70.001	0.29529	6.3085	30.163	0.34426	5.3065	6.2928	6.6371
15	80.001	0.33724	6.3111	23.845	0.27204	5.2959	6.2928	6.5648
16	90.002	0.37583	6.3136	43.751	0.49893	5.377	6.2928	6.7917
17	100	0.42113	6.3164	42.12	0.48012	5.3792	6.2928	6.7729
18	110	0.46475	6.3192	37.636	0.42882	5.3715	6.2928	6.7216
19	120	0.51005	6.3221	27.582	0.31412	5.3459	6.2928	6.6069
20	130	0.55032	6.3246	48.098	0.54756	5.4242	6.2928	6.8404
21	140	0.59394	6.3274	42.052	0.47851	5.4087	6.2928	6.7713
22	150	0.64092	6.3304	29.552	0.33612	5.3737	6.2928	6.6289
23	160	0.67951	6.3329	51.971	0.59087	5.4514	6.2928	6.8837
24	170	0.72481	6.3357	42.935	0.48792	5.4248	6.2928	6.7807
25	180	0.76507	6.3383	56.794	0.64515	5.477	6.2928	6.938
26	190	0.8087	6.3411	50.612	0.57467	5.4603	6.2928	6.8675
27	200	0.85567	6.3441	30.979	0.35158	5.4031	6.2928	6.6444
28	210	0.89594	6.3467	55.639	0.6312	5.4864	6.2928	6.924
29	220	0.94124	6.3496	38.723	0.4391	5.4364	6.2928	6.7319
30	230	0.98151	6.3522	59.376	0.67301	5.5064	6.2928	6.9658
31	240	1.0268	6.3551	41.984	0.47566	5.4553	6.2928	6.7685
32	270	1.1543	6.3633	62.637	0.70873	5.5347	6.2928	7.0015
33	300	1.2835	6.3716	68.751	0.77689	5.5636	6.2928	7.0697
34	330	1.4161	6.3802	52.854	0.59645	5.5253	6.2928	6.8893
35	360	1.5436	6.3884	72.691	0.81926	5.5963	6.2928	7.1121
36	390	1.6728	6.3968	77.515	0.87247	5.6152	6.2928	7.1653
37	420	1.8053	6.4055	80.504	0.90489	5.6297	6.2928	7.1977
38	450	1.9362	6.414	83.425	0.93648	5.643	6.2928	7.2293
39	480	2.0654	6.4225	87.229	0.9779	5.6547	6.2928	7.2707
40	510	2.1962	6.4311	90.218	1.0101	5.6647	6.2928	7.3029
41	540	2.3254	6.4396	92.936	1.0391	5.6735	6.2928	7.3319
42	570	2.4563	6.4482	95.925	1.0711	5.6819	6.2928	7.3639
43	600	2.5855	6.4568	98.439	1.0977	5.6885	6.2928	7.3905
44	630	2.7163	6.4654	100.27	1.1167	5.6957	6.2928	7.4095
45	660	2.8489	6.4743	102.18	1.1363	5.7013	6.2928	7.4291
46	690	2.9781	6.4829	104.15	1.1567	5.7057	6.2928	7.4495
47	720	3.1089	6.4916	105.84	1.1739	5.7102	6.2928	7.4667
48	750	3.2381	6.5003	107.75	1.1934	5.7141	6.2928	7.4862
49	780	3.369	6.5091	109.72	1.2136	5.7169	6.2928	7.5064
50	810	3.4982	6.5178	111.55	1.2323	5.7191	6.2928	7.5251
51	840	3.6307	6.5268	112.37	1.2396	5.7202	6.2928	7.5324
52	870	3.7616	6.5357	112.91	1.2439	5.7213	6.2928	7.5367
53	900	3.8925	6.5446	114.34	1.2579	5.7218	6.2928	7.5507
54	930	4.0233	6.5535	115.56	1.2696	5.7218	6.2928	7.5624
55	960	4.1525	6.5623	116.99	1.2835	5.7213	6.2928	7.5763
56	990	4.2817	6.5712	118.21	1.2952	5.7207	6.2928	7.588
57	1020	4.4143	6.5803	118.96	1.3016	5.7196	6.2928	7.5944
58	1050	4.5418	6.5891	120.31	1.3147	5.7202	6.2928	7.6075
59	1080	4.6726	6.5981	121.13	1.3218	5.7202	6.2928	7.6146
60	1110	4.8018	6.6071	122.56	1.3355	5.7196	6.2928	7.6283
61	1140	4.931	6.6161	123.71	1.3463	5.7174	6.2928	7.6391
62	1170	5.0619	6.6252	125	1.3585	5.7146	6.2928	7.6513
63	1200	5.1928	6.6343	126.09	1.3684	5.7113	6.2928	7.6612
64	1230	5.322	6.6434	127.18	1.3783	5.708	6.2928	7.6711
65	1260	5.4545	6.6527	128.06	1.3859	5.7052	6.2928	7.6787
66	1290	5.5837	6.6618	128.81	1.3921	5.7019	6.2928	7.6849
67	1320	5.7129	6.6709	129.89	1.4019	5.6991	6.2928	7.6947
68	1350	5.8437	6.6802	130.71	1.4088	5.6957	6.2928	7.7016
69	1380	5.9746	6.6895	131.73	1.4178	5.6924	6.2928	7.7106
70	1410	6.1055	6.6988	133.15	1.4312	5.6896	6.2928	7.724
71	1440	6.2363	6.7082	134.85	1.4474	5.6869	6.2928	7.7402
72	1470	6.3655	6.7174	136.14	1.4592	5.683	6.2928	7.752
73	1500	6.4947	6.7267	138.38	1.4812	5.6796	6.2928	7.774
74	1530	6.6239	6.736	140.02	1.4966	5.6774	6.2928	7.7894
75	1560	6.7531	6.7453	140.15	1.496	5.6735	6.2928	7.7888
76	1590	6.884	6.7548	140.9	1.5018	5.6696	6.2928	7.7946
77	1620	7.0132	6.7642	141.24	1.5034	5.6669	6.2928	7.7962
78	1650	7.1407	6.7735	143.21	1.5223	5.6647	6.2928	7.8151
79	1680	7.2682	6.7828	142.94	1.5173	5.6624	6.2928	7.8101

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Liquid Limit: 40

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3 ST

Measured Specific Gravity: 2.66

Project: COLETO CREEK FACILITY
Sample No.: S-13
Sample No. $\mathrm{S}-13$
Test No.: 17.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 2 / 11$
Sample Type: $3^{\prime \prime}$ ST
Soi 1 Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Depth: $24.0-26.0$ Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.007 lb

Fi7ter Strip Correction: 0.00 tsf Membrane Correction: $0.007 \mathrm{~b} / \mathrm{in}$ Correction Type: Uniform

Measured Specific Gravity: 2.66

79	27	7.8101	6.2928	0.6225	0.410	2.1476	0.63037	3.407	1.389	0.75864
80	7.40	7.8252	6.2928	0.61972	0.404	2.1656	0.63315	3.420	1.3994	0.76621
81	7.53	7.8267	6.2928	0.61861	0.403	2.1681	0.63426	3.418	1.4012	0.76693
82	7.66	7.8302	6.2928	0.61639	0.401	2.1738	0.63648	3.415	1.4052	0.76868
83	7.80	7.8229	6.2928	0.61472	0.402	2.1683	0.63814	3.398	1.4032	0.76506
84	7.93	7.8329	6.2928	0.6125	0.398	2.1805	0.64036	3.405	1.4104	0.77006
85	8.06	7.84	6.2928	0.60972	0.394	2.1903	0.64314	3.406	1.4167	0.7736
86	8.19	7.8356	6.2928	0.60639	0.393	2.1893	0.64647	3.387	1.4179	0.77142
87	8.32	7.847	6.2928	0.60417	0.389	2.2029	0.64869	3.396	1.4258	0.7771
88	8.45	7.8626	6.2928	0.60084	0.383	2.2218	0.65203	3.408	1.4369	0.7849
89	8.58	7.8561	6.2928	0.59862	0.383	2.2175	0.65425	3.389	1.4359	0.78165
90	8.71	7.8681	6.2928	0.59584	0.378	2.2323	0.65702	3.398	1.4447	0.78764
91	8.84	7.863	6.2928	0.59195	0.377	2.2311	0.66091	3.376	1.446	0.78511
92	8.97	7.8644	6.2928	0.58918	0.375	2.2352	0.66369	3.368	1.4495	0.78578
93	9.10	7.8706	6.2928	0.5864	0.372	2.2443	0.66646	3.367	1.4554	0.78891
94	9.23	7.886	6.2928	0.58418	0.367	2.2619	0.66869	3.383	1.4653	0.79659
95	9.36	7.8985	6.2928	0.5814	0.362	2.2772	0.67146	3.391	1.4743	0.80285
96	9.49	7.9159	6.2928	0.57918	0.357	2.2968	0.67368	3.409	1.4852	0.81154
97	9.62	7.91	6.2928	0.57696	0.357	2.2931	0.6759	3.393	1.4845	0.8086
98	9.75	7.9013	6.2928	0.57529	0.358	2.2861	0.67757	3.374	1.4818	0.80427
99	9.89	7.8969	6.2928	0.57196	0.357	2.285	0.6809	3.356	1.4829	0.80204
100	10.02	7.8924	6.2928	0.56974	0.356	2.2827	0.68312	3.342	1.4829	0.79981
101	10.15	7.8943	6.2928	0.56696	0.354	2.2874	0.6859	3.335	1.4866	0.80074
102	10.28	7.8968	6.2928	0.56419	0.352	2.2926	0.68868	3.329	1.4907	0.80198
103	10.42	7.9048	6.2928	0.56086	0.348	2.3041	0.69201	3.330	1.498	0.80602
104	10.55	7.9081	6.2928	0.55808	0.346	2.31	0.69478	3.325	1.5024	0.80763
105	10.68	7.9057	6.2928	0.55641	0.345	2.3093	0.69645	3.316	1.5029	0.80643
106	10.81	7.9082	6.2928	0.55253	0.342	2.3157	0.70034	3.307	1.508	0.80769
107	10.94	7.9135	6.2928	0.54864	0.339	2.3249	0.70422	3.301	1.5146	0.81033
108	11.07	7.9194	6.2928	0.54586	0.336	2.3336	0.707	3.301	1.5203	0.81329
109	11.20	7.9219	6.2928	0.54253	0.333	2.3394	0.71033	3.293	1.5249	0.81453
110	11.33	7.9284	6.2928	0.53976	0.330	2.3488	0.71311	3.294	1.5309	0.81782
111	11.46	7.913	6.2928	0.53809	0.332	2.3349	0.71478	3.267	1.5249	0.81008
112	11.59	7.9181	6.2928	0.53531	0.329	2.3429	0.71755	3.265	1.5302	0.81266
113	11.72	7.9597	6.2928	0.53309	0.320	2.3867	0.71977	3.316	1.5532	0.83346
114	11.85	7.9065	6.2928	0.53031	0.329	2.3362	0.72255	3.233	1.5294	0.80683
115	11.98	7.8904	6.2928	0.52698	0.330	2.3235	0.72588	3.201	1.5247	0.79878
116	12.11	7.9003	6.2928	0.52476	0.326	2.3356	0.7281	3.208	1.5319	0.80376
117	12.24	7.8993	6.2928	0.52199	0.325	2.3374	0.73088	3.198	1.5341	0.80325
118	12.38	7.8962	6.2928	0.52032	0.325	2.3359	0.73255	3.189	1.5342	0.8017
119	12.51	7.8979	6.2928	0.5181	0.323	2.3398	0.73477	3.184	1.5373	0.80254
120	12.64	7.8934	6.2928	0.51421	0.321	2.3393	0.73865	3.167	1.539	0.8003
121	12.77	7.8944	6.2928	0.51255	0.320	2.3419	0.74032	3.163	1.5411	0.80079
122	12.90	7.8899	6.2928	0.50977	0.319	2.3402	0.7431	3.149	1.5416	0.79855
123	13.03	7.8889	6.2928	0.50755	0.318	2.3414	0.74532	3.141	1.5433	0.79803
124	13.17	7.8904	6.2928	0.50588	0.317	2.3446	0.74698	3.139	1.5458	0.79882
125	13.30	7.8894	6.2928	0.50422	0.316	2.3453	0.74865	3.133	1.547	0.79831
126	13.43	7.887	6.2928	0.50311	0.316	2.344	0.74976	3.126	1.5469	0.79712
127	13.56	7.892	6.2928	0.50033	0.313	2.3517	0.75254	3.125	1.5521	0.7996
128	13.69	7.8977	6.2928	0.49977	0.311	2.3579	0.75309	3.131	1.5555	0.80243
129	13.82	7.9006	6.2928	0.49811	0.310	2.3626	0.75476	3.130	1.5587	0.80391
130	13.95	7.8969	6.2928	0.497	0.310	2.3599	0.75587	3.122	1.5579	0.80203
131	14.08	7.8998	6.2928	0.49533	0.308	2.3645	0.75753	3.121	1.561	0.80349
132	14.21	7.9027	6.2928	0.49422	0.307	2.3685	0.75864	3.122	1.5636	0.80495
133	14.34	7.9109	6.2928	0.49311	0.305	2.3779	0.75975	3.130	1.5688	0.80905
134	14.47	7.9025	6.2928	0.492	0.306	2.3705	0.76087	3.116	1.5657	0.80484
135	14.60	7.906	6.2928	0.49144	0.305	2.3746	0.76142	3.119	1.568	0.80659
136	14.73	7.9048	6.2928	0.49033	0.304	2.3745	0.76253	3.114	1.5685	0.806
137	14.86	7.9056	6.2928	0.48922	0.303	2.3765	0.76364	3.112	1.57	0.80641
138	14.99	7.9038	6.2928	0.48756	0.303	2.3763	0.76531	3.105	1.5708	0.8055
139	15.13	7.9	6.2928	0.48589	0.302	2.3741	0.76697	3.095	1.5706	0.80358
140	15.26	7.902	6.2928	0.48422	0.301	2.3779	0.76864	3.094	1.5733	0.80462
141	15.39	7.9035	6.2928	0.48311	0.300	2.3804	0.76975	3.092	1.5751	0.80533
142	15.52	7.9089	6.2928	0.482	0.298	2.3869	0.77086	3.096	1.5789	0.80803
143	15.66	7.905	6.2928	0.47978	0.298	2.3853	0.77308	3.085	1.5792	0.80612
144	15.79	7.9045	6.2928	0.47812	0.297	2.3864	0.77475	3.080	1.5806	0.80584
145	15.92	7.906	6.2928	0.47701	0.296	2.389	0.77586	3.079	1.5824	0.80658
146	16.05	7.9126	6.2928	0.47534	0.293	2.3973	0.77752	3.083	1.5874	0.80988
147	16.07	7.916	6.2928	0.4759	0.293	2.4002	0.77697	3.089	1.5886	0.81159

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 5.93 in
Specimen Area: 5.37 in^2
Specimen Volume: 31.88 in^3
```

	Time min	Vertical Strain \%	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1	0	0	5.3738	0	0	5.042	6.84	6.84
2	5	0.017296	5.3747	9.9129	0.13279	5.1121	6.84	6.9728
3	10	0.036033	5.3757	12.588	0.16859	5.1464	6.84	7.0086
4	15	0.054771	5.3767	13.427	0.1798	5.167	6.84	7.0198
5	20	0.073508	5.3778	13.847	0.18538	5.1822	6.84	7.0254
6	25	0.092245	5.3788	14.319	0.19167	5.1958	6.84	7.0317
7	30.001	0.11242	5.3799	14.843	0.19865	5.2083	6.84	7.0386
8	35.001	0.13116	5.3809	15.945	0.21335	5.2214	6.84	7.0533
9	40.001	0.15134	5.3819	17.046	0.22804	5.2344	6.84	7.068
10	45.001	0.17152	5.383	18.515	0.24764	5.2485	6.84	7.0876
11	50.001	0.19026	5.384	19.931	0.26653	5.2632	6.84	7.1065
12	55.001	0.20899	5.3851	21.189	0.28331	5.2768	6.84	7.1233
13	60.001	0.22773	5.3861	22.553	0.30149	5.2898	6.84	7.1415
14	70.001	0.26521	5.3881	29.739	0.39739	5.3404	6.84	7.2374
15	80.001	0.30124	5.39	35.088	0.46871	5.3887	6.84	7.3087
16	90.002	0.34015	5.3921	39.127	0.52245	5.4322	6.84	7.3625
17	100	0.37907	5.3943	42.746	0.57055	5.4703	6.84	7.4106
18	110	0.41799	5.3964	45.788	0.61092	5.5056	6.84	7.4509
19	120	0.45546	5.3984	48.463	0.64637	5.5376	6.84	7.4864
20	130	0.49582	5.4006	51.138	0.68177	5.5664	6.84	7.5218
21	140	0.53473	5.4027	53.498	0.71295	5.5925	6.84	7.553
22	150	0.57365	5.4048	55.439	0.73853	5.6175	6.84	7.5785
23	160	0.61401	5.407	57.274	0.76267	5.6393	6.84	7.6027
24	170	0.65292	5.4091	58.9	0.78401	5.6594	6.84	7.624
25	180	0.69184	5.4112	60.474	0.80464	5.6789	6.84	7.6446
26	190	0.7322	5.4134	61.837	0.82245	5.6974	6.84	7.6625
27	200	0.77111	5.4156	63.306	0.84166	5.7132	6.84	7.6817
28	210	0.81147	5.4178	63.935	0.84968	5.7284	6.84	7.6897
29	220	0.85039	5.4199	65.824	0.87443	5.7431	6.84	7.7144
30	230	0.8893	5.422	67.082	0.8908	5.7566	6.84	7.7308
31	240	0.92966	5.4242	68.131	0.90436	5.7697	6.84	7.7444
32	270	1.0493	5.4308	71.121	0.9429	5.8034	6.84	7.7829
33	300	1.1689	5.4374	73.639	0.9751	5.8306	6.84	7.8151
34	330	1.2871	5.4439	75.999	1.0052	5.8545	6.84	7.8452
35	360	1.4053	5.4504	77.939	1.0296	5.8746	6.84	7.8696
36	390	1.5235	5.4569	79.775	1.0526	5.8925	6.84	7.8926
37	420	1.6417	5.4635	81.611	1.0755	5.9083	6.84	7.9155
38	450	1.7599	5.4701	83.184	1.0949	5.9219	6.84	7.9349
39	480	1.8781	5.4767	84.653	1.1129	5.9333	6.84	7.9529
40	510	1.9977	5.4833	86.174	1.1315	5.9441	6.84	7.9715
41	540	2.1159	5.49	87.538	1.148	5.9534	6.84	7.988
42	570	2.2326	5.4965	88.849	1.1638	5.9615	6.84	8.0038
43	600	2.3494	5.5031	90.265	1.181	5.9675	6.84	8.021
44	630	2.4704	5.5099	91.838	1.2001	5.974	6.84	8.0401
45	660	2.5872	5.5165	93.097	1.2151	5.9805	6.84	8.0551
46	690	2.7068	5.5233	94.146	1.2273	5.9843	6.84	8.0673
47	720	2.8236	5.5299	95.667	1.2456	5.9876	6.84	8.0856
48	750	2.9418	5.5367	96.821	1.2591	5.992	6.84	8.0991
49	780	3.0599	5.5434	97.818	1.2705	5.9952	6.84	8.1105
50	810	3.1781	5.5502	99.129	1.2859	5.9979	6.84	8.1259
51	840	3.2934	5.5568	99.968	1.2953	6.0001	6.84	8.1353
52	870	3.4102	5.5635	101.02	1.3073	6.0034	6.84	8.1473
53	900	3.5284	5.5703	101.86	1.3166	6.0045	6.84	8.1566
54	930	3.6451	5.5771	102.96	1.3292	6.0061	6.84	8.1692
55	960	3.7633	5.5839	104.01	1.3411	6.0072	6.84	8.1811
56	990	3.883	5.5909	104.95	1.3516	6.0083	6.84	8.1916
57	1020	3.9997	5.5977	105.95	1.3627	6.0093	6.84	8.2027
58	1050	4.1179	5.6046	106.89	1.3732	6.011	6.84	8.2132
59	1080	4.2346	5.6114	107.99	1.3857	6.011	6.84	8.2257
60	1110	4.3514	5.6183	108.83	1.3947	6.0126	6.84	8.2347
61	1140	4.4681	5.6251	109.46	1.4011	6.0131	6.84	8.2411
62	1170	4.5849	5.632	110.25	1.4094	6.0148	6.84	8.2494
63	1200	4.7045	5.6391	111.14	1.419	6.0142	6.84	8.259
64	1230	4.8213	5.646	112.03	1.4287	6.0126	6.84	8.2687
65	1260	4.9438	5.6533	112.98	1.4388	6.0131	6.84	8.2788
66	1290	5.0576	5.6601	113.81	1.4478	6.0115	6.84	8.2878
67	1320	5.1744	5.667	114.97	1.4607	6.0104	6.84	8.3007
68	1350	5.294	5.6742	115.81	1.4695	6.0093	6.84	8.3095
69	1380	5.4093	5.6811	116.8	1.4803	6.0088	6.84	8.3203
70	1410	5.5261	5.6881	117.91	1.4924	6.0077	6.84	8.3324
71	1440	5.6443	5.6953	118.95	1.5038	6.005	6.84	8.3438
72	1470	5.7596	5.7022	120.06	1.5159	6.0028	6.84	8.3559
73	1500	5.8763	5.7093	120.95	1.5253	6.0023	6.84	8.3653
74	1530	5.9945	5.7165	121.94	1.5359	6.0012	6.84	8.3759
75	1560	6.1141	5.7238	122.84	1.5452	5.999	6.84	8.3852
76	1590	6.2309	5.7309	123.94	1.5571	5.9941	6.84	8.3971
77	1620	6.3491	5.7381	124.93	1.5676	5.9914	6.84	8.4076
78	1650	6.4673	5.7454	125.83	1.5768	5.9892	6.84	8.4168
79	1680	6.5854	5.7526	126.87	1.588	5.9882	6.84	8.428

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Project: COLETO CREEK FACILITY
Sample No.: S-13
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 2 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
A=COM Depth: 24.0'-26.0'
Elevation: ----

Soi 1 Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.93 in
 Specimen Area: 5.37 in^2
 Specimen Volume: 31.88 in^3

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 7b

Filter Strip Correction: 0.00 tsf Membrane Correction: $0.007 \mathrm{~b} / \mathrm{in}$ Correction Type: Uniform

Liquid Limit: 40

Vertical	Total Vertical	Total Horizontal	Excess Pore	A	Effective Vertical	Effective Horizontal	Stress	Effective
Strain \%	Stress tsf	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	$\begin{array}{r} p \\ t s \end{array}$
0.00	6.84	6.84	0	0.000	1.798	1.798	1.000	1.798
0.02	6.9728	6.84	0.070104	0.528	1.8607	1.7279	1.077	1.7943
0.04	7.0086	6.84	0.10434	0.619	1.8622	1.6936	1.100	1.7779
0.05	7.0198	6.84	0.12499	0.695	1.8528	1.673	1.107	1.7629
0.07	7.0254	6.84	0.14021	0.756	1.8432	1.6578	1.112	1.7505
0.09	7.0317	6.84	0.15379	0.802	1.8359	1.6442	1.117	1.74
0.11	7.0386	6.84	0.16629	0.837	1.8303	1.6317	1.122	1.731
0.13	7.0533	6.84	0.17933	0.841	1.832	1.6186	1.132	1.7253
0.15	7.068	6.84	0.19238	0.844	1.8336	1.6056	1.142	1.7196
0.17	7.0876	6.84	0.20651	0.834	1.8391	1.5915	1.156	1.7153
0.19	7.1065	6.84	0.22118	0.830	1.8433	1.5768	1.169	1.7101
0.21	7.1233	6.84	0.23477	0.829	1.8465	1.5632	1.181	1.7049
0.23	7.1415	6.84	0.24781	0.822	1.8517	1.5502	1.194	1.7009
0.27	7.2374	6.84	0.29835	0.751	1.897	1.4996	1.265	1.6983
0.30	7.3087	6.84	0.34671	0.740	1.92	1.4513	1.323	1.6856
0.34	7.3625	6.84	0.39019	0.747	1.9302	1.4078	1.371	1.669
0.38	7.4106	6.84	0.42823	0.751	1.9403	1.3697	1.417	1.655
0.42	7.4509	6.84	0.46355	0.759	1.9453	1.3344	1.458	1.6399
0.46	7.4864	6.84	0.49562	0.767	1.9487	1.3024	1.496	1.6255
0.50	7.5218	6.84	0.52442	0.769	1.9553	1.2736	1.535	1.6144
0.53	7.553	6.84	0.5505	0.772	1.9604	1.2475	1.572	1.6039
0.57	7.5785	6.84	0.5755	0.779	1.961	1.2225	1.604	1.5917
0.61	7.6027	6.84	0.59724	0.783	1.9634	1.2007	1.635	1.5821
0.65	7.624	6.84	0.61735	0.787	1.9646	1.1806	1.664	1.5726
0.69	7.6446	6.84	0.63691	0.792	1.9657	1.1611	1.693	1.5634
0.73	7.6625	6.84	0.65539	0.797	1.965	1.1426	1.720	1.5538
0.77	7.6817	6.84	0.67115	0.797	1.9685	1.1268	1.747	1.5477
0.81	7.6897	6.84	0.68636	0.808	1.9613	1.1116	1.764	1.5365
0.85	7.7144	6.84	0.70104	0.802	1.9714	1.0969	1.797	1.5342
0.89	7.7308	6.84	0.71462	0.802	1.9742	1.0834	1.822	1.5288
0.93	7.7444	6.84	0.72766	0.805	1.9747	1.0703	1.845	1.5225
1.05	7.7829	6.84	0.76136	0.807	1.9795	1.0366	1.910	1.5081
1.17	7.8151	6.84	0.78853	0.809	1.9845	1.0094	1.966	1.497
1.29	7.8452	6.84	0.81244	0.808	1.9907	0.98553	2.020	1.4881
1.41	7.8696	6.84	0.83255	0.809	1.995	0.96543	2.066	1.4802
1.52	7.8926	6.84	0.85048	0.808	2.0001	0.94749	2.111	1.4738
1.64	7.9155	6.84	0.86624	0.805	2.0072	0.93173	2.154	1.4695
1.76	7.9349	6.84	0.87983	0.804	2.0131	0.91815	2.193	1.4656
1.88	7.9529	6.84	0.89124	0.801	2.0196	0.90674	2.227	1.4632
2.00	7.9715	6.84	0.90211	0.797	2.0274	0.89587	2.263	1.4616
2.12	7.988	6.84	0.91135	0.794	2.0347	0.88663	2.295	1.4606
2.23	8.0038	6.84	0.9195	0.790	2.0423	0.87848	2.325	1.4604
2.35	8.021	6.84	0.92548	0.784	2.0535	0.8725	2.354	1.463
2.47	8.0401	6.84	0.932	0.777	2.0661	0.86598	2.386	1.466
2.59	8.0551	6.84	0.93852	0.772	2.0745	0.85946	2.414	1.467
2.71	8.0673	6.84	0.94232	0.768	2.0829	0.85565	2.434	1.4693
2.82	8.0856	6.84	0.94558	0.759	2.098	0.85239	2.461	1.4752
2.94	8.0991	6.84	0.94993	0.754	2.1071	0.84804	2.485	1.4776
3.06	8.1105	6.84	0.95319	0.750	2.1153	0.84478	2.504	1.48
3.18	8.1259	6.84	0.95591	0.743	2.128	0.84207	2.527	1.485
3.29	8.1353	6.84	0.95808	0.740	2.1352	0.83989	2.542	1.4875
3.41	8.1473	6.84	0.96134	0.735	2.1439	0.83663	2.563	1.4903
3.53	8.1566	6.84	0.96243	0.731	2.1521	0.83555	2.576	1.4938
3.65	8.1692	6.84	0.96406	0.725	2.1631	0.83392	2.594	1.4985
3.76	8.1811	6.84	0.96515	0.720	2.1739	0.83283	2.610	1.5034
3.88	8.1916	6.84	0.96623	0.715	2.1833	0.83174	2.625	1.5075
4.00	8.2027	6.84	0.96732	0.710	2.1934	0.83065	2.641	1.512
4.12	8.2132	6.84	0.96895	0.706	2.2022	0.82902	2.656	1.5156
4.23	8.2257	6.84	0.96895	0.699	2.2147	0.82902	2.671	1.5218
4.35	8.2347	6.84	0.97058	0.696	2.2221	0.82739	2.686	1.5248
4.47	8.2411	6.84	0.97112	0.693	2.2279	0.82685	2.694	1.5274
4.58	8.2494	6.84	0.97276	0.690	2.2346	0.82522	2.708	1.5299
4.70	8.259	6.84	0.97221	0.685	2.2448	0.82576	2.718	1.5353
4.82	8.2687	6.84	0.97058	0.679	2.2561	0.82739	2.727	1.5417
4.94	8.2788	6.84	0.97112	0.675	2.2657	0.82685	2.740	1.5463
5.06	8.2878	6.84	0.96949	0.670	2.2763	0.82848	2.748	1.5524
5.17	8.3007	6.84	0.96841	0.663	2.2902	0.82957	2.761	1.5599
5.29	8.3095	6.84	0.96732	0.658	2.3001	0.83065	2.769	1.5654
5.41	8.3203	6.84	0.96678	0.653	2.3115	0.8312	2.781	1.5714
5.53	8.3324	6.84	0.96569	0.647	2.3247	0.83228	2.793	1.5785
5.64	8.3438	6.84	0.96297	0.640	2.3388	0.835	2.801	1.5869
5.76	8.3559	6.84	0.9608	0.634	2.3531	0.83718	2.811	1.5951
5.88	8.3653	6.84	0.96026	0.630	2.363	0.83772	2.821	1.6004
5.99	8.3759	6.84	0.95917	0.624	2.3747	0.83881	2.831	1.6068
6.11	8.3852	6.84	0.957	0.619	2.3861	0.84098	2.837	1.6136
6.23	8.3971	6.84	0.9521	0.611	2.403	0.84587	2.841	1.6244
6.35	8.4076	6.84	0.94939	0.606	2.4162	0.84859	2.847	1.6324
6.47	8.4168	6.84	0.94721	0.601	2.4276	0.85076	2.853	1.6392

$$
0.066397
$$

$$
\begin{aligned}
& 0.066397 \\
& 0.084297
\end{aligned}
$$

$$
0.0899
$$

$$
0.092692
$$

$$
\begin{aligned}
& 0.095834 \\
& 0.099325
\end{aligned}
$$

$$
\begin{array}{r}
.09565 \\
0.10667 \\
0
\end{array}
$$

$$
\begin{aligned}
& 0.11402 \\
& 0.12382
\end{aligned}
$$

$$
\begin{aligned}
& 0.13326 \\
& 0.14165
\end{aligned}
$$

$$
\begin{array}{r}
0.14165 \\
0.15074 \\
0 \quad 1087
\end{array}
$$

$$
\begin{array}{r}
0.1987 \\
0.23436
\end{array}
$$

$$
\begin{aligned}
& 0.26123 \\
& 0.28528
\end{aligned}
$$

$$
\begin{aligned}
& 0.30546 \\
& 0.32318
\end{aligned}
$$

$$
\begin{aligned}
& 0.34088 \\
& 0.35648
\end{aligned}
$$

$$
\begin{aligned}
& 0.36926 \\
& 0.38133
\end{aligned}
$$

$$
\begin{aligned}
& 0.38133 \\
& 0.39201
\end{aligned}
$$

$$
\begin{aligned}
& 0.40232 \\
& 0.41123
\end{aligned}
$$

$$
\begin{aligned}
& 0.42083 \\
& 0.42083 \\
& 0.47484
\end{aligned}
$$

$$
\begin{aligned}
& 0.42484 \\
& 0.43721
\end{aligned}
$$

$$
\begin{array}{r}
0.4454 \\
0.45218
\end{array}
$$

$$
\begin{aligned}
& 0.45218 \\
& 0.47145 \\
& 0.48755
\end{aligned}
$$

$$
\begin{aligned}
& 0.48755 \\
& 0.50258
\end{aligned}
$$

$$
\begin{aligned}
& .51478 \\
& 0.51479 \\
& 0.52628
\end{aligned}
$$

$$
\begin{aligned}
& 0.52628 \\
& 0.53775
\end{aligned}
$$

$$
0.54746
$$

$$
\begin{aligned}
& 0.55645 \\
& 0.56576
\end{aligned}
$$

$$
0.57402
$$

$$
\begin{aligned}
& 0.58192 \\
& 0.59049
\end{aligned}
$$

$$
\begin{aligned}
& 0.59049 \\
& 0.60004 \\
& 0.60754
\end{aligned}
$$

$$
\begin{aligned}
& 0.60754 \\
& 0.61363 \\
& 0.67279
\end{aligned}
$$

$$
\begin{aligned}
& 0.62279 \\
& 0.62954
\end{aligned}
$$

$$
\begin{aligned}
& 0.62954 \\
& 0.63524 \\
& 0.64297
\end{aligned}
$$

$$
0.64765
$$

$$
\begin{aligned}
& 0.65365 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0.65828 \\
& 0.66459
\end{aligned}
$$

$$
\begin{aligned}
& 0.0045 y \\
& 0.67054 \\
& 0.67578
\end{aligned}
$$

$$
\begin{aligned}
& 0.67578 \\
& 0.68137
\end{aligned}
$$

$$
\begin{array}{r}
0.00157 \\
0.68659 \\
0
\end{array}
$$

$$
\begin{aligned}
& 0.69283 \\
& 0.69736
\end{aligned}
$$

$$
\begin{aligned}
& 0.69736 \\
& 0.70053
\end{aligned}
$$

$$
0.70471
$$

$$
\begin{aligned}
& .04952 \\
& 0.70952 \\
& 071432
\end{aligned}
$$

$$
\begin{aligned}
& 0.71433 \\
& 0.71942
\end{aligned}
$$

$$
0.7239
$$

$$
0.73034
$$

$$
\begin{aligned}
& 0.73474 \\
& 0.74016
\end{aligned}
$$

$$
0.74016
$$

$$
\begin{aligned}
& 0.74622 \\
& 0.75192 \\
& 0.75795
\end{aligned}
$$

$$
\begin{aligned}
& 0.75192 \\
& 0.75795 \\
& 0.76264
\end{aligned}
$$

$$
\begin{aligned}
& 0.76264 \\
& 0.76795
\end{aligned}
$$

$$
\begin{aligned}
& 0.76795 \\
& 0.77258
\end{aligned}
$$

$$
0.77854
$$

$$
\begin{aligned}
& 0.78381 \\
& 0.78841
\end{aligned}
$$

Project: COLETO CREEK FACILITY	Disp. Rate, in/min	0.001417	0.001417	0.001417	
Location: IPR-GDF SUEZ	Estimated Specific Gravity	2.72	2.72	2.72	
Project No.: 60225561	Liquid Limit	----	----	----	
Boring No.: B-1-1	Plastic Limit	----	----	----	
Sample Type: TRIMMED	Plasticity Index	----	---	----	

Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE
Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

```
Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: . }75\mathrm{ TSF
```

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 17 / 11$
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth: ----
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
Elapsed
Time

min \quad\begin{tabular}{r}
Vertical

Stress

tsf

\quad

Vertical

Displacement

in

\quad

Horizontal

Stress

tsf

Horizontal

Displacement

in
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: 1.25 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth:
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	Elapsed Time min	Vertical Stress tsf	Vertical Displacement	Horizontal Stress tsf	Horizontal Displacement in	Cumulative Displacement
1	0.00	1.25	0.01189	0	0	0
2	12.00	1.25	0.01458	0.07233	0.002821	0.002821
3	14.00	1.25	0.01451	0.07971	0.006913	0.006913
4	16.00	1.25	0.01467	0.08127	0.011	0.011
5	18.00	1.25	0.01488	0.1684	0.01481	0.01481
6	20.00	1.25	0.01499	0.1843	0.0189	0.0189
7	22.00	1.25	0.0153	0.313	0.02271	0.02271
8	24.00	1.25	0.01616	0.413	0.0261	0.0261
9	26.00	1.25	0.01703	0.5094	0.02963	0.02963
10	28.00	1.25	0.01777	0.5879	0.03315	0.03315
11	33.00	1.25	0.01959	0.7097	0.04246	0.04246
12	38.00	1.25	0.02117	0.8061	0.05206	0.05206
13	43.00	1.25	0.02223	0.8912	0.06193	0.06193
14	48.00	1.25	0.02302	0.9647	0.07209	0.07209
15	53.00	1.25	0.02348	1.018	0.08196	0.08196
16	58.00	1.25	0.02364	1.05	0.09198	0.09198
17	63.00	1.25	0.02373	1.067	0.1021	0.1021
18	68.00	1.25	0.02364	1.064	0.1126	0.1126
19	73.00	1.25	0.02385	1.029	0.123	0.123
20	78.00	1.25	0.02424	0.9962	0.1333	0.1333
21	83.00	1.25	0.0247	0.969	0.1436	0.1436
22	88.00	1.25	0.02532	0.941	0.1542	0.1542
23	93.00	1.25	0.02591	0.9196	0.1648	0.1648
24	98.00	1.25	0.02646	0.9006	0.1754	0.1754
25	103.00	1.25	0.02715	0.8831	0.1859	0.1859
26	108.00	1.25	0.02788	0.8749	0.1964	0.1964
27	113.00	1.25	0.02879	0.8695	0.2068	0.2068
28	118.00	1.25	0.02939	0.8679	0.2174	0.2174
29	123.00	1.25	0.03015	0.871	0.2277	0.2277
30	128.00	1.25	0.03082	0.8718	0.2378	0.2378
31	133.00	1.25	0.03154	0.8706	0.248	0.248
32	138.00	1.25	0.03235	0.8772	0.2577	0.2577
33	143.00	1.25	0.03304	0.8858	0.2673	0.2673
34	148.00	1.25	0.0338	0.8955	0.2769	0.2769
35	153.00	1.25	0.03439	0.9017	0.2872	0.2872
36	158.00	1.25	0.03505	0.9064	0.2972	0.2972
37	163.00	1.25	0.03568	0.9091	0.3074	0.3074
38	168.00	1.25	0.0363	0.9185	0.3176	0.3176
39	173.00	1.25	0.03691	0.922	0.3276	0.3276
40	178.00	1.25	0.03753	0.9262	0.3377	0.3377
41	183.00	1.25	0.03808	0.9321	0.3476	0.3476
42	188.00	1.25	0.03874	0.9282	0.3578	0.3578
43	193.00	1.25	0.0393	0.929	0.3678	0.3678
44	198.00	1.25	0.03976	0.9309	0.3779	0.3779
45	203.00	1.25	0.04033	0.941	0.3884	0.3884
46	208.00	1.25	0.04084	0.9383	0.399	0.399
47	213.00	1.25	0.04139	0.9371	0.4095	0.4095
48	218.00	1.25	0.04193	0.9379	0.42	0.42
49	223.00	1.25	0.04244	0.9356	0.4307	0.4307
50	228.00	1.25	0.04296	0.936	0.4413	0.4413
51	233.00	1.25	0.04351	0.9391	0.4517	0.4517
52	238.00	1.25	0.04403	0.9406	0.462	0.462
53	243.00	1.25	0.04459	0.9476	0.4723	0.4723
54	248.00	1.25	0.04511	0.9566	0.4823	0.4823

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-1-1	Tested By: BCM	Checked By: WPQ
Sample No. S-16-18	Test Date: 12/17/11	Depth: ---
Test No.: 1.75 TSF	Sample Type: TRIMMED	Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1

	Elapsed	Vertical	Vertical	Horizontal	Horizontal	Cumulative
	Time	Stress	Displacement	Stress	Displacement	Displacement
	min	tsf	in	tsf	in	in
1	0.00	1.75	0.01256	0	0	0
2	4.00	1.75	0.01529	0.1083	0.001552	0.001552
3	6.00	1.75	0.0162	0.107	0.00522	0.00522
4	8.00	1.75	0.01687	0.1474	0.009311	0.009311
5	10.00	1.75	0.01767	0.3553	0.0127	0.0127
6	12.00	1.75	0.01877	0.497	0.01622	0.01622
7	14.00	1.75	0.01979	0.615	0.01961	0.01961
8	16.00	1.75	0.0207	0.7159	0.02328	0.02328
9	18.00	1.75	0.02152	0.8062	0.02694	0.02694
10	20.00	1.75	0.02223	0.904	0.03061	0.03061
11	22.00	1.75	0.02289	0.9887	0.03414	0.03414
12	24.00	1.75	0.02361	1.072	0.03809	0.03809
13	26.00	1.75	0.02409	1.144	0.0419	0.0419
14	28.00	1.75	0.02466	1.209	0.04585	0.04585
15	98.00	1.75	0.0315	1.356	0.1888	0.1888
16	198.00	1.75	0.04639	1.405	0.392	0.392
17	243.36	1.75	0.0505	1.298	0.4572	0.4572

APPENDIX C: SLIDE 7.0 STABILITY ANALYSIS MODELS
Case 1

Bullock, Bennett \& Associates, LLC
Case 2

Bullock, Bennett \& Associates, LLC

Coleto Creek Primary Pond, Cross Section A-A'	Case 3
Design Section, Max Storage Pool, Total Stress Analysis, Non-circular	

Coleto 3_A-A_design_maxstor_tot_noncir.sImd
Bullock, Bennett \& Associates, LLC
Case 4
Coleto Creek Primary Pond, Cross Section A-A'
Design Section, Max Storage Pool, Total Stress Analysis, Circular

Case 6

$$
\begin{aligned}
& \text { Coleto Creek Primary Pond, Cross Section A-A' } \\
& \text { Design Section, Max Surcharge Pool, Effective Stress Analysis, Circular }
\end{aligned}
$$

Case 7
$\xrightarrow[\text { Case }]{\text { Car }}$ (on)

Cross Section A-A'
 1 3 0 0 0 0

 Design Section, Max Surcharge Pool,

Coleto Creek Primary Pond, Cross Section A-A'	Case 9	
Design Section, Max Storage Pool, Seismic, Total Stress Analysis, Non-circular		

Coleto Creek Primary Pond, Cross Section A-A'
Design Section, Max Storage Pool, Seismic, Total Stress Analysis, Circular

Case 11

Non-circular

 Elev 136.1
Case 12

Coleto 12_B-B Design_maxstor_effective_circ.sImd
Coleto Creek Primary/Secondary Pond, Cross Section B-B'
Design Section, Max Storage Pool, Total Stress Analysis, Non-circular
Bullock, Bennett \& Associates, LLC

Case 15
Coleto Creek Primary/Secondary Pond, Cross Section B-B'
Non-circular

Design Section, Max Surcharge Pool, Rapid DD, Total Stress Analysis,

| | |
| :--- | :--- | :--- |
| | Coleto Creek Primary/Secondary Pond, Cross Section B-B' |
| Design Section, Max Surcharge Pool, Rapid DD, Total Stress Analysis, Non-circular | |

Bullock, Bennett \& Associates, LLC
Case 16 Coleto Creek Primary/Secondary Pond, Cross Section B-B'
Design Section, Max Surcharge Pool, Rapid DD, Total Stress Analysis, Circular

Coleto 17_B-B Design_maxstor_total__seismic_noncirc.sImd

Bullock, Bennett \& Associates, LLC

APPENDIX D: LIQUEFACTION ASSESSMENT CALCULATIONS

APPENDIX D

LIQUEFACTION FACTOR OF SAFETY

ASSESSMENT METHODOLOGY

Coleto Creek Power Station

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall. Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.
United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test

$$
\left(N_{1}\right)_{60}=N S P T \cdot C_{N} \cdot C E \cdot C B \cdot C S \cdot C_{R}
$$

where:
$\left(N_{1}\right)_{60}=$ Measured blowcount normalized for overburden stress at the depth of the test $\mathrm{C}_{\mathrm{N}}=$ Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress

$$
\mathrm{C}_{\mathrm{N}}=\sqrt{\frac{P a}{\sigma^{\prime}{ }_{v o}}} \leq 2.0
$$

where:
$\mathrm{Pa}=$ one atmosphere of pressure (101.325 kPa) in the same units as $\sigma_{\mathrm{vo}}{ }^{\prime}$
$\sigma_{\text {vo }}=$ vertical efffective stress at depth of $\mathrm{N}_{\text {SPT }}$
$\mathrm{C}_{\mathrm{E}}=$ Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release
$C_{B}=$ Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range
$\mathrm{C}_{\mathrm{S}}=$ Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler
$C_{R}=$ Correction factor for loss of energy through reflection in short lengths of drill rod:
where:
For z < $3 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=0.75$
For $3<z<9 m ; C_{R}=(15+z) / 24$
For $z>9 m ; C_{R}=1.0$
where: $z=$ length of drill rod in meters (approximately equal to depth of $\mathrm{N}_{\text {SPT }}$)

Step 2: Compute a clean-sand equivalent value of $\left(\mathrm{N}_{1}\right)_{60}$

$$
\left(N_{1}\right)_{60}-c s=\left(N_{1}\right)_{60}+\Delta\left(N_{1}\right)
$$

where:
$\Delta\left(N_{1}\right)_{60}=$ correction factor computed as follows:
For FC $<5 \%, \Delta\left(N_{1}\right)_{60}=0.0$
For $5<\mathrm{FC}<35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7 *(\mathrm{FC}-5) / 30$
For FC $>35 \%, \Delta\left(N_{1}\right)_{60}=7.0$
where:
FC = Fines content (percent finer than 0.075 mm)
Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR M7.5)

$$
100 \cdot C R R_{M 7.5}=\frac{95}{34-\left(N_{1}\right)_{60}-c s}+\frac{\left(N_{1}\right)_{60}-c s}{1.3}-\frac{1}{2}
$$

Note: A value of $\left(\mathrm{N}_{1}\right)_{60}-\mathrm{CS}>30$ indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area

$$
C R R=C R R M_{75} . M S F \cdot K \sigma \cdot K \alpha
$$

where:
MSF = magnitude scaling factor computed as follows:

$$
\text { For } M_{w}<7.0 ; \text { MSF }=10^{3.00} * M_{w}^{-3.46}
$$

where:
$M_{w}=$ estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than 1 tsf (2000 psf) ($\mathrm{K} \sigma$) or static shear stresses such as significant slopes (K α). K σ values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K α factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)

$$
C S R=0.65 \cdot \frac{a_{\max }}{g} \cdot \frac{\sigma_{v o}}{\sigma_{v o}^{\prime}} \cdot r d
$$

where:
$a_{\max } / g=$ peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at
http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).
$\sigma_{\mathrm{vo}}=$ total vertical overburden stress
$g=$ acceleration due to gravity, $9.81 \mathrm{~m} / \mathrm{s}^{2}$
$r_{d}=$ stress reduction factor calculated as follows for depths up to 30 m :

$$
r_{d}=1.0+1.6 * 10^{-6}\left(z^{4}-42 z^{3}+105 z^{2}-4200 z\right)
$$

Step 6: Calculate the Factor of Safety against liquefaction $\left(\mathrm{FS}_{\text {liq }}\right)$

$$
F S_{l i q}=\frac{C R R}{C S R}
$$

空

采吾
む む む む

 U

z
$\pm t \stackrel{t}{2}$

b 흘
＂

 ※ \qquad O
0
0
0
0
0
0
0
0

$\stackrel{\square}{\circ}$

Nナ 0 ○喜 \mathbb{O}

鄀
 $\stackrel{8}{9}$

 u ひ

品

$\pm \stackrel{t}{\Delta} \stackrel{t}{\circ}$

M～్ન

[^3]

喜
喜

丞 ${ }^{\sim}$

응

u

び

U
言志 $亡$

亏	

Depth to Water＝

 Average Unsaturated Soil Unit Weight， $\mathrm{y}_{\mathrm{d}}=$ Average Saturated Soil Unit Weight， $\mathrm{y}_{\mathrm{s}}=$ Average Water Unit Weight， y_{w}Earthquake Magnitude， $\mathrm{M}_{\mathrm{w}}=$

$\stackrel{2}{2}$

喜 $\underbrace{\circ}$

$\stackrel{\circ}{8}$

${ }^{\omega}$

z
$\underset{\sim}{\text { N }}$ N N N N.

u゙

U
ft
pcf
pcf
pcf
－

 $\stackrel{\circ}{\square}$

运 $\bigcup_{\breve{L}}^{\sim}$
会

Depth to Water $=$	32	ft
Average Unsaturated Soil Unit Weight，$y_{d}=$	125	pcf
Average Saturated Soil Unit Weight，$y_{s}=$	130	pcf
Average Water Unit Weight，$y_{w}=$	62.3	pcf
Earthquake Magnitude，$M_{w}=$	6.1	ch
Borehole Diameter $=$	$3^{\prime \prime}$, to end of boring	

APPENDIX E: GUADALUPE-BLANCO RIVER AUTHORITY LAKE AREA-CAPACITY CURVES

-

TABLE 1
COLETO CREEK RESERVOIR
AREAS AND CAPACITIES
INITIAL CONDITIONS*
L
๒

∞
σ

\square

N
N
N
N
N

\rightarrow

ATTACHMENT 3-2

TABLE 2

> COLETO CREEK PROJECT
> AREAS AND CAPACITIES
> SULPHUR CREEK BEHIND DIKE NO. 1
> INCLUDING FLUME NO. 1

| Elev. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

70							0	1	2	
80	3	5	7	10	14	18	22	26	31	36
90	49	56	64	73	82	90	101	113	126	138
100	151	164	178	193	207	223	240	259	279	303
110	329	358	388	419	455	499	540	590	641	699
120	770									

CAPACITY IN ACRE-FEET

70										
80	4	8	14	23	35	51	71	95	123	157
90	199	251	311	379	456	542	638	745	865	997
100	1141	1299	1470	1656	1856	2071	2303	2553	2322	3113
110	3429	3773	4146	4550	4987	5464	5984	6549	7165	7835
120	8570									

TABLE 3
COLETO CREEK PROJECT
AREAS AND CAPACITIES
TURKEY CREEK BEHIND DIKE NO. 2
INCLUDING FLUME NO. 2

Elev.	0	1	2	3	4	5	6	7	8	9
AREA IN ACRES										
70		0	1	3	6	9	13	18	24	31
80	38	46	55	65	76	88	101	115	130	146
90	167	184	200	217	234	250	270	293	322	355
100	391	429	467	506	545	583	623	663	705	748
110	791	- 831	882	947	1032	1118	1206	1291	1374	1458
120	1537									
CAPACITY IN ACRE-FEET										
70		0	0	2	7	14	25	41	62	89
80	124	166	216	276	347	429	523	631	754	892
90	1048	1224	1416	1624	1850	2092	2352	2634	2942	3281
100	3654	4064	4512	4998	5524	6089	6691	7334	8018	8744
110	9513	10,324	11,181	12,096	13,086	14,161	15,323	16,572	17,905	19,321
120	20,819									

ATTACHMENT 8 - CLOSURE PLAN

SITE INFORMATION

Site Name / Address Owner Name / Address CCR Unit Reason for Initiating Closure

Coleto Creek Power Station, 45 FM 2987 Fannin, Goliad County, TX

Coleto Creek Power, LP 1500 Eastport Plaza Drive Collinsville, IL 62234 | Primary Ash Pond | Final Cover Type |
| :--- | :--- | Known final receipt of waste/Final removal of Closure Method In-Place beneficial reuse materials

CLOSURE PLAN DESCRIPTION

(b)(1)(i) - Narrative
description of how the CCR unit will be closed in
accordance with this section.
(b)(1)(iii) - If closure of the CCR unit will be
accomplished by leaving CCR
in place, a description of the
in place, a cover system and
methods and procedures
used to install the finalcover.

The Primary Ash Pond will be closed such that contained CCR solids will remain ir-place. In accordance with $\S 257.102(b)(3)$, this written closure plan will be amended to provide additional details after the final engineering design for the grading anc cover system is completed. This closure plan reflects the best information available to date, and the plan may be amended in the future.

First, the Primary Ash Pond will be dewatered with the resulting water to be discharged through existing TPDES Outfall No. กП३. CCR solids will be graded and leveled, then covered with a final cover system as described below. Existing perimeter dikes will remain intact and the final cover system will tie into these dikes. The cover system will consist of the following elements, listed in order from contact with the CCR to the top: 1) subgrade leveling fill (as needed); 2) 1 foct thick soil liner with a permeability not to exceed the permeability of $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec} ; 3$) Synthetic Liner System consisting of Geosynthetic Clay Liner (GCL), Textured (both sides) 40 Mil Linear-Low Density Polyethylene Flexible Membrane Liner (LLDPE-FML), Double Sided (geotextile fabric on both sides) Geonet Drainage Layer; and 4) 24-inch Protective/Vegetative Soil Layer. The top of the final cover system will be vegetated to minimize erosion. The final cover will be sloped to promote drainage and storm water runoff.
(b)(1)(iii) - How the final cover system will achieve the performance standards in $\S 257.102$ (d).
(d)(1)(i) Control, minimize or eliminate, to the maximum extent The permeability of the final cover will be equal to or less than the permeability of the feasible, post-closure infiltration of liquids into the waste and releases he pliner a of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere.
(d)(1)(ii) - Preclude the probability of future impoundment of water, sediment, or slurry.
(d)(1)(iii) - Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period.
(d)(1)(iv)-Minimize the need for further maintenance of the CCR unit.
(d)(1)(v)-Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.
(d)(2)(i) - Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residue.
(d)(2)(ii) - Remaining wastes must be stabilized sufficiently to support the final cover system.
(d)(3) - A final cover system must be installed to minimize infiltration and erosion, and at minimum, meets the requirements of $(\mathrm{d})(3)(\mathrm{i})$.
(d)(3)(i) - The design of the final cover system must be included in the written closure plan.
(d)(3)(i)(A) - The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natura subsoils present, or a permeability no greater than $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$, whichever is less.
(d)(3)(i)(B) - The infiltration of liquids through the closed CCR unit must be minimized by the use of an infiltration layer than contains a minimum of 18 inches of earthen material.
(d)(3)(i)(C) - The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.
(d)(3)(i)(D) - The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.
bottom liner or a permeability no greater than $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$, whichever is less, and wil be graded to prevent ponding and promote drainage.

The final cover will be sloped across the unit as needed to preclude the probability of future impoundment of water, sediment, or slurry.
The top of the vegetated final cover system will be slopec and the outsides of the oerimeter dikes will be vegetated as necessary to minimize the potential for erosion. The cap system will be designed by a Qualified Professional Engineer in a manner to orevent sloughing or movement of the final cover system and geotechnical testing and evaluation will be performed as needed during and after construction to confirm that engineering slope stability standards have been acnieved.
The vegetative cover will be regularly mowed and maintained to minimize the potential for erosion or other structural issues that would cause more extensive and long-term maintenance issues. The storm water control system will be regularly inspected for oroper operation.
Construction would occur in a phased approach as sections of the impoundment are prepared, enabling expedited capping of portions of the CCR impoundment.
The unit will be dewatered sufficiently to remove the free liquids to provide a stable base for the construction of the final cover system.
Dewatering and regrading of existing in-place CCR will sufficiently stabilize the waste such that the final cover will be supported.
The final cover system will be constructed as described above in accordance with (d)(3)(i) and will minimize infiltration and erosion.

When the final design of the final cover system is completed, the written closure plan will be amended to include the detailed final design.
The permeability of the final cover will be equal to or less than the permeability of the existing bottom liner or no greater than $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$, whichever is less. This will be verified during construction per the construction quality assurance plan to be developed in conjunction with the detailed amended closure plan.

Infiltration of liquids through the closed CCR unit will be minimized by the placement of a 24 -inch thick protective/vegetated soil layer over the Geonet drainage layer.

The final cover will include a minimum 24 -inch protective/vegetated soil layer that is capable of sustaining native plant growth. The vegetative cover will be regularly maintained to prevent erosion.
The final cover system will be designed to account for expected settlement and subsidence.

INVENTORY AND AREA ESTIMATES

CLOSURE SCHEDULE

(b)(1)(vi) - Schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including major milestones ...and the estimated timeframes to complete each step or phase of CCR unit closure.
Note: At the time of this Written Closure Plan, there are no immed ate plans to close the Primary Ash Pond. The Primary Ash Pond is currently actively managing CCR wastes generated during operation of the coal-fired power plant. CCR waste is also actively removed from the Primary Ash Pond for off-site beneficial use. This practice is expected to continue after the pond no longer accepts CC.R solids. The milestones presented in this plan, therefore, provide an overview of major tasks associated with final closure of the Primary Ash Pond and a schedule relative to the timeframes specified in the rule. This Closure Plan will be amended with more specific information once closure activities have been initiated.
(b) (2)-Initial Written Closure Plan Placed in Permanent Record

CLOSURE PLAN FOR EXISTING CCR SURFACE IMP 40 CFR $\$ 257.102$ (b)	OUNDMENT Rev 1 Page 2 of 2 Januarv 24. 2018
(f)(1)(ii) - The owner or operator must commence closure of the CCR unit no later than 30 days after the date on which the CCR unit...: Removed the known final volume of CCR from the CCR unit for the purpose of beneficial use of CCR.	Closure activities will commence 30 days after known final receipt of CCR waste and removal of the last known quantity of CCR from the Primary Ash Pond for the purpose of beneficial reuse, which for the purposes of this plan is assumed to be the year 2045. Closure activities will consist of the following components which will be implemented between 2045 and 2050: 1) $\$ 257.102$ (g) Preparation of Notice of Intent to close a CCR Unit 2) Agency coordination 3) Mobilization 4) Reroute plant process water pipes and dewater and stabilize $C C R$ 5) Grading of CCR material to final design grades 6) Installation of cap system 7) $\$ 257.102(\mathrm{~h})$ Preparation of Notification of Closure of a CCR Unit 8) $\S 257.102(\mathrm{~h})(\mathrm{i})$ Deed Notatior
$\mathrm{f}(2)(\mathrm{ii})$ - ...the owner or operator must complete closure of the CCR unit: For existing and new CCR surface impoundments and any latera expansion of a CCR surface impoundment, within five years of commencing closure activities pursuant to...paragraph (e)(2) of this section.	Final closure of the Primary Ash Pond will occur within 5 years of commencing closure astivities.
Certification by qualified professional engineer appended to this plan.	

Certification Statement 40 CFR § 257.102 (b)(4) - Written Closure Plan for a CCR Surface Impoundment or Landfill

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the written closure plan, dated January 24, 2018, meets the requirements of 40 CFR $\S 257.102$.

1/24/2018

Daniel Bullock, P.E. (TX 82596)
Bullock, Bennett \& Associates, LLC
Firm Registrations: Engineering F-8542, Geoscience 50127

Certification Statement 40 CFR § 257.102 (d)(3)(iii) -Design of the Final Cover System for a

 CCR Surface Impoundment or Landfill
CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the conceptual-level design of the final cover system as included in the written closure plan, dated January 24, 2018, meets the requirements of 40 CFR § 257.102.

Daniel Bullock, P.E. (TX 82596)
Bullock, Bennett \& Associates, LLC
Firm Registrations: Engineering F-8542, Geoscience 50127

ADDENDUM NO. 1 COLETO CREEK EXISTING COR SURFACE IMPOUNDMENT CLOSURE PLAN

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Coleto Creek Primary Ash Pond at the Coleto Creek Power Station, Revision 1 - January 24, 2018 has been prepared to meet the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R. Section $257.103(f)(2)(v)(D)$) as a component of the demonstration that the Coleto Creek Primary Ash Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Coleto Creek Primary Ash Pond will begin construction of closure by April 17, 2025 and cease receipt and placement of CCR and non-CCR wastestreams by no later than September 17, 2027 as indicated in the Coleto Creek Power Plant Alternative Closure Demonstration dated November 30, 2020. Closure will be completed by October 17, 2028 within the 5-year timeframe included in the Closure Schedule identified in the Coleto Creek Existing CCR Surface Impoundment Closure Plan in accordance with 40 C.F.R. § 257.102(f)(1)(ii).

All other aspects of the Closure Plan remain unchanged.

CERTIFICATION

I, Maureen T. Warren, a Qualified Professional Engineer in good standing in the State of Texas, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Maureen T. Warren
Qualified Professional Engineer 117550
Texas
Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien \& Gere Engineeis, ifc.
Date: November 30, 2020

BURNS MCDONNELL.

CREATE AMAZING.

Burns \& McDonnell World Headquarters

COAL COMBUSTION RESIDUALS PRIMARY ASH POND PERIODIC HAZARD POTENTIAL CLASSIFICATION ASSESSMENT 5-Year Periodic Update

COLETO CREEK POWER PLANT
FANNIN, TEXAS

October 11, 2021

Bullock, Bennett \& Associates, LLC Engineering and Geoscience

Certification Statement 40 C.F.R. § 257.73(a) and 30 T.A.C. § 352.731- Hazard Potential Classification Assessment

CCR Unit: Coleto Creek Power, LLC; Coleto Creek Power Plant; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Hazard Potential Classification Assessment, dated October 11, 2021, meets the requirements of 40 C.F.R. § 257.73 (a) and 30 T.A.C. § 352.731 .

Daniel B. Bullock, P.E. (TX 82596)

TABLE OF CONTENTS

LIST OF FIGURES. ii
LIST OF APPENDICES ii
1.0 INTRODUCTION1
2.0 PERIODIC HAZARD POTENTIAL CLASSIFICATION ASSESSMENT 2
2.1 Dam Breach Analysis 3
2.2 Loss of Life Evaluation 3
2.3 Economic and/or Environmental Loss Evaluation 5
2.4 Hazard Potential Classification 6
3.0 REFERENCES 7

LIST OF FIGURES

Figure 1 Site Location Map
Figure 2 Primary Ash Pond Location Map

LIST OF APPENDICES

Appendix A Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Plant is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power plant consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial reuse or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1 and 2 provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) promulgated rules (40 C.F.R. Part 257, Subpart D) to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. The State of Texas subsequently codified 30 T.A.C. Chapter 352, which incorporated 40 C.F.R. $\S 257$ by reference, to address CCR management in surface impoundments and landfills. This report has been prepared to specifically address the requirements for periodic Hazard Potential Classification Assessments to be performed every 5 years as identified in 40 C.F.R. § 257.73(a)(2) and 30 T.A.C. § 352.731 .

2.0 PERIODIC HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

According to 30 T.A.C. § 352.731 and 40 C.F.R. § 257.73(a)(2) by reference, the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the CCR rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows under § 257.53:

1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform a site assessment of the Primary Ash Pond at the Coleto Creek Power Plant. As part of the assessment, CDM assigned the pond with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, AECOM was contracted by the plant to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Primary Ash Pond and Secondary Pond. The results of that assessment supported the initial CDM classification of Low Hazard. The initial Potential Hazard Class assessment performed in 2016 in accordance with the federal CCR rules also concluded that the Primary Ash Pond is a Low Hazard surface impoundment (BBA, 2018).

2.1 Dam Breach Analysis

The Coleto Creek Primary Ash Pond is the only CCR-regulated surface impoundment at the Coleto Creek Power Plant and is therefore subject to the Hazard Potential Classification Assessment under the CCR rules. Because the Primary Ash Pond is hydraulically connected to, and is separated by a dike system from, the Secondary Pond, it is necessary to include the Secondary Pond when evaluating potential failure scenarios as noted below. Although the Secondary Pond is not a CCR-regulated unit, it is subject to operational and safety standards established by the Texas Commission on Environmental Quality (TCEQ) in its Dam Safety rules (30 T.A.C. Part 1 Chapter 299).

Bullock, Bennett \& Associates (BBA) performed a dam breach analysis of the Primary Ash Pond and Secondary Pond to support the loss of life, and environmental and economic impact analyses. The Primary Ash Pond and Secondary Pond combined have a maximum storage capacity of approximately 4,000 acre-ft and a maximum dike height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was completed in 1978 and the effective water storage capacity in the Primary Ash Pond has diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in August 2021, the water storage capacity in the Primary Ash Pond has been reduced to approximately 1,390 acre-ft at the maximum dike crest height while the water capacity of the Secondary Pond is estimated at 200 acre- ft .

The Primary Ash Pond and Secondary Pond are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the Power Plant. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQapproved Outfall 003 to the hot side of the lake. Cool water is pumped into the Power Plant from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as attachments in Appendix A. Dike No. 1 Lake consists of
approximately 164 acres at the normal operating elevation of 101 feet MSL. Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LLC reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Primary Ash Pond, Secondary Pond, Dike Lakes, and Coleto Creek Reservoir is presented as Figure 1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment dikes and that the breach occurs in the shared Primary Ash Pond and Secondary Pond dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of both ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google Earth ${ }^{\mathrm{TM}}$ profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1, the wet side of the ponds are bound by the Evaporation Pond followed by Dike No. 1 Lake on the northnorthwest, Dike No. 1 Lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Primary Ash Pond and Secondary Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main Lake. Eventually all water would be released into the Main Lake.

Using the tables provided by GBRA, a one-foot increase in the Main Lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Primary Ash Pond and Secondary Pond is approximately 1,590 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately seven inches. A seven-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

2.2 Loss of Life Evaluation

The Primary Ash Pond and Secondary Pond are located apart from the active industrial areas of the Power Plant. Two fly-ash silos are located adjacent to the southwest border of the Primary Ash Pond and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest limits of the Primary Ash Pond, which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary Ash Pond and Secondary Pond (see Figure 1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 2.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

2.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from Primary Ash Pond and Secondary Pond into the Coleto Creek Reservoir. Using the volume ratio of pond water (approximately 1,590 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet 1,590 acre-feet $=\sim 20$ dilution factor of analytes in the Primary Ash Pond water). Discharge of Secondary Pond water is currently allowed to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at 20%-to- 80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Primary Ash Pond is believed to be minimal.

For the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash Pond that may not be consolidated and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

2.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Primary Ash Pond is classified as a Low Hazard Potential impoundment.

3.0 REFERENCES

Bullock Bennett \& Associates, LLC (BBA). (2018). Coal Combustion Residuals Surface Impoundment History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment (Rev. 1).

CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.

GBRA. (2013). Coleto Creek Watershed River Secments, Descriptions and Concerns. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf

TCEQ. (January 2007). Hydrologic and Hydraulic Guidelines for Dams in Texas. Dam Safety Program, Texas Commission on Environmental Quality.

FIGURES

APPENDIX A

Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

TABLE 1
COLETO CREEK RESERVOIR
AREAS AND CAPACITIES
INITIAL CONDITIONS*

Elev.	0	1	2	3	4	5	6	7	8	9
AREA IN ACRES										
50									0	9
60	18	26	34	42	50	60	80	100	120	145
70	170	200	239	277	314	351	397	442	495	547
80	599	679	758	835	910	984	1087	1189	1299	1408
90	1504	1650	1796	1940	2084	2230	2369	2514	2652	2787
100	2918	3077	3255	3461	3698	3954	4207	4458	4706	4949
110	5190	5531	5910	6324	6763	7234	7734	8229	8725	9223
120	9723									
CAPACITY IN ACRE-FEET										
50									0 479	${ }_{6} 4$
60	18	40	70	108	154	209	279	369	479	611
70	769	954	1174	1432	1727	2060	2434	2853	3322	3843
80	4416	5055	5774	6570	7442	8389	9425	10,563	11,807	13,160
90	14,617	16,194	17,917	19,786	21,798	23,955	26,254	28,695	31,277	33,996
100	36,849	39,846	43,012	46,370	49,949	53,744	57,855	62,187	66,769	71,597
110	76,667	82,027	87,747	93,863	100,406	107,409	114,807	122,878	131,354	140,328
120	149,800									

*Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

TABLE 2

> COLETO CREEK PROJECT AREAS AND CAPACITIES
> SULPHUR CREEK BEHIND DIKE NO. 1 INCLUDING FLUME NO. 1

| Elev. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

70							0	1	2	
80	3	5	7	10	14	18	22	26	31	36
90	49	56	64	73	82	90	101	113	126	138
100	151	164	178	193	207	223	240	259	279	303
110	329	358	388	419	455	499	540	590	641	699
120	770									

CAPACITY IN ACRE-FEET

70								0	2	
80	4	8	14	23	35	51	71	95	123	157
90	199	251	311	379	456	542	638	745	865	997
100	1141	1299	1470	1656	1856	2071	2303	2553	2322	3113
110	3429	3773	4146	4550	4987	5464	5984	6549	7165	7835
120	8570									

TABLE 3
COLETO CREEK PROJECT
AREAS AND CAPACITIES
TURKEY CREEK BEHIND DIKE NO. 2 INCLUDING FLUME NO. 2

Elev.	0	1	2	3	4	5	6	7	8	9
	AREA IN ACRES									
70		0	1	3	6	9	13	18	24	31
80	38	46	55	65	76	88	101	115	130	146
90	167	184	200	217	234	250	270	293	322	355
100	391	429	467	506	545	583	623	663	705	748
110	791	- 831	882	947	1032	1118	1206	1291	1374	1458
120	1537									
	CAPACITY IN ACRE-FEET									
70		0	0	2	7	14	25	41	62	89
80	124	166	216	276	347	429	523	631	754	892
90	1048	1224	1416	1624	1850	2092	2352	2634	2942	3281
100	3654	4064	4512	4998	5524	6089	6691	7334	8018	8744
110	- 9513	10,324	11,181	12,096	13,086	14,161	15,323	16,572	17,905	19,321
120	20,819									

COAL COMBUSTION RESIDUALS COLETO CREEK PRIMARY ASH POND INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 5-Year Periodic Update

COLETO CREEK POWER PLANT
FANNIN, TEXAS

October 11, 2021

Bullock, Bennett \& Associates, LLC Engineering and Geoscience

Certification Statement 40 C.F.R. § 257.82 and 30 T.A.C. § $\mathbf{3 5 2 . 8 2 1}$-Inflow Design Flood Control System Plan for a CCR Surface Impoundment

CCR Unit: Coleto Creek Power, LLC; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this plan has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Inflow Design Flood Control System Plan, dated October 11, 2021, meets the requirements of 40 C.F.R. § 257.82 and 30 T.A.C. § 352.821 .

Daniel B. Bullock, P.E. (TX 82596)

10-11-2021

TABLE OF CONTENTS

Page

LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
1.0 SITE SUMMARY 1
2.0 HYDRAULIC ANALYSIS 2
3.0 WIND AND WAVE RUN-UP ANALYSIS 5
4.0 SUMMARY 7
5.0 REFERENCES 8

LIST OF FIGURES

Figure $1 \quad$ Site Location Map
Figure $2 \quad$ Site Topography Map
Figure 3 HEC-RAC Modeling Results

LIST OF APPENDICES

Appendix A HEC-RAS Model Inputs

1.0 SITE SUMMARY

Coleto Creek Power, LLC operates the Coleto Creek Power Plant located at 45 FM 2987 near the city of Fannin in Goliad County, Texas (Figure 1). One boiler is operated at the facility to generate electricity for distribution to the area power grid. The boiler uses coal as the primary fuel and fuel oil as a backup fuel. There are two streams of coal combustion residuals (CCR) generated at this plant. Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment (Primary Ash Pond). Fly ash is collected from the boiler exhaust and transported pneumatically to two storage silos. From there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial use by a third party. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the Coleto Creek Primary Ash Pond for disposal. Bottom ash in the Primary Ash Pond is routinely recovered for beneficial reuse via excavation, screening, and placement in covered dump trucks for transport off site.

The CCR slurry is pumped directly to the 190 -acre Primary Ash Pond where the majority of solids settle out of the carrier water. The treated water can then flow into a 10 -acre Secondary Pond. The facility's Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002159000 allows for the discharge of up to 0.64 million gallons per day (gpd) of water from the Secondary Pond to the adjacent Coleto Creek Reservoir. Because the Primary Ash Pond and Secondary Pond are hydraulically connected (a levee failure of the Secondary Pond and the associated rapid dewatering could impact the stability of the Primary Ash Pond), both ponds are considered in this assessment even though the Secondary Pond is not regulated under the CCR Rule.

Pursuant to Rule 30 T.A.C. § 352.821 (and by reference, 40 C.F.R. § 257.82(a)), "the owner or operator of an existing or new CCR surface impoundment...must design, construct, operate, and maintain an inflow design flood control system." 40 C.F.R. § 257.82 (c) requires the owner or operator of existing CCR surface impoundments to "...prepare initial and periodic inflow design flood control system plans for the CCR unit." This 5-Year Periodic Inflow Design Flood Control System Plan has been prepared to meet the requirements of the rule. This plan should be amended at any time that CCR management operations substantially change. In addition, this plan will be updated every five years in accordance with § 257.82(c)(4). A copy of this Plan will be maintained in the facility's operating record and publicly accessible internet site.

2.0 HYDRAULIC ANALYSIS

According to §257.82(a)(1) and (2), the inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood as defined by the CCR rule. In addition, the inflow design flood control system must adequately manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood. As noted in the Coleto Creek Power Station 5 Year Hazard Classification Assessment, 2021 (BBA, 2021), the Primary Ash Pond is classified as having a Low Hazard Potential. The inflow design flood, therefore, is defined in § 257.82(a)(3)(iii) as the 24-hour, 100-year flood.

The Coleto Creek Primary Ash Pond and Secondary Pond are currently operated as a relatively closed system. The ponds are surrounded by dikes that range from approximately four (4) to 39 ft above grade for the Primary Ash Pond and up to 56 ft for the Secondary Pond (Sargent \& Lundy Engineers, 1978). The only sources of storm water accumulation, therefore, are the rain that falls within the surface impoundment boundary and incidental runoff from the dike crest. No other facility storm water is reportedly pumped into the ponds. Water from the ponds can be siphoned from the Secondary Pond at a maximum rate of approximately 0.64 million gpd and discharged to the adjacent "hot side" of the Coleto Creek Reservoir. Water levels in the pond are currently maintained below approximate elevation 136 ft NAVD88.

Bullock, Bennett and Associates, LLC (BBA) contracted T. Baker Smith (TBS) (formerly Naismith Marine Services) to complete a land and bathymetric site survey in August 2021 for the purpose of evaluating current conditions at the ponds and to obtain approximate as-built dike cross sections in areas of interest. Figure 2 provides the results of the August 2021 survey. Based on the 2021 survey the crest height generally appears to be constructed to elevation 140 ft NAVD88; however, areas were identified to be as low as approximate elevation 139.74 ft . This lower elevation is used to evaluate available capacity in the ponds.

The staff gauge elevation was measured during a site topography and bathymetry survey conducted in 2016. The survey found that the staff gauge mark of 140.0 corresponds to an elevation of approximately 140.4 ft NAVD88.

Because no significant inflow of outside storm water occurs and no conventional spillway is present, the surface impoundment must be operated so that it can contain the entirety of the
design storm as well as the inflow of water/CCR from normal plant operations that occurs during the same period. The Primary Ash Pond is currently partially full of CCR, and water storage capacity remains primarily in the north portion of the pond, between approximate elevations 106 ft and 139.74 ft NAVD88 (the lowest dike crest elevation recorded in the recent survey). The estimated available capacity of the Primary Ash Pond and Secondary Pond based on 2021 survey data is $2,238,600 \mathrm{cy}$ (breach elevation 139.74 ft) and $324,700 \mathrm{cy}$ (breach elevation 139.68), respectively.

Maximum precipitation values for a 100-year, 24-hour storm were evaluated from various data sources. The most applicable and appropriate value was obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 Precipitation Frequency Data Server (retrieved October $1^{\text {st }}, 2021$ from https://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=tx). The total rainfall for the 100-year design storm is listed as 13.20 inches in a 24 -hour period. This rainfall amount was applied to the entire impoundment as a National Resources Conservation Service (NRCS) type III storm event.

The hydraulic model for the impoundment was developed using the Hydrologic Engineering Center River Analysis System (HEC-RAS), version 6.0. This version of HEC-RAS provided the ability to model the storm water flow and infiltration characteristics using a 2dimensional (2D), gridded geometry. The geometry grid was applied over the entire impoundment terrain, including perimeter conveyance channels, Primary and Secondary ponds, and the perimeter dike roads. The 2 D model captured storm water flow direction, depth, and velocity, incorporating specific terrain features and elevations, and the timing of flow interactions across the impoundment surface.

The 2D model included soil and land cover data that were used to account for storm water infiltration into the impoundment. Soil data was obtained from the Gridded Soil Survey Geographic Database, provided by the NRCS (retrieved September $7^{\text {th }}, 2021$ from https://datagateway.nrcs.usda.gov/GDGOrder.aspx). Land cover data was obtained from the National Land Cover Database 2019 (retrieved September 8 ${ }^{\text {th }}, 2021$ from https://www.mrlc.gov). The soil and land cover data were combined to develop NRCS curve number values that accounted for the hydrologic infiltration characteristics of the impoundment.

For the purposes of this evaluation, it was assumed that no water was discharged to Coleto Creek Reservoir during the design storm event. Based on the wind and wave run-up estimates (Section 3.0), 1.7 ft of freeboard is required above the containment elevation of the design storm event. Therefore, since the low point of the perimeter dike is approximately elevation 139.7 ft , containment of the design storm event should be within or below elevation 138.0 ft (maximum surcharge pool elevation). The results of the HEC-RAS 2D model showed that with a Primary Ash Pond starting elevation of 136.1 ft (maximum storage pool), the pooled water surface reached a maximum elevation of 137.3 feet. The primary ash pond is, therefore, capable of containing the design storm event. The secondary pond reached a maximum depth elevation of 137.1 feet, also containing the design storm event. The HEC-RAS 2D model demonstrated the impoundment is capable of containing the entire 100 year, 24-hour design storm event.

3.0 WIND AND WAVE RUN-UP ANALYSIS

Wind and wave run-up effects were estimated using guidance contained in the document Freeboard Criteria and Guidelines for Computing Freeboard Allowances for Storage Dams (USBR, 1981). Equation 3 of USBR was used to calculate wave run-up as follows:

$$
\mathrm{R}_{\mathrm{s}}=\frac{\mathrm{H}_{\mathrm{s}}}{0.4+\left(\mathrm{H}_{s} / \mathrm{L}\right)^{0.5} \cot \Theta}
$$

where:
$\mathrm{R}_{\mathrm{s}}=$ wave run-up
$\mathrm{H}_{\mathrm{s}}=$ significant wave height, 1.8 ft
$\mathrm{L}=$ deep water wavelength, 27.08 ft
$\Theta=$ angle of upstream face of the dam with the horizon, 18 deg
H_{s} was calculated using Figure 9 in the USBR guidelines. Figure 9 determines significant wave height from the effective fetch (Fe) and the design wave velocity. Effective fetch is estimated to be $1 / 2$ of wave fetch (F). F was determined to be the longest over water tangent normal to the dam and was measured at $3,818 \mathrm{ft}(.72 \mathrm{mi})$ which leaves Fe at $1,909 \mathrm{ft}$ (0.36 miles). Design wind velocity was determined from Figure 3 of the USBR guidelines, Fastest Mile of Record-Summer. This measurement was used because it yielded the highest velocity and therefore the most conservative measurement. Wind velocity was determined to be 63 mph . After applying the wind velocity ratio (wind over water) from Table 2 of 1.08 for a Fe of 0.5 miles (rounded up), the design wind velocity was determined to be 68 mph .

L was calculated using the Equation $2, \mathrm{~L}=5.12 \mathrm{~T}^{2}$, with T being wave period. T was found with Figure 10 of USBR to be 2.3 seconds. When applied to the equation, L is determined to be 27.08 ft . Θ is 18 degrees as the dam has a side slope of approximately 3 horizontal to 1 vertical.

When all variables are applied to equation 3 of the USBR guidelines, the wave run-up is calculated to be 1.5 ft .

The wind setup in feet is calculated using Equation 4 of the USBR guidelines as follows:

$$
\mathrm{S}=\frac{\mathrm{U}^{2} \mathrm{~F}}{1400 \mathrm{D}}
$$

where:
$\mathrm{U}=$ design wind velocity over water in miles per hour, 68 mph
$\mathrm{F}=$ wind fetch in miles, 0.72 miles
$\mathrm{D}=$ average water depth along the central radial in feet, conservatively estimated to equal 10 ft
The wind setup is calculated to equal 0.2 ft .
The required freeboard is the wave run-up plus the wind setup. The total required freeboard, therefore, is 1.7 ft .

4.0 SUMMARY

The Coleto Creek Primary Ash Pond is considered an existing CCR surface impoundment that is regulated under 30 T.A.C. Chapter 352 which incorporates, by reference, Federal CCR rules codified in 40 C.F.R. Part 257 Subpart D. Section 257.82 (c) requires that existing CCR surface impoundment prepare a written Inflow Design Flood Control System Plan to ensure that the surface impoundment is operated such that inflows to and from the impoundment from a design storm are adequately controlled. Because the Primary Ash Pond has a Low Hazard classification, the design storm is the 100-year, 24-hour rain event.

Using the estimated rainfall accumulation associated with the design storm event, wind and wave run-up estimates, and maximum storage pool elevation of 136.1 ft NAVD88 (staff gauge elevation of 135.7 ft), HEC-RAS hydrologic modeling indicates that the Primary Ash Pond would provide containment for the design storm and allow 1.7 ft of additional freeboard for wave action. The East and West channels located within the dry side of the pond should be maintained to allow the cumulative flow of ash sluice water and peak rainwater flow from the design 100year storm into the "wet" side of the Primary Ash Pond.

5.0 REFERENCES

Asquith, W. H. (June 2004). Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas. Water Resources Division. Austin, TX: U.S. Geological Survey.

BBA. (January 24, 2018). Coal Combustion Residuals Surface Impoundment History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment (Rev. 2-5 Yr Update) Coleto Creek Power Station Fannin, TX. Bullock, Bennett \& Associates.

BBA. (October 11, 2021). Coal Combustion Residuals Surface Impoundment 5-Year Hazard Potential Classification Assessment, 2021 Coleto Creek Power Station Fannin, TX. Bullock, Bennett \& Associates.

Hershfield, D. M. (May 1961). Technical Paper No. 40 Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Period of 1 to 100 Years. U. S. Department of Commerce, Washington D.C.

NOAA. (June 1977). NOAA Technical Memorandum NWS Hydro-35: 5- to 60-Minute Precipitation Frequency for the Eastern and Central United States. National Oceanic and Atmospheric Administration, Silver Spring, MD.

S\&L. (December 1, 1978). Design and Construction Summary of Coal Pile and Wastewater Pond Facilities Coleto Creek Power Station - Unit 1. Report prepared for Central Power and Light Company. Report SL-3689. Sargent \& Lundy Engineers.

USBR. (1981). Freeboard Criteria and Guidelines for Computing Feeboard Allowances for Storage Dams, ACER Technical Memorandum No. 2. Assistant CommissionerEngineering and Research, U.S. Department of the Interior, Bureau of Reclamation.

FIGURES

APPENDIX A

HEC-RAS MODEL INPUTS

HEC-RAS MODEL INPUTS
 Coleto Creek Primary Ash Pond
 Inflow Design Flood

Primary Ash Pond Water Surface Elevations

Starting Water Surface Elevation	136.1 feet
Maximum Ponding Water Surface Elevation	137.3 feet

Secondary Pond Water Surface Elevations

Starting Water Surface Elevation	136.1 feet
Maximum Ponding Water Surface Elevation	137.0 feet

Manning's \mathbf{n} Coefficients

Land Cover Classification	Manning's n
Brush-weed-grass mix	0.05
Open Water	0.04
Developed, Open Space	0.04
Developed, Low Intensity	0.1
Developed, Medium Intensity	0.12
Developed, High Intensity	0.15
Barren Land Rock/Sand/Clay	0.025
Mixed Forest	0.16
Grassland/Herbaceous	0.035
Woody Wetlands	0.12
Channel 2	0.025
Channel 1	0.025
Central Brush Bare Mix	0.037
West Channel Vegetation	0.037

HEC-RAS MODEL INPUTS
 Coleto Creek Primary Ash Pond Inflow Design Flood

NRCS Curve Numbers

Land Cover: Soil Type	CN Value
Brush-weed-grass mix : NoData	77
Brush-weed-grass mix : D	77
Brush-weed-grass mix : C/D	74
Brush-weed-grass mix : C	70
Brush-weed-grass mix : Ash Material	35
Open Water : NoData	100
Open Water : D	100
Open Water : C/D	100
Open Water : C	100
Open Water : Ash Material	100
Developed, Open Space : NoData	84
Developed, Open Space : D	84
Developed, Open Space : C/D	82
Developed, Open Space : C	79
Developed, Open Space : Ash Material	49
Developed, Low Intensity : NoData	82
Developed, Low Intensity : D	82
Developed, Low Intensity : C/D	80
Developed, Low Intensity : C	77
Developed, Low Intensity : Ash Material	46
Developed, Medium Intensity : NoData	84
Developed, Medium Intensity : D	84
Developed, Medium Intensity : C/D	82
Developed, Medium Intensity : C	79
Developed, Medium Intensity : Ash Material	51
Developed, High Intensity : NoData	95
Developed, High Intensity : D	95
Developed, High Intensity : C/D	95
Developed, High Intensity : C	94
Developed, High Intensity : Ash Material	89
Barren Land Rock/Sand/Clay : NoData	94
Barren Land Rock/Sand/Clay : D	94
Barren Land Rock/Sand/Clay : C/D	93
Barren Land Rock/Sand/Clay : C	91
Barren Land Rock/Sand/Clay : Ash Material	77
Mixed Forest : NoData	79
Mixed Forest : D	79
Mixed Forest : C/D	76
	79

HEC-RAS MODEL INPUTS
 Coleto Creek Primary Ash Pond Inflow Design Flood

NRCS Curve Numbers (cont'd)

Mixed Forest : C	73
Mixed Forest : Ash Material	36
Grassland/Herbaceous : NoData	77
Grassland/Herbaceous : D	77
Grassland/Herbaceous : C/D	74
Grassland/Herbaceous : C	70
Grassland/Herbaceous : Ash Material	35
Woody Wetlands : NoData	86
Woody Wetlands : D	86
Woody Wetlands : C/D	86
Woody Wetlands : C	86
Woody Wetlands : Ash Material	86
Channel 2 : NoData	94
Channel 2 : D	94
Channel 2 : C/D	93
Channel 2 : C	91
Channel 2 : Ash Material	77
Channel 1 : NoData	94
Channel 1 : D	94
Channel 1 : C/D	93
Channel 1 : C	91
Channel 1 : Ash Material	77
Central Brush Bare Mix : NoData	86
Central Brush Bare Mix : D	86
Central Brush Bare Mix : C/D	85
Central Brush Bare Mix : C	80
Central Brush Bare Mix : Ash Material	56
West Channel Vegetation : NoData	86
West Channel Vegetation : D	86
West Channel Vegetation : C/D	85
West Channel Vegetation : C	80
West Channel Vegetation : Ash Material	56

Coal Combustion Residuals Surface Impoundment History of Construction and
 Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment
 (REv.1)

Coleto Creek Power Station
FANNIN, Texas

Jandary 24, 2018
(ORIGINAL VERSION: OCTOBER 13, 2016)

Prepared for:

Coleto Creek Power, LP
Coleto Creek Power Station
Fannin, Texas

Prepared by:

Bullock, Bennett \& Associates, LLC
Engineering and Geoscience
Registrations: Engineering F-8542, Geoscience 50127

165 N. Lampasas Street
Bertram, Texas 78605
(512) 355-9198

BBA Project No. 17266

Certification Statement 40 CFR § 257.73(c) - Structural Integrity Criteria for Existing CCR Surface Impoundments, History of Construction

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the History of Construction, dated January 24, 2018, meets the requirements of $40 C F R$ § 257.73(c).

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(a) - Structural Integrity Criteria for Existing
 CCR Surface Impoundments, Potential Hazard Classification Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Potential Hazard Classification Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73$ (a).

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(d) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Structural Stability Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Structural Stability Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73(\mathrm{~d})$.

Daniel B. Bullock, P.E. (TX 82596)

Certification Statement 40 CFR § 257.73(e) - Structural Integrity Criteria for Existing CCR Surface Impoundments, Initial Safety Factor Assessment

CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Initial Safety Factor Assessment, dated January 24, 2018, meets the requirements of $40 C F R \S 257.73$ (e).

Daniel B. Bullock, P.E. (TX 82596)

TABLE OF CONTENTS
LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
1.0 INTRODUCTION 1
2.0 HISTORY OF CONSTRUCTION 2
2.1 Owner and Operator of CCR Unit 2
2.2 CCR Unit Location 2
2.3 Primary Ash Pond Statement of Purpose. 2
2.4 Watershed Description 3
2.5 Primary Ash Pond Foundation and Abutment Material Description 4
2.6 Primary Ash Pond Construction Summary 4
2.7 Primary Ash Pond Drawings 7
2.8 Primary Ash Pond Instrumentation 7
2.9 Primary Ash Pond Area-Capacity Curves 7
2.10 Primary Ash Pond Spillway and Diversion Design Features 7
2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions 8
2.12 Primary Ash Pond Structural Stability History 8
3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT 9
3.1 Dam Breach Analysis 10
3.2 Loss of Life Evaluation 12
3.3 Economic and/or Environmental Loss Evaluation 12
3.4 Hazard Potential Classification 13
4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT 14
5.0 INITIAL SAFETY FACTOR ASSESSMENTS 17
5.1 Liquefaction Assessment 24
5.2 Initial Safety Factor Assessment Summary 27
6.0 REFERENCES 28

LIST OF TABLES

Table 5-1 Soil Strength Parameters used in Geotechnical Stability Analysis
Table 5-2 Required Factors of Safety
Table 5-3 Slope Stability Analysis Summary

LIST OF FIGURES

Figure 1-1A Site Location Map
Figure 1-1B Site Location Map
Figure 2-1 U.S.G.S. Area Map
Figure 2-2 Coleto Creek Watershed
Figure 2-3 Thickness Map of In-Situ Cohesive Soils
Figure 2-4 Surface Impoundment Configuration
Figure 2-5A Ash Pond Plan and Cross Sections
Figure 2-5B Bathymetric Survey Plan View
Figure 2-5C Bathymetric Survey Sections
Figure 2-6 Capacity for Primary Ash Pond

LIST OF APPENDICES

Appendix A Geotechnical Borelogs
Appendix B Geotechnical Laboratory Data
Appendix C Slide 7.0 Stability Analysis Models
Appendix D Liquefaction Assessment Calculations
Appendix E Guadalupe-Blanco River Authority Lake Area-Capacity Summaries

1.0 INTRODUCTION

Coleto Creek Power Station is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power station consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial re-use or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1-1A and 1-1B provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules codified in 40 CFR Part 257 to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. This report has been prepared to specifically address the requirements identified in §257.73 Structural Integrity Criteria for Existing CCR Surface Impoundments ${ }^{1}$. Section 2.0 of the report provides the History of Construction (§257.73(c)(1)(i - xii)). Section 3.0 contains the Initial Potential Hazard Classification Assessment (§257.73(a)(2)), Section 4.0 provides the Initial Structural Stability Assessment (\$257.73(d)(1)), and Section 5.0 includes the Initial Safety Factor Assessment (\$257.73(e)(1).

[^4]
2.0 HISTORY OF CONSTRUCTION

The following History of Construction has been prepared in accordance with the requirements defined in $\S 257.73$ (c)(1)(i - xii).

2.1 Owner and Operator of CCR Unit

The Coleto Creek Power Station is owned and operated by Coleto Creek Power, LP. The address is as follows:

Coleto Creek Power Station
45 FM 2987
PO Box 8
Fannin, Texas 77960
Primary Ash Pond SWR No. 31911, Unit No. 001

2.2 CCR Unit Location

The Coleto Creek Power Station and associated CCR surface impoundment (Primary Ash Pond) is located just outside the city of Fannin in Goliad County, Texas on approximately 8,000 total acres. The Primary Ash Pond is approximately 190 acres in surface area with a reported storage capacity of 2,700 acre-feet (S\&L, December 1978). The Primary Ash Pond is located adjacent to the facility's Evaporation Pond and Secondary Pond. Figure 2-1 (U.S.G.S. Area Map) shows the CCR surface impoundment on the most recent US Geological Survey (USGS) $71 / 2$ minute quadrangle topographic map.

2.3 Primary Ash Pond Statement of Purpose

The Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during the Power Station site development. The pond was designed and constructed to accommodate wastes from two coal-fired boilers (S\&L, December 1978). However, only one boiler has been constructed and operated at the facility.

Bottom ash is collected from the boiler, combined with water, and transferred in slurry form for disposal in the facility's surface impoundment. Fly ash is collected from the boiler exhaust using a baghouse. The fly ash is transported pneumatically to two storage silos. From
there, the fly ash is loaded into enclosed dry haul hoppers for off-site beneficial reuse. Fly ash not meeting required beneficial reuse specifications is combined with water and pumped to the facility's Primary Ash Pond for disposal. CCR solids settle out of the conveyance water in the Primary Ash Pond and the treated water overflows stoplogs within an outlet (weir box) structure then flows through a 30 " diameter pipe to the smaller Secondary Pond as needed to control water levels. Water from the Secondary Pond can be recirculated to the ash sluice system or discharged in accordance with the facility's TPDES permit. The Secondary Pond has never received more than deminimis quantities of CCR; therefore, it is not subject to the CCR Rule.

Other plant wastes may also reportedly be sluiced into the Coleto Creek Primary Ash Pond including aqueous lab waste, boiler chemical cleaning rinseate, air preheater cleaning rinseate, air preheater cleaning residue, basin solids, de-ionizer regenerate wastewater, heat exchanger cleaning rinseate, waste de-ionizer resin beads, waste molybdate contaminated cooling water, waste filter media, boiler blowdown, demineralizer effluent, storm water, low volume waste, and effluent water/wastewater from plant processes (S\&L, 1981).

2.4 Watershed Description

Coleto Creek Power Station is located in the lower half of the Coleto Creek Watershed (Figure 2-2) which is maintained by the Guadalupe-Blanco River Authority (GBRA). Coleto Creek is approximately 27 miles long, beginning in DeWitt County and travels through Goliad and Victoria Counties before its confluence with the Guadalupe River (GBRA, 2013). Approximately 558 square miles drain into the Coleto Creek Watershed. Typical land uses in the watershed include farming, ranching, oil and gas production and more recently, in-situ uranium mining. The only urbanized area in the watershed is the small city of Yorktown located upstream of the Power Station in DeWitt County.

Coleto Creek Reservoir Dam was constructed in the late 1970s to create the approximate 3,100 surface acre Coleto Creek Reservoir which serves as a cooling pond for the Coleto Creek Power Station. The Power Station discharges approximately 360,000 gallons per minute of water to the reservoir (GBRA, 2013). Perdido Creek, Turkey Creek, and Sulphur Creek also feed into the reservoir. Although the reservoir is managed by the GBRA, it is reportedly wholly owned by Coleto Creek Power, LP up to an elevation of 104 feet MSL.

2.5 Primary Ash Pond Foundation and Abutment Material Description

The Coleto Creek Primary Ash Pond was designed and constructed under the guidance of Sargent \& Lundy Engineers (S\&L). As part of the design process, S\&L advanced 63 soil borings and installed eight monitoring wells in the immediate vicinity of the pond. Based on the information collected, the pond is constructed within a surface deposit of cohesive soils consisting of mostly clayey sand and silty clay with varying amounts of caliche. The soils are classified as CH, CL, and SC soils using the Unified Soil Classification System. These soils range in thickness from 4 to 20 feet, and average 9 feet beneath the Primary Ash Pond and Secondary Pond (average thickness data for the Primary Ash Pond only is not provided in the report) (S\&L, December 1978). Figure 2-3 provides the Thickness Contour Map for In-Situ Cohesive Soils in the vicinity of the Primary Ash Pond. The impoundment dikes are continuous and do not include a conventional spillway, thus there are no abutments with other structures.

2.6 Primary Ash Pond Construction Summary

As noted in Section 2.3, the Coleto Creek Primary Ash Pond was constructed between 1976 and 1977 during overall site development. Construction was performed by H. B. Zachary Construction with full-time on-site inspection by S\&L. Field testing of site soils and construction materials was performed by Trinity Testing Laboratory, Inc. In general, the Primary Ash Pond dikes have a total interior circumference of approximately 10,975 feet and a height ranging from approximately 4 feet up to 39 feet. The maximum reported storage volume is 2,700 acre-feet in the Primary Ash Pond (S\&L, December 1978).

As further described below, a topographic and bathymetric survey was conducted for the Primary Ash Pond in July 2016. Results of that survey were combined with assumptions regarding the original base elevation of the pond (limited as-built base elevation data is available) to generate area-capacity estimates for use in subsequent assessments presented in this report. The area-capacity estimates generated using 2016 data indicate that the top of dike capacity is approximately 3,700 acre-ft, or nearly 1,000 acre-ft more than originally reported by $\mathrm{S} \& \mathrm{~L}$. The originally reported 2,700 acre-ft corresponds to an approximate elevation of 135 feet in the 2016 assessment, which is also the operating level identified in the S\&L report. For the purposes of this report, the larger capacity is used where appropriate.

In-situ cohesive soils were used as the Primary Ash Pond lining and the geotechnical characteristics of those soils are documented in the S\&L construction summary report dated December, 1978. Laboratory geotechnical testing was performed on representative samples collected post-construction from the borings advanced in the in-situ liner soils. The median laboratory permeability was reported as $3.8 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$. The average plasticity index, liquid limit, and fines content were listed as $23 \%, 42 \%$, and 40%, respectively. S\&L concluded that the soil liner as constructed overall either met or exceeded requirements for a 3-foot thick compacted clay liner of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$ permeability in accordance with Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in place at the time of construction (S\&L, December 1978).

Primary Ash Pond dikes were constructed using controlled and compacted cohesive fill excavated from borrow areas around the Plant site (S\&L, December 1978). As noted previously, site soils generally consist of clayey sand and silty clay, with various amounts of caliche. The dikes were constructed with side slopes ranging from 2.5 and/or 3.0 horizontal to 1.0 vertical. This side slope was specified in accordance with the Bureau of Reclamation Design of Small Dams, 1974, for small homogenous dams constructed with cohesive fill on a stable foundation. Side slopes were reportedly seeded.

Dike fill was specified to be placed and compacted to a minimum of 95% of the maximum dry density as determined by ASTM D698. Four hundred and twenty field density tests conducted specifically on Primary Ash Pond dike materials during construction reported densities ranging from a minimum of 92 percent up to 110 percent, with an average of 98 percent.

The exterior dikes for the Primary Ash Pond were constructed approximately 4 to 39 feet above the existing grade. The crest of the dike is reportedly 15 feet wide and includes a gravel perimeter access road. Typical cross-sections depicting the Primary Ash Pond construction configuration are provided on Figure 2-5.

The Primary Ash Pond and Secondary Pond are separated by a dike that has side slopes of approximately 3.0 horizontal to 1.0 vertical and a height of approximately 40 feet above natural grade. This dike also has a crest that is approximately 15 feet wide and contains a gravel road (see Figure 2-5). An outlet structure intersects the divider dike to allow the overflow of water from the Primary Ash Pond to the Secondary Pond. The structure inlet is located in the Primary Ash Pond and consists of a 7 -feet wide by 9.5 -feet long concrete structure configured with
stoplogs supported by a 12 -feet wide by 14.5 feet long foundation. The inlet structure is accessed by a walkway extending from the shared Primary Ash Pond and Secondary Pond dike into the Primary Ash Pond. The concrete inlet structure is intersected by a 30 -inch diameter corrugated metal pipe (CMP) with 7 -feet by 7 -feet steel seepage collars at 28 feet on center. The CMP has an inlet elevation of El. 106 and an outlet elevation of El. 105 (CDM, March 2011).

Bottom ash and boiler slag are sluiced along the south embankment into the Primary Ash Pond via one 12 -inch-diameter high density polyethylene (HDPE) pipe and one 12-inch-diameter carbon steel pipe (CSP). The ash slurry is sluiced onto a screen processor to separate fine and coarse material. Demineralizer effluent is sluiced into the Primary Ash Pond along the southeast embankment through an 8-inch-diameter HDPE pipe.

A boiler area sump in the plant collects other liquid waste and sluices it through a 20 -inch diameter Class 200 polyvinyl chloride (PVC) pipe along the Primary Ash Pond west embankment adjacent to the groin with the evaporation pond. A valve in the pipeline also allows the boiler area sump water to be discharged directly into the evaporation pond. Flow to the Primary Ash Pond from the boiler area sump is regulated depending on water levels and weather conditions. The pipeline can also be used as a clean water decanting pipe.

In 2012, Coleto Creek Power, LP contracted AECOM Technical Services, Inc. (AECOM) to prepare a hydraulic and geotechnical stability analysis of the Primary Ash Pond (AECOM, March 2012). Under that study, AECOM conducted field and laboratory testing to evaluate the current geotechnical stability of the Primary Ash Pond dike system. According to the report, AECOM found that "the ash pond has adequate factor of safety under the steady-state, normal operating, maximum operating, rapid drawdown, and seismic conditions modeled."

2.7 Primary Ash Pond Drawings

Figures 2-4 and 2-5A, -B, and -C provide dimensional drawings of the Primary Ash Pond as required in §257.73(c)(1)(vii).

2.8 Primary Ash Pond Instrumentation

The Coleto Creek Primary Ash Pond water levels are observed on a daily basis during site inspections using the pond staff gauge located on the inlet structure. The staff gauge has a maximum reading of +140 feet which approximately corresponds to the top of the dike embankment. Based on an on-site topographic survey conducted by Naismith Marine Services of Corpus Christi, Texas (Naismith) in July 2016, the elevation 140 reading on the staff gauge corresponds to approximate elevation 140.4 feet NAVD88. Furthermore, the plant datum (referred to as MSL) was surveyed and determined by Naismith to be equal to NAVD88. Water levels are normally maintained at an elevation of El. 136 feet (NAVD88) or lower. There is no other instrumentation used to monitor the Primary Ash Pond.

2.9 Primary Ash Pond Area-Capacity Curves

Figure 2-6 provides the area-capacity curves for the Primary Ash Pond.

2.10 Primary Ash Pond Spillway and Diversion Design Features

The Primary Ash Pond was not constructed with a conventional spillway. Water from the Primary Ash Pond is primarily lost through evaporation. Excess water that needs to be removed to maintain proper freeboard distances can either be discharged through the Secondary Pond and subsequently through Outfall 003 in accordance with the plant's TPDES permit or recirculated back to the plant for re-use.

Pond water levels are maintained to accommodate safe plant operations and are primarily dependent on plant water and ash loading rates as no storm water runoff from the surrounding area (other than run-off from the dike crest) enters the pond. Water levels are monitored daily and the amount discharged to the outfall or recirculated to the plant can be adjusted to accommodate for expected rain events or drought conditions. The Primary Ash Pond is currently
operated with more than four feet of freeboard to allow removal of bottom ash and fly ash for offsite beneficial reuse.

2.11 Primary Ash Pond Surveillance, Maintenance, and Repair Provisions

Formal and informal inspections of the pond are conducted by qualified facility personnel for the purpose of ensuring proper and safe operation in accordance with the provisions defined in §257.83(a). Weekly inspections include observation of the static pond water level, vegetation control, and structural integrity evaluations of dike embankments and any noted issues are addressed as necessary. In addition to the weekly observational inspections performed by site personnel, formal inspections of the pond conditions are conducted by an independent consulting firm annually in accordance with §257.83(b).

2.12 Primary Ash Pond Structural Stability History

There is no record or knowledge of structural instability of the Primary Ash Pond. The pond dikes have been maintained to minimize the potential for structural failure.

3.0 INITIAL POTENTIAL HAZARD CLASS ASSESSMENT

According to $40 C F R$ §257.73(a)(2), the owner and operator of a CCR surface impoundment must assign a hazard potential classification to each operating unit. For the purposes of the rule, hazard potential classification means "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The impoundment must be classified as high hazard, significant hazard, or low hazard. Each hazard potential classification is defined as follows (§257.53):

1) High hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
2) Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
3) Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

In 2010 the United States Environmental Protection Agency (USEPA) contracted CDM to perform a site assessment of the Primary Ash Pond at the Coleto Creek Power Station. As part of the assessment, CDM assigned the pond with a Low Hazard classification (CDM, 2011).

Subsequent to the CDM report findings, Coleto Creek Power, LP contracted AECOM to perform geotechnical studies to further evaluate the structural stability of the CCR surface impoundments. AECOM implemented a subsurface investigation and performed a geotechnical stability evaluation, a liquefaction assessment, and hydraulic analysis. AECOM also performed an independent hazard assessment of the Primary Ash Pond and Secondary Pond. The results of that assessment supported the initial CDM classification of Low Hazard.

3.1 Dam Breach Analysis

The Coleto Creek Primary Ash Pond is the only CCR-regulated surface impoundment at the Coleto Creek Power Station and is therefore subject to the Hazard Classification Assessment under the CCR rules. Because the Primary Ash Pond is hydraulically connected to, and is separated by a dike system from, the Secondary Pond, it is necessary to include the Secondary Pond when evaluating potential failure scenarios as noted below. Although the Secondary Pond is not a CCR-regulated unit, it is subject to operational and safety standards established by the Texas Commission on Environmental Quality (TCEQ) in its Dam Safety rules (30 TAC Part 1 Chapter 299).

Bullock, Bennett \& Associates (BBA) performed a simplified dam breach analysis of the Primary Ash Pond and Secondary Pond to support the loss of life, and environmental and economic impact analyses. The Primary Ash Pond and Secondary Pond combined, as indicated by the most recent survey conducted in July 2016, have a maximum storage capacity of approximately 4,000 acre-ft and a maximum levee height for the Secondary Pond of approximately 39 feet above adjacent lake level of 101 feet MSL. Construction was completed in 1978 and the effective fluid storage capacity in the Primary Ash Pond has diminished with the placement of CCR over time. According to topography and bathymetric survey data collected in July 2016, the fluid capacity in the Primary Ash Pond has been reduced to approximately 1,720 acre-ft at the maximum dike crest height.

The Primary Ash Pond and Secondary Pond are located next to the Coleto Creek Reservoir which was constructed to serve as a cooling pond for the Power Station. The reservoir is divided into a "hot" side and a "cool" side. The ponds are located immediately adjacent to the hot side of the lake. The hot side of the lake is created from Sulphur Creek behind Dike No. 1 (Dike No. 1 Lake) which is connected to Turkey Creek behind Dike No. 2 (Dike No. 2 Lake) by a secondary flume. Water from these lakes then flows into Main Lake which is the cool side. Decant water from the Secondary Pond can be combined with other plant water then routed through TCEQapproved Outfall 003 to the hot side of the lake. Cool water is pumped into the Power Station from the Main Lake.

GBRA provided area-capacity tables for the Coleto Creek Reservoir and Dike Lake Nos. 1 and 2. These tables are presented as Attachments 3-1, 3-2, and 3-3 in Appendix E. Dike No. 1

Lake consists of approximately 164 acres at the normal operating elevation of 101 feet MSL.
Dike No. 2 Lake is approximately 429 acres at the normal operating elevation of 101 feet MSL. The two Dike Lakes are separated from Coleto Creek Reservoir by splitter dikes with an approximate elevation of 102 feet MSL (GBRA, 2016). Coleto Creek Reservoir covers an area of approximately 2,652 acres at a normal operating elevation of 98 feet MSL (GBRA, 2016). Coleto Creek Power, LP reportedly controls the lake up to an elevation of 104 feet MSL. An area map showing the relative locations of the Primary Ash Pond, Secondary Pond, Dike Lakes, and Coleto Creek Reservoir is presented in the attachments as Figure 1-1.

For the purposes of this evaluation, a conservatively worst-case dam breach scenario was developed assuming that the breach was due to overtopping of the surface impoundment levees and that the breach occurs in the shared Primary Ash Pond and Secondary Pond dike and subsequently in the Secondary Pond dike adjacent to Coleto Creek Reservoir, releasing the entire water contents of both ponds. This scenario allows for the greatest quantity of pond decant water to be released.

An evaluation of potential water and residual solids flow paths was performed to support the loss of life, environmental, and economic evaluations. Surface elevation cross-sections assembled from Google Earth ${ }^{\mathrm{TM}}$ profiles of the areas adjacent to the pond dikes were reviewed to estimate the potential flow path of the released water and solids. As shown in Figure 1-1A, the wet side of the ponds are bound by the Evaporation Pond followed by Dike No. 1 lake on the north-northwest, Dike No. 1 lake on the northeast corner, and the primary plant discharge flume on the east. The surface elevation of the terrain that bounds the east side of the discharge flume appears to extend to approximately elevation 132 feet. The flume channel, therefore, appears to be located within a larger basin bounded to the west by the Primary Ash Pond and Secondary Pond dikes (approximate elevation 140 feet) and to the east by land mass (approximate elevation 132 feet). The distance between the dike on the west side of the basin and land mass high points on the east side appears to be approximately 300 feet. The flume channel and basin would route flow from an east-side breach of the dike to the hot side of the lake. Released water and solids, therefore, would initially flow to the hot side of the lake regardless of the location of the breach. From there, water levels would increase one foot (the amount of available freeboard behind Dike No. 1 and Dike No. 2 lakes) then flow into the Main lake. Eventually all water would be released into the Main lake.

Using the tables provided by GBRA, a one-foot increase in the Main Lake elevation requires an additional approximately 2,720 acre-feet of water. The estimated maximum volume of discharge from the Primary Ash Pond and Secondary Pond is approximately 1,720 acre-feet of water, resulting in a water surface elevation change on the reservoir of approximately eight inches. An eight-inch change in water surface elevation is considered to be nominal and would not result in the loss of major infrastructure elements or disrupt lifeline facilities.

3.2 Loss of Life Evaluation

The Primary Ash Pond and Secondary Pond are located apart from the active industrial areas of the Power Station. Two fly-ash silos are located adjacent to the western border of the Primary Ash Pond and loading of trucks for off-site transport and beneficial reuse of the fly ash regularly occurs at this location. These silos and truck loading operations are adjacent to the southwest half of the Primary Ash Pond which is filled with dry and compact CCRs, and any catastrophic failure of the impoundment in this area is highly unlikely. If a failure were to occur, it would probably be located on the "wet" side of the pond, including the northern or eastern dikes for both the Primary Ash Pond and Secondary Pond (see Figure 1-1). There are no regular or active plant operations that occur downstream of those areas where personnel would be expected to be present in the event of a catastrophic failure of the dike. There are no residences or other off-site manned operations immediately downstream of the ponds. As noted in Section 3.1 the Dike 1, Dike 2, and Main Lakes would absorb the released water and raise reservoir levels a nominal amount (less than a foot). Loss of life in the event of a catastrophic failure of the surface impoundment dike system, therefore, is considered to be improbable.

3.3 Economic and/or Environmental Loss Evaluation

Additional consideration was given to the impacts of the water quality from a large volume discharge from Primary Ash Pond and Secondary Pond into the Coleto Creek Reservoir. Using the volume ratio of pond water (approximately 1,720 acre-feet) that could potentially be discharged into the Coleto Creek Reservoir to the existing volume of water in the reservoir (approx. 31,280 acre-feet at elevation 98 feet msl), the impacts to the water quality are minimal (31,280 acre-feet/1,720 acre-feet $=\sim 18$ dilution factor of analytes in the Primary Ash Pond water). Discharge of Secondary Pond water is currently allowed to the Coleto Creek Reservoir under Permit No. WQ002159000 (TCEQ, 2010).

Currently, the coal combustion by-products are sluiced into the Primary Ash Pond. The assumed ratio of solids-to-water is approximated at 20%-to- 80%. The solids settle out of solution and the water decants to the surface. As the solids settle out of solution, they consolidate. Additionally, based on field observations the ash "sets up" similar to cement, becoming very hard and massive. The expected flow of any unconsolidated solids from the Primary Ash Pond is believed to be minimal.

Additionally, approximately 90% of the approximate 90,000 cubic yards of ash produced annually is currently being sold and recycled rather than disposed in the Primary Ash Pond (Coleto Creek Power, 2015). However, for the sake of conservatism, it is assumed that a volume of ash equivalent to six months of production (assuming no recycling) is disposed in the Primary Ash Pond and may not be consolidated, and may flow should a breach occur. Under these assumptions, there is potential for approximately 45,000 cubic yards (approximately 28 acre-feet) of ash flow. The ash volume would be in solution with the decant water, displacing an equal volume of the decant water. This ash would be expected to be contained within the hot side of the lake. Impacts would therefore be primarily limited to the owner's property.

3.4 Hazard Potential Classification

Based on a review of previous studies, analytical data, ash production/recycling volumes, available impoundment capacities, available lake capacities, observed current conditions at the site, assumptions, and other factors, the Coleto Creek Primary Ash Pond is classified as a Low Hazard Potential impoundment.

4.0 INITIAL STRUCTURAL STABILITY ASSESSMENT

According to §257.73(d), the owner or operator of the CCR surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein."

Stable foundations and abutments. As noted in Section 2.5, the Primary Ash Pond was constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of waste water ponds that were in force at the time of construction (S\&L, December 1978). The dikes are continuous, with no constructed abutments. A review of the geotechnical data collected at the time of construction confirms that the foundation for the pond should continue to be stable over its operational life.

Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The Primary Ash Pond dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slope. Outer slopes were seeded for slope protection but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with $\S 257.83$ (a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in December 2016 in accordance with the requirements defined in $\S 257.83(\mathrm{~b})$ which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time. (BBA, 2018).

Dikes mechanically compacted to a density sufficient to withstand the range of loading

 conditions in the CCR unit. The dike system was engineered by S\&L and constructed in approximately 1978. As discussed in Section 2.6 - Ash Pond Construction Summary, dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately 98% maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly mowed as necessary to comply with height of grass requirements.

A single spillway or a combination of spillways configured as specified in paragraph $(d)(1)(v)(A)$ of the section of the rule. As is common with surface impoundments of this type, the Primary Ash Pond was not constructed with a spillway. The results of the hydraulic analysis completed in support of the Inflow Design Flood Control System evaluation (BBA, January 2018) showed that the Primary Ash Pond, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, has sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment (see Section 3.0) to equal the 100 -year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.

Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in December of 2016 (BBA, 2018). There were no observations of conditions that would negatively impact operation of the structures. The inspection was limited to visual observations during a site visit, and did not include, for instance, use of a remote video camera in the outlet structure pipe for inspection of internal conditions.

For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The dike that separates the Primary Ash Pond from the Secondary Pond was evaluated for stability in the event of rapid drawdown of the Secondary Pond, as further discussed in Section 5.0 Initial Safety Factor Assessments. As noted in the Initial Safety Factor Assessment, the modeled slope stability results indicate this divider dike exceeds the required safety factors under the max surcharge pool/rapid drawdown scenario.

Coal Combustion Residuals Surface Impoundment
History of Construction and Initial Hazard Potential Assessment,
Structural Integrity Assessment, and Safety Factor Assessment (Rev. 1)

No structural stability deficiencies were identified in this initial Structural Stability
Assessment that would require corrective measures.

5.0 INITIAL SAFETY FACTOR ASSESSMENTS

§257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments as noted in Section 4.0 were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The critical cross sections for the Primary Ash Pond, as shown in Figure 2-5A, are in the areas of the pond that still contain water, are generally representative of the tallest sections of dikes and contain representative side slopes, and are where the highest potential impacts would be expected were a dike breach to occur.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by S\&L during and after construction of the pond in 1978. Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S\&L, URM and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions, therefore no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations is provided below.

S\&L completed approximately 80 soil borings to document the subsurface soils in and around the Primary Ash Pond. All of the borings were reportedly completed prior to construction of the ponds, in support of the pond design. Following commissioning of Unit 1 and filling of the ponds to normal operating levels, seepage was observed west and adjacent to the Recirculating Pump House. URM was contracted to investigate the seeps and their potential impact to dike stability. URM completed a geotechnical investigation of the pond dikes near the seep location, and assessment of both the dike embankment stability and groundwater quality indicated no detrimental effects due to the seep at that time and that, based on site geotechnical investigations, laboratory data analysis, and slope stability modeling of the dike, short and long-term stability of the embankments in the study area were considered satisfactory (URM, July 29, 1981).

AECOM, upon reviewing previous geotechnical investigations from S\&L and URM, completed a supplemental geotechnical investigation program to evaluate stability of the dike system in 2012. While their review of previous data found the data to be acceptable for use in evaluation of dike stability of the ponds, they also identified critical areas of interest within the dike system for further evaluation, and implemented a geotechnical investigation of these critical areas (cross sections A and B as shown in Figure 2-5A of the attachments). BBA agrees that these locations are the critical areas to evaluate for stability, given cross section A is near a location of historically observed seepage at the outside toe of the Primary Ash Pond dike and cross section B is located along the splitter dike that separates the Primary Ash Pond and Secondary Pond. It should be noted that due to recent reduction in water surface operational levels at the Primary Ash Pond, the historically observed seepage in the area of cross section A has recently been observed to be dry.

AECOM field data gathering included construction of 8 geotechnical borings extending from depths ranging from 29.5 to 121.5 feet below ground surface (bgs). Five borings were completed from the top of the dikes and three borings were located along the exterior toe of dike. Laboratory testing included water content, dry unit weight, calibrated penetrometer, grain-size distribution, triaxial shear testing and direct shear testing. AECOM contracted with Subsurface Exploration Services, LLC of Green Bay, Wisconsin to complete the field work, and AECOM field staff observed the exploration work, assisted with collection of soil samples, and completed field boring logs. Laboratory testing was conducted by AECOM geotechnical laboratory technicians. AECOM geotechnical laboratories are reportedly certified by multiple state and
federal agencies to complete geotechnical testing in accordance with American Society for Testing and Materials (ASTM), United States Army Corp of Engineers (USACE), and State Department of Transportation approved methods and standards (AECOM, 2012).

BBA reviewed the data available from the S\&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted Naismith to complete an existing conditions topographic survey of these critical cross section areas, as well as topography of the entire perimeter dike system and bathymetry of the pond interiors. Using the 2016 existing conditions survey data, and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross section locations A and B for completion of further analysis. Upon review of all data and methodologies used by AECOM in analysis of the critical cross section locations of the dike systems, BBA completed a similar analysis. BBA compared the 2016 as-built topographic survey cross sections at cross section locations A and B to the design sections. Based on this review it appeared the as-built sections generally were slightly overbuilt when compared to the design sections, and contained slightly gentler slopes. Based on comparison of design versus as-built sections at each location it was determined that the design sections were likely worse case than the as-built sections in regards to analysis for slope stability, therefore only the design sections were evaluated.

Based on review of the AECOM bore logs and geotechnical laboratory test data, BBA generally agrees with the lithology and soil engineering strength properties used in the AECOM stability analysis. However, BBA's evaluation of field data and laboratory indices testing did result in minor changes in assumed soil properties - the reduction of the effective shear strength of caliche from 36 degrees to 34 degrees for cross section B and the increase in unit weight from 120 pounds per cubic foot (pcf) to 130 pcf. BBA evaluated stability with both sets of data and observed that these changes do not alter the overall safety factor for these sections, however, the revised data set appear more appropriate based on review of field and indices test data and are
therefore reported. Review of the data indicates that generally the AECOM engineering strength properties used in their analysis were conservative and representative of the field and laboratory data gathered.

Similar to the AECOM stability evaluation, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, shortterm loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event, or if the Secondary Pond was rapidly drained.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for the Coleto Creek Power Station based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 5-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 5-1
Soil Strength Parameters used in Geotechnical Stability Analysis (color shading as shown in cross sections)
Cross Section A-A'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
	$\mathrm{c}^{\prime}(\mathrm{psf})$	$\varnothing \prime$	$\mathrm{c}(\mathrm{psf})$	\varnothing	
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Natural Silty Clay or Clayey Sand (CL, SC, CL-Caliche)	130	150	27	4,000	0
Natural Sands (SM, SP, SC)	130	0	36	0	36

Cross Section B-B'

Soil Description	Unit Weight (pcf)	Effective Stress Strength Parameters		Total Stress Strength Parameters	
		c^{\prime} (psf)	\emptyset	c (psf)	\emptyset
Clayey Sand Fill Material (SC)	130	150	29	3,000	0
Caliche (SC)	135	250	34	250	0
Medium Dense to Dense Sands (SP)	132	0	36	0	36
Dense to Extremely Dense Sands (SP, SC, SM, SP-SM)	133	0	38	0	38
Very Stiff to Hard Silty Clay (CL, CL-ML, CH)	128	0	29	3,250	0

Based on field observations, the ash located within the Primary Ash Pond tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the AECOM evaluation, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, January 2018) is 136.1 (NAVD88).

The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2016 survey was 139.7 (NAVD88).

Cross section A, located in the observed historical seep location near the southeast corner of the Primary Ash Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in the AECOM stability analysis as well as the BBA inspection conducted in December 2016. Cross section B, located along the separator dike between the Primary Ash Pond and Secondary Pond, was modeled with the maximum storage and maximum surcharge pool elevations. Cross section B was also evaluated for the rapid draw down (RDD) condition. It is conservatively assumed the phreatic surface at cross section A exits the exterior dike surface at approximately $1 / 3$ the height of the dike (although the only field observations of wet soil occurred at the toe of slope, where the seep locations are located). The phreatic surface for cross section B is at the same elevation as the assumed pond water levels.

Dikes should be designed with appropriate safety factors. Required safety factors per §257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 5-2
Required Factors of Safety

Condition	Required Factor of Safety
Long-Term, Maximum Storage Pool Loading Static Factor of Safety	1.50
Maximum Surcharge Pool Loading Static Factor of Safety	1.40
Seismic Factor of Safety	1.00
Liquefaction Factor of Safety	1.20

BBA used the 2D limit equilibrium computer program SLIDE 7.0 by Rocscience to complete the slope stability analysis for the critical cross sections. A combination of the Simplified Bishop and the Morgenstern-Price method of slices, for both circular and block-type failures, was used to analyze the stability of the slopes. Eighteen stability cases were evaluated for the critical cross sections as summarized in Table 5-3, and the lowest factor of safety generated for each case is reported:

Table 5-3
Slope Stability Analysis Summary

Cross Section	Conditions	Effective Stress Analysis Safety Factor		Total Stress Analysis Safety Factor	
	Block	Circular	Block	Circular	
A-A'	Max Storage Pool/Static	$1.8(1)$	$1.9(2)$	$4.9(3)$	$5.5(4)$
A-A'	Max Surcharge Pool/Static	$1.7(5)$	$1.8(6)$	$4.9(7)$	$5.5(8)$
A-A'	Max Storage Pool /Seismic	NA	NA	$4.3(9)$	$4.8(10)$
B-B'	Max Storage Pool /Static	$2.8(11)$	$2.8(12)$	$3.7(13)$	$5.1(14)$
B-B'	Max Surcharge Pool, Rapid Drawdown	NA	NA	$2.0(15)$	$2.1(16)$
B-B'	Max Storage Pool/Seismic	NA	NA	$3.0(17)$	4.1 (18)

Note: (\#) = Case Number (referenced on model output data in Appendix C).
Cross sections, bore logs, laboratory data, and SLIDE 7.0 stability model output data are included in Figure 2-5A and Appendices A, B, \& C, respectively of this report.

As shown in Table 5-3, eighteen stability cases were modeled and all cases meet or exceed required factors of safety.

5.1 Liquefaction Assessment

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.

- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm , a liquid limit less than 35
percent, and an in situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 22 have been known to liquefy. Other sources suggest an SPT value of $\left[\left(\mathrm{N}_{1}\right)_{60}\right]$ less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely. However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

When available, site specific information such as SPT blow count and percent fines content (soils passing the \#200 sieve) was used in the evaluation of liquefaction potential. For strata with no site specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the

USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

A complete discussion of the methodology used and the calculation spreadsheets for each strata identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

5.2 Initial Safety Factor Assessment Summary

In accordance with §257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary Ash Pond at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steadystate seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on stability analysis evaluation, the Primary Ash Pond has an adequate factor of safety for all evaluated loading conditions.

6.0 REFERENCES

AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.

BBA. (2018, January 22). Letter to Mr. Robert Stevens from Mr. Dan Bullock. Coleto-Creek Power - September 2016 Primary Ash Pond and Secondary Pond Dike Inspection. Bullock, Bennett \& Associates, LLC.

BBA. (January 2018). Initial Inflow Design Flood Control System Report (Original Submittal Date September 2016). Bullock, Bennett \& Associates.

CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.

GBRA. (2013). Coleto Creek Watershed River Secments, Descriptions and Concerns. (G.-B. R. Authority, Ed.) Retrieved from Guadalupe-Blanco River Authority Web site: http://www.gbra.org/documents/publications/basinsummary/2013j.pdf

S\&L. (1981). Waste Disposal Plan. Central Southwest Services, Inc. Central Power \& Light Company. Coleto Creek Power Station - Units 1 and 2. Sargent \& Lundy Engineers.

S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

TCEQ. (January 2007). Hydrologic and Hydraulic Guidelines for Dams in Texas. Dam Safety Program, Texas Commission on Environmental Quality.

URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power \& Light Company. Underground Resource Management, Inc.

URM. (July 29, 1981). Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station. Underground Resource Managment, Inc.

FIGURES

Plot Date: $12 / 288 / 17-4: 11$ mm, Plotted by: roodri \quad Name: C-ST-PL106.dwg
Coleto Creek Watershed
\qquad

SOURCE: MAP PROVIDED BY SARGENT AND LUNDY ENGINEERS CHICAGO, IL.

Coleto Creek Power, LP

THICKNESS MAP OF IN-SITU COHESIVE SOILS
 Bullock, Bennett \& Associates, LLC Bullock, Enennett \& Associat

APPENDIX A: GEOTECHNICAL BORELOGS

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 6 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 6 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 4 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 4 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin 54311			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 8 / 11$
Signature of Person Doing Work		$\begin{aligned} & \hline \text { Date Signed } \\ & 11 / 8 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.	Work Date of Abandonment $11 / 7 / 11$
Signature of Person Doing Work	$\begin{aligned} & \hline \text { Date Signed } \\ & 11 / 7 / 11 \end{aligned}$
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \\ & \hline \end{aligned}$
City, State, Zip Code Green Bay, Wisconsin 54311	

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.			Date of Abandonment $11 / 2 / 11$
Signature of Person Doing Work		$\begin{aligned} & \text { Date Signed } \\ & 11 / 2 / 11 \end{aligned}$	
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \end{aligned}$		
City, State, Zip Code Green Bay, Wisconsin			

(6) Comments

(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.	Work Date of Abandonment $11 / 7 / 11$
Signature of Person Doing Work	$\begin{aligned} & \hline \text { Date Signed } \\ & 11 / 7 / 11 \end{aligned}$
Street or Route 1035 Kepler Drive	$\begin{aligned} & \text { Telephone Number } \\ & 920-468-1978 \\ & \hline \end{aligned}$
City, State, Zip Code Green Bay, Wisconsin 54311	

AECOM General Notes

Drilling and Sampling Symbols:

SS : Split Spoon-1-3/8" I.D. 2" O.D. (Unless otherwise noted)	HS : Hollow Stem Auger
ST : Shelby Tube-2" O.D. (Unless otherwise noted)	WS : Wash Sample
PA : Power Auger	FT : Fish Tail
DB : Diamond Bit-NX, BX, AX	RB : Rock Bit
AS : Auger Sample	BS : Bulk Sample
JS : Jar Sample	PM : Pressuremeter Test
VS : Vane Shear	GS : Giddings Sampler
OS : Osterberg Sampler	

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

Water Level Measurement Symbols:

WL : Water Level	WCI : Wet Cave In
WS : While Sampling	DCI : Dry Cave In
WD : While Drilling	BCR: Before Casing Removal
AB : After Boring	ACR : After Casing Removal

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

Gradation Description and Terminology:

Coarse grained or granular soils have more than 50% of their dry weight retained on a \#200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than 50% of their dry weight retained on a \#200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component of Sample	Size Range	Description of Other Components Present in Sample Trace	Percent Dry Weight
Boulders	Over 8 in. (200 mm)	Little	$1-9$
Cobbles	8 inches to 3 inches $(200 \mathrm{~mm}$ to 75 mm$)$	Some	$10-19$
Gravel	3 inches to \#4 sieve $(75 \mathrm{~mm}$ to 4.76 mm$)$	And	$20-34$
Sand	$\# 4$ to $\# 200$ sieve $(4.76 \mathrm{~mm}$ to 0.074 mm$)$	Passing \#200 sieve $(0.074 \mathrm{~mm}$ to 0.005 mm$)$	
Silt	Smaller than 0.005 mm		
Clay			

Consistency of Cohesive Soils:
Relative Density of Granular Soils:

Unconfined Compressive Strength, Qu, tsf	Consistency	N-Blows per foot	Relative Density	
<0.25	Very Soft	$0-3$	Very Loose	
$0.25-0.49$	Soft	$4-9$	Loose	
$0.50-0.99$	Medium (firm)	$10-29$	Medium Dense	
$1.00-1.99$	Stiff	$30-49$	Dense	
$2.00-3.99$	Very Stiff	$50-80$	Very Dense	
$4.00-8.00$	Hard	>80	Extremely Dense	
>8.00	Very Hard			

AECOM Field and Laboratory Procedures

Field Sampling Procedures

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140 -pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5 -foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5 -foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5 -foot interval.

AECOM Field and Laboratory Procedures

Subsurface Exploration Procedures

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

AECOM Laboratory Procedures

Water Content (Wc)

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (yd)

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

AECOM Standard Boring Log Procedures

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.

AECOM Soil Classification System

1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
2. Reference: Unified Soil Classification Systems
3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

APPENDIX B: GEOTECHNICAL LABORATORY DATA

Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. * PERCENT	PASS? $(\mathrm{X}=\mathrm{NO})$
$\begin{gathered} \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 89.0 \\ 55.5 \\ 39.5 \end{array}$		

Material Description
CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY

Atterberg Limits

LL= 38
 $\mathrm{Pl}=24$

Coefficients
$\mathrm{D}_{85}=0.3732$
$\mathrm{D}_{30}=0.0564$
$\mathrm{C}_{\mathrm{u}}=$
Classification
AASHTO $=\mathrm{A}-6(4)$
Remarks

Source of Sample: B-1-1
Sample Number: B-1-1 S-11
Depth: $20^{\prime}-22^{\prime}$
Date: 12/9/11
Client: IPR-GDF SUEZ
Project: COLETO CREEK

SIEVE SIZE	PERCENT FINER	SPEC. * PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.6 \\ 94.1 \\ 77.9 \end{array}$		

Material Description

SILTY CLAY, SOME SAND, LIGHT GRAY
Atterberg Limits
(no specification provided)
Date: 12/15/11
Particle Size Distribution Report

(no specification provided)

Material Description

SILTY CLAY, TRACE SAND, BROWN

Atterberg Limits

$\mathrm{PL}=28$	$\mathrm{LL}=79$	$\mathrm{PI}=51$
	Coefficients	
$\mathrm{D}_{90}=0.0724$	$\mathrm{D}_{85}=0.0576$	$\mathrm{D}_{60}=0.0030$
$\mathrm{D}_{50}=0.0020$	$\mathrm{D}_{30}=$	$\mathrm{D}_{15}=$
$\mathrm{D}_{10}=$	$\mathrm{C}_{\mathrm{u}}=$	$\mathrm{C}_{\mathrm{C}}=$
	Classification	
USCS $=\mathrm{CH}$	AASHTO=	A-7-6(53)
	Remarks	

Depth: $120^{\prime}-121^{\prime}$

Client: IPR-GDF SUEZ
A=COM
Project: COLETO CREEK

Client: IPR-GDF SUEZ
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC. ${ }^{*}$ PERCENT	PASS? $(\mathrm{X}=\mathrm{NO})$
\#4	100.0		
\#10	100.0		
\#40	88.9		
\#100	57.7		
\#200	42.3		

(no specification provided)

Material Description		
CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN		
$P L=13$	Atterberg Limits $\mathrm{LL}=41$	$\mathrm{PI}=28$
$\begin{aligned} & \mathrm{D}_{90}=0.4679 \\ & \mathrm{D}_{50}=0.0893 \\ & \mathrm{D}_{10}= \end{aligned}$	Coefficients $\begin{aligned} & \mathrm{D}_{85}=0.3722 \\ & \mathrm{D}_{30}=0.0293 \\ & \mathrm{C}_{\mathrm{U}}= \end{aligned}$	$\begin{aligned} & \mathrm{D}_{60}=0.1697 \\ & \mathrm{D}_{15}= \\ & \mathrm{C}_{\mathrm{C}}= \end{aligned}$
USCS $=$ SC	Classification AASHTO= Remarks	$A-7-6(6)$

LL

Coefficients

$\mathrm{D}_{85}=0.3722$
$\mathrm{D}_{30}=0.0293$
$\mathrm{D}_{60}=0.1697$
$\mathrm{D}_{15}=$
$\mathrm{C}_{\mathrm{C}}=$

Classification

$\mathrm{AASHTO}=\mathrm{A}-7-6(6)$
Remarks

Client: IPR-GDF SUEZ
AECOM

Tested By: BCM \qquad Checked By: WPQ

Particle Size Distribution Report

(no specification provided)

Particle Size Distribution Report

(no specification provided)
Source of Sample: B-2-1 Sample Number: B-2-1 S-33

Client: IPR-GDF SUEZ
Project: COLETO CREEK

Particle Size Distribution Report

(no specification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-9

Depth: 16.0'-17.8'

Material Description

CLAYEY FINE TO MEDIUM SAND, GRAY

Atterberg Limits

$\mathrm{PL}=15$
$\mathrm{D}_{90}=0.5011$
$\mathrm{D}_{50}=0.1152$
$\mathrm{D}_{10}=$

USCS= SC
LL= 44
$\mathrm{PI}=29$

Coefficients

$\mathrm{D}_{85}=0.4085$
$\mathrm{D}_{60}=0.1882$
$\mathrm{D}_{\mathrm{C}}^{\mathrm{C}}=0=0.0416$
Classification
AASHTO $=$ A-7-6(6)
Remarks

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK
Particle Size Distribution Report

SIEVE SIZE	PERCENT FINER	SPEC.* PERCENT	PASS? $(X=N O)$
$\begin{gathered} \# 4 \\ \# 10 \\ \# 40 \\ \# 100 \\ \# 200 \end{gathered}$	$\begin{array}{r} 100.0 \\ 99.6 \\ 79.5 \\ 46.5 \\ 34.8 \end{array}$		

(no specification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-10
Depth: $18^{\prime}-20^{\prime}$

Material Description

CLAYEY FINE TO MEDIUM SAND, DARK BROWN
$P L=13$
$\mathrm{D}_{90}=0.6299$
$\mathrm{D}_{50}=0.1856$
$\mathrm{D}_{10}=$
USCS $=\mathrm{SC}$

Atterberg Limits

LL= 35
$\mathrm{PI}=22$
Coefficients
$\mathrm{D}_{85}=0.5094$
$\mathrm{D}_{30}=0.0701$
$\mathrm{C}_{\mathrm{u}}=$
$\mathrm{D}_{60}=0.2547$
$\mathrm{D}_{15}=$
$\mathrm{C}_{\mathrm{C}}=$
Classification
AASHTO $=$ A-2-6(2)
Remarks
Date: 12/9/11

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

Tested By: BCM \qquad Checked By: WPQ

(no specification provided)
Source of Sample: Boring 4-1
Depth: 24.0-26.0
Sample Number: S-13

Clayey F-M Sand Little Silt - Brownish Gray

Atterberg Limits

$\mathrm{D}_{85}=0.4206$

Classification
AASHTO $=\mathrm{A}-6(7)$
Remarks

Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561
Particle Size Distribution Report

(no specification provided)

Material Description

SILTY CLAY, LITTLE FINE TO MEDIUM SAND, WHITE AND GRAY

$\mathrm{PL}=18$	Atterberg Limits $\mathrm{LL}=30$	$\mathrm{PI}=12$
	Coefficients	
$\mathrm{D}_{90}=0.1803$	$\mathrm{D}_{85}=0.0826$	$\mathrm{D}_{60}=0.0138$
$\mathrm{D}_{50}=0.0108$	$\mathrm{D}_{30}=0.0064$	$\mathrm{D}_{15}=$
$\mathrm{D}_{10}=$	$\mathrm{C}_{\mathrm{u}}=$	$\mathrm{C}_{\mathrm{C}}=$
USCS= CL	Classification AASHTO=	A-6(9)
	Remarks	

$\mathrm{D}_{90}=0.1803$
$\mathrm{D}_{50}=0.0108$
$\mathrm{D}_{10}=$

USCS= CL
Classification
AASHTO $=\mathrm{A}-6(9)$
Remarks

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX (\%)
	B-1-1	B-1-1 S-5	$8^{\prime}-10^{\prime}$		14	22	8	USCS

Client: IPR-GDF SUEZ
AㅡCOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	uscs
-	B-1-1	B-1-1 S-11	20'-22'		14	38	24	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

Client: IPR-GDF SUEZ

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX $(\%)$	USCS
-	B-1-1	B-1-1 S-40	120'-121'		28	79	51	CH

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
-	B-2-1	B-2-1 S-6	$10^{\prime}-12$			USCS		
					14	38	24	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-2-1	B-2-1 S-10	$18^{\prime}-20^{\prime}$		13	41	28	USCS

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC SIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$
	B-2-1	B-2-1 S-17	$32^{\prime}-34$			USCS		
					14	29	15	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT (\%)	LIQUID LIMIT $(\%)$
\bullet	B-2-1	B-2-1 S-33	$85.0^{\prime}-86.5^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					25	59	34	CH

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

										SOML DATA
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$	PLASTICITY INDEX $(\%)$	USCS		
	B-2-2	B-2-2 S-16	$59.0^{\prime}-60.5^{\prime}$		18	41	23	CL		

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT $(\%)$	PLASTIC LIMIT $(\%)$	LIQUID LIMIT $(\%)$
	B-2-2	B-2-2 S-18	$69.0^{\prime}-70.5^{\prime}$		PLASTICITY INDEX $(\%)$	USCS		
					26	63	37	CH

Client: IPR-GDF SUEZ
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOIL DATA						
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATVRAL WATER CONTENT $(\%)$	PLASTIC LMIT $(\%)$	LIQUID LMIT $(\%)$	PLASTICITY INDE (\%)	USCS
	B-3-1	B-3-1 S-9	$16.0^{\prime}-17.8^{\prime}$		15	44	29	SC

LIQUID AND PLASTIC LIMITS TEST REPORT

		SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC SIMIT $(\%)$	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)
-	B-3-1	B-3-1 S-10	$188^{\prime}-20^{\prime}$		13	35	22	USCS

Client: IPR-GDF SUEZ
A=COM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST ASTM D4318

LIQUID AND PLASTIC LIMITS TEST REPORT

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (\%)	PLASTIC LIMIT (\%)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USCS
-	B-5-1	B-5-1 S-14	26'-27'		18	30	12	CL

AECOM

AECOM Project No.: 60225561

Boring/Source:	4-1	
Sample No.:	13	
Depth (ft.):	24.0-26.	
Description:	Clayey F-M	le Silt
	- Brownish G	
		Test 3
Flask No.		SG-1
Wt. Flask + Soil +	Water (W2)	726.62
Wt. Flask + Wa	er (W3)	675.32
Temperature (C		21.5
Density of Wate	@ test Tem.	0.99789
Tare No.		ED-6
Wt. Tare		602.23
Wt. Tare + Soil		684.30
Wt. Soil (W2-W		82.07
(k) Temp. Corre	ction	0.99680
Specific Gravity	(Gs)	2.659

Boring/Source: Sample No.: Depth (ft.): Description:	$\frac{2-1}{14}$
	$\frac{\text { Clayey F-M Sand Little Silt }}{}$

	Test 4
Flask No.	SG-2
Wt. Flask + Soil + Water (W2)	738.44
Wt. Flask + Water (W3)	668.48
Temperature (C)	21.5
Density of Water @ test Tem.	0.99789
Tare No.	ED-10
Wt. Tare	619.18
Wt. Tare + Soil	730.96
Wt. Soil (W2-W3)	111.78
(k) Temp. Correction	0.99968
Specific Gravity (Gs)	$\mathbf{2 . 6 7 2}$

Technician	BCM
Date	
$12 / 2 / \mathbf{1 1}$	

Calculated \qquad
Checked \qquad

ORGANIC CONTENT TEST
ASTM D-2974
Method C

AECOM Project No.:	60225561
Project Name:	Coleto Creek Facility - IPR-GDP Suez
Date Tested:	$12 / 6 / 2011$

Sample Information

Boring / Source:
Sample No.:
Depth (ft.):

B-4-1
13
24.0-26.0

Organic Content Test Data

Tare No.:
Tare Wt. (gm): T
Wet Wt. + Tare (gm): A+T
Dry Wt. + Tare (gm): B+T
Moisture Content (\%):

Wt. of Ash + Tare (gm): D+T 44.65
Percent Ash: $(\mathrm{D}-\mathrm{T} / \mathrm{B}-\mathrm{T}) \times 100=\mathrm{E}$
Organic Content (\%):

N
17.71
48.27
44.70
13.23 99.81
0.19

[^5]

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: $B-2-1 S-14$
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		10.4 PSI	17.4 PSI	24.3 PSI	
$\frac{\overline{0}}{\underline{\underline{I}}}$	Diameter, in	2.8362	2.8441	2.8457	
	Height, in	5.9134	6.0831	6.0173	
	Water Content, \%	21.81	14.93	13.70	
	Dry Density, pcf	105.5	115.9	120.2	
	Saturation, \%	100.17	90.88	94.34	
	Void Ratio	0.58172	0.4389	0.38805	
$\begin{gathered} \frac{1}{0} \\ \frac{1}{\alpha} \\ \frac{1}{\omega} \\ 0 \\ \frac{1}{O} \\ 0 \\ 0 \end{gathered}$	Water Content, \%	21.39	15.80	14.06	
	Dry Density, pcf	106.1	117.3	121.3	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.57165	0.42209	0.37567	
	Back Press., tsf	5.0449	5.0454	5.0404	
Minor Prin. Stress, tsf		0.74395	1.2474	1.7924	
Max. Dev. Stress, tsf		1.7444	3.0288	4.2889	
Time to Failure, min		1612.1	1613.1	1614.3	
Strain Rate, \%/min		0.02	0.02	0.03	
B-Value		. 98	. 97	. 95	
Measured Specific Gravity		2.67	2.67	2.67	
Liquid Limit		42	42	42	
Plastic Limit		24	24	24	
Plasticity Index		18	18	18	
Failure Sketch					

Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-2-1 S-14	Tested By: BCM	Checked By: WPQ
Sample No.: S-14	Test Date: $12 / 5 / 11$	Depth: 26.0'-28.0'
Test No.: B-2-1 S-14	Sample Type: $3^{\prime \prime}$ ST	Elevation: ----
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in
Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Liquid Limit: 42

	Time min	$\begin{array}{r} \text { Vertical } \\ \text { Strain } \\ \% \end{array}$	$\begin{aligned} & \text { Corrected } \\ & \text { Area } \\ & \text { in^2 } \end{aligned}$	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6.3179	0	0	5.0449	5.7888	5.7888
2	5.0001	0.045204	6.3207	31.887	0.36323	5.1097	5.7888	6.152
3	10	0.094782	6.3239	40.44	0.46042	5.1704	5.7888	6.2492
4	15	0.14144	6.3268	44.344	0.50464	5.2061	5.7888	6.2934
5	20	0.18956	6.3299	46.761	0.53189	5.2306	5.7888	6.3207
6	25	0.23768	6.3329	48.992	0.557	5.2487	5.7888	6.3458
7	30.001	0.28726	6.3361	51.038	0.57997	5.2633	5.7888	6.3688
8	35.001	0.33538	6.3391	52.618	0.59764	5.275	5.7888	6.3864
9	40.001	0.3835	6.3422	54.012	0.61318	5.2849	5.7888	6.402
10	45.001	0.43308	6.3453	55.5	0.62975	5.2931	5.7888	6.4186
11	50.001	0.4812	6.3484	57.08	0.64737	5.3001	5.7888	6.4362
12	55.001	0.53078	6.3516	58.289	0.66075	5.3066	5.7888	6.4495
13	60.001	0.5789	6.3546	59.311	0.67202	5.3112	5.7888	6.4608
14	70.001	0.6766	6.3609	61.636	0.69766	5.3194	5.7888	6.4865
15	80.001	0.77576	6.3673	63.588	0.71904	5.3258	5.7888	6.5078
16	90.002	0.87346	6.3735	65.633	0.74144	5.3311	5.7888	6.5302
17	100	0.97115	6.3798	67.213	0.75854	5.3346	5.7888	6.5473
18	110	1.0703	6.3862	68.794	0.7756	5.3369	5.7888	6.5644
19	120	1.1695	6.3926	70.281	0.79158	5.3387	5.7888	6.5804
20	130	1.2701	6.3991	71.676	0.80646	5.3404	5.7888	6.5953
21	140	1.3707	6.4057	72.605	0.81609	5.341	5.7888	6.6049
22	150	1.4699	6.4121	74.093	0.83197	5.3428	5.7888	6.6208
23	160	1.5676	6.4185	75.023	0.84157	5.3428	5.7888	6.6304
24	170	1.6682	6.425	76.231	0.85426	5.3428	5.7888	6.6431
25	180	1.7688	6.4316	77.254	0.86483	5.3422	5.7888	6.6536
26	190	1.8694	6.4382	78.462	0.87746	5.3416	5.7888	6.6663
27	200	1.9715	6.4449	79.95	0.89316	5.3399	5.7888	6.682
28	210	2.0706	6.4514	81.065	0.90471	5.3381	5.7888	6.6935
29	220	2.1712	6.4581	81.809	0.91207	5.3369	5.7888	6.7009
30	230	2.2719	6.4647	82.553	0.91942	5.334	5.7888	6.7082
31	240	2.3725	6.4714	83.575	0.92985	5.3317	5.7888	6.7186
32	270	2.6699	6.4912	86.457	0.95898	5.3235	5.7888	6.7478
33	300	2.9674	6.5111	88.688	0.98072	5.3142	5.7888	6.7695
34	330	3.2678	6.5313	91.198	1.0054	5.3036	5.7888	6.7942
35	360	3.5609	6.5511	93.244	1.0248	5.2943	5.7888	6.8136
36	390	3.8584	6.5714	95.103	1.042	5.2849	5.7888	6.8308
37	420	4.1602	6.5921	97.892	1.0692	5.2756	5.7888	6.858
38	450	4.4621	6.6129	99.658	1.0851	5.2668	5.7888	6.8739
39	480	4.761	6.6337	101.8	1.1049	5.2569	5.7888	6.8937
40	510	5.0585	6.6545	104.03	1.1256	5.2476	5.7888	6.9144
41	540	5.3574	6.6755	106.07	1.1441	5.2376	5.7888	6.9329
42	570	5.6505	6.6962	108.95	1.1715	5.2289	5.7888	6.9603
43	600	5.9465	6.7173	111.93	1.1997	5.2184	5.7888	6.9885
44	630	6.244	6.7386	114.07	1.2188	5.2096	5.7888	7.0076
45	660	6.5458	6.7604	115.28	1.2277	5.2008	5.7888	7.0165
46	690	6.8477	6.7823	117.32	1.2455	5.1915	5.7888	7.0343
47	720	7.1466	6.8041	119.46	1.2641	5.1821	5.7888	7.0529
48	750	7.4441	6.826	122.62	1.2934	5.1734	5.7888	7.0822
49	780	7.7386	6.8478	124.67	1.3108	5.164	5.7888	7.0996
50	810	8.0332	6.8697	127.73	1.3387	5.1547	5.7888	7.1275
51	840	8.3306	6.892	128.57	1.3432	5.1453	5.7888	7.132
52	870	8.6296	6.9146	131.08	1.3649	5.1372	5.7888	7.1537
53	900	8.9329	6.9376	133.59	1.3864	5.1284	5.7888	7.1752
54	930	9.2333	6.9605	136.57	1.4126	5.1196	5.7888	7.2014
55	960	9.5336	6.9837	138.42	1.4271	5.1109	5.7888	7.2159
56	990	9.8282	7.0065	139.35	1.432	5.1033	5.7888	7.2208
57	1020	10.121	7.0293	141.59	1.4502	5.0951	5.7888	7.239
58	1050	10.419	7.0527	143.72	1.4673	5.0869	5.7888	7.2561
59	1080	10.718	7.0763	145.68	1.4822	5.0787	5.7888	7.271
60	1110	11.017	7.1	147.72	1.498	5.0706	5.7888	7.2868
61	1140	11.317	7.1241	150.23	1.5183	5.063	5.7888	7.3071
62	1170	11.613	7.148	151.9	1.5301	5.0548	5.7888	7.3189
63	1200	11.91	7.1721	155.16	1.5576	5.0472	5.7888	7.3464
64	1230	12.205	7.1962	156.37	1.5645	5.0402	5.7888	7.3533
65	1260	12.5	7.2204	159.71	1.5926	5.0314	5.7888	7.3814
66	1290	12.794	7.2448	160.74	1.5974	5.0238	5.7888	7.3862
67	1320	13.092	7.2696	163.06	1.615	5.0168	5.7888	7.4038
68	1350	13.395	7.295	164.18	1.6204	5.0098	5.7888	7.4092
69	1380	13.697	7.3205	166.87	1.6412	5.0022	5.7888	7.43
70	1410	13.996	7.346	168.08	1.6474	4.9958	5.7888	7.4362
71	1440	14.293	7.3715	169.66	1.6571	4.9894	5.7888	7.4459
72	1470	14.589	7.397	172.36	1.6777	4.9829	5.7888	7.4665
73	1500	14.881	7.4224	173.75	1.6855	4.9759	5.7888	7.4743
74	1530	15.174	7.448	176.63	1.7075	4.9689	5.7888	7.4963
75	1560	15.473	7.4744	178.03	1.7149	4.9625	5.7888	7.5037
76	1590	15.773	7.501	181	1.7374	4.9549	5.7888	7.5262
77	1612.1	15.995	7.5208	182.21	1.7444	4.9502	5.7888	7.5332

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen volume: 37.36 in^3

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b Piston Weight: 0.00 7b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Vertical	Total Vertical	Total Horizontal	$\begin{array}{r} \text { Excess } \\ \text { Pore } \end{array}$	A	Effective Vertical	Effective Horizontal	Stress	Effective	
Strain \%	Stress tsf	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	${\underset{\mathrm{tsf}}{\mathrm{f}}}^{\mathrm{p}}$	¢ ${ }_{\text {q }}$
0.00	5.7888	5.7888	0	0.000	0.74395	0.74395	1.000	0.74395	0
0.05	6.152	5.7888	0.064842	0.179	1.0423	0.6791	1.535	0.86072	0.18161
0.09	6.2492	5.7888	0.1256	0.273	1.0788	0.61835	1.745	0.84856	0.23021
0.14	6.2934	5.7888	0.16123	0.319	1.0874	0.58272	1.866	0.83504	0.25232
0.19	6.3207	5.7888	0.18576	0.349	1.0901	0.55818	1.953	0.82413	0.26595
0.24	6.3458	5.7888	0.20387	0.366	1.0971	0.54007	2.031	0.81857	0.2785
0.29	6.3688	5.7888	0.21848	0.377	1.1054	0.52547	2.104	0.81545	0.28998
0.34	6.3864	5.7888	0.23016	0.385	1.1114	0.51379	2.163	0.8126	0.29882
0.38	6.402	5.7888	0.24009	0.392	1.117	0.50385	2.217	0.81044	0.30659
0.43	6.4186	5.7888	0.24827	0.394	1.1254	0.49568	2.270	0.81055	0.31488
0.48	6.4362	5.7888	0.25528	0.394	1.136	0.48867	2.325	0.81235	0.32369
0.53	6.4495	5.7888	0.26171	0.396	1.143	0.48224	2.370	0.81262	0.33037
0.58	6.4608	5.7888	0.26638	0.396	1.1496	0.47757	2.407	0.81358	0.33601
0.68	6.4865	5.7888	0.27456	0.394	1.1671	0.46939	2.486	0.81822	0.34883
0.78	6.5078	5.7888	0.28098	0.391	1.182	0.46296	2.553	0.82248	0.35952
0.87	6.5302	5.7888	0.28624	0.386	1.1991	0.45771	2.620	0.82842	0.37072
0.97	6.5473	5.7888	0.28975	0.382	1.2127	0.4542	2.670	0.83347	0.37927
1.07	6.5644	5.7888	0.29208	0.377	1.2275	0.45186	2.716	0.83966	0.3878
1.17	6.5804	5.7888	0.29384	0.371	1.2417	0.45011	2.759	0.8459	0.39579
1.27	6.5953	5.7888	0.29559	0.367	1.2548	0.44836	2.799	0.85159	0.40323
1.37	6.6049	5.7888	0.29617	0.363	1.2639	0.44777	2.823	0.85582	0.40804
1.47	6.6208	5.7888	0.29792	0.358	1.278	0.44602	2.865	0.86201	0.41599
1.57	6.6304	5.7888	0.29792	0.354	1.2876	0.44602	2.887	0.86681	0.42079
1.67	6.6431	5.7888	0.29792	0.349	1.3003	0.44602	2.915	0.87315	0.42713
1.77	6.6536	5.7888	0.29734	0.344	1.3114	0.44661	2.936	0.87902	0.43242
1.87	6.6663	5.7888	0.29676	0.338	1.3247	0.44719	2.962	0.88592	0.43873
1.97	6.682	5.7888	0.295	0.330	1.3421	0.44894	2.989	0.89553	0.44658
2.07	6.6935	5.7888	0.29325	0.324	1.3554	0.4507	3.007	0.90305	0.45236
2.17	6.7009	5.7888	0.29208	0.320	1.3639	0.45186	3.018	0.9079	0.45604
2.27	6.7082	5.7888	0.28916	0.315	1.3742	0.45478	3.022	0.91449	0.45971
2.37	6.7186	5.7888	0.28683	0.308	1.387	0.45712	3.034	0.92205	0.46492
2.67	6.7478	5.7888	0.27865	0.291	1.4243	0.4653	3.061	0.94479	0.47949
2.97	6.7695	5.7888	0.2693	0.275	1.4554	0.47465	3.066	0.96501	0.49036
3.27	6.7942	5.7888	0.25879	0.257	1.4905	0.48516	3.072	0.98784	0.50268
3.56	6.8136	5.7888	0.24944	0.243	1.5193	0.49451	3.072	1.0069	0.51239
3.86	6.8308	5.7888	0.24009	0.230	1.5459	0.50385	3.068	1.0249	0.521
4.16	6.858	5.7888	0.23075	0.216	1.5824	0.5132	3.083	1.0478	0.5346
4.46	6.8739	5.7888	0.22198	0.205	1.607	0.52196	3.079	1.0645	0.54253
4.76	6.8937	5.7888	0.21205	0.192	1.6368	0.53189	3.077	1.0843	0.55243
5.06	6.9144	5.7888	0.20271	0.180	1.6668	0.54124	3.080	1.104	0.56278
5.36	6.9329	5.7888	0.19277	0.168	1.6952	0.55117	3.076	1.1232	0.57204
5.65	6.9603	5.7888	0.18401	0.157	1.7314	0.55993	3.092	1.1457	0.58576
5.95	6.9885	5.7888	0.1735	0.145	1.7702	0.57045	3.103	1.1703	0.59986
6.24	7.0076	5.7888	0.16473	0.135	1.798	0.57921	3.104	1.1886	0.60939
6.55	7.0165	5.7888	0.15597	0.127	1.8157	0.58797	3.088	1.2018	0.61386
6.85	7.0343	5.7888	0.14663	0.118	1.8428	0.59732	3.085	1.2201	0.62274
7.15	7.0529	5.7888	0.13728	0.109	1.8708	0.60667	3.084	1.2387	0.63205
7.44	7.0822	5.7888	0.12852	0.099	1.9088	0.61543	3.102	1.2621	0.6467
7.74	7.0996	5.7888	0.11917	0.091	1.9356	0.62478	3.098	1.2802	0.65539
8.03	7.1275	5.7888	0.10982	0.082	1.9729	0.63412	3.111	1.3035	0.66937
8.33	7.132	5.7888	0.10048	0.075	1.9866	0.64347	3.087	1.315	0.67158
8.63	7.1537	5.7888	0.092298	0.068	2.0166	0.65165	3.095	1.3341	0.68246
8.93	7.1752	5.7888	0.083536	0.060	2.0468	0.66041	3.099	1.3536	0.69322
9.23	7.2014	5.7888	0.074773	0.053	2.0818	0.66917	3.111	1.3755	0.70632
9.53	7.2159	5.7888	0.066011	0.046	2.1051	0.67794	3.105	1.3915	0.71356
9.83	7.2208	5.7888	0.058417	0.041	2.1176	0.68553	3.089	1.4015	0.71602
10.12	7.239	5.7888	0.050238	0.035	2.1439	0.69371	3.091	1.4188	0.72512
10.42	7.2561	5.7888	0.04206	0.029	2.1691	0.70189	3.090	1.4355	0.73363
10.72	7.271	5.7888	0.033882	0.023	2.1923	0.71006	3.087	1.4512	0.74111
11.02	7.2868	5.7888	0.025703	0.017	2.2162	0.71824	3.086	1.4672	0.749
11.32	7.3071	5.7888	0.018109	0.012	2.2442	0.72584	3.092	1.485	0.75916
11.61	7.3189	5.7888	0.0099308	0.006	2.2641	0.73402	3.085	1.4991	0.76505
11.91	7.3464	5.7888	0.0023367	0.002	2.2992	0.74161	3.100	1.5204	0.77881
12.21	7.3533	5.7888	-0.0046733	-0.003	2.3131	0.74862	3.090	1.5309	0.78225
12.50	7.3814	5.7888	-0.013436	-0.008	2.35	0.75738	3.103	1.5537	0.79631
12.79	7.3862	5.7888	-0.02103	-0.013	2.3624	0.76498	3.088	1.5637	0.79871
13.09	7.4038	5.7888	-0.02804	-0.017	2.387	0.77199	3.092	1.5795	0.8075
13.39	7.4092	5.7888	-0.03505	-0.022	2.3994	. 0.779	3.080	1.5892	0.81019
13.70	7.43	5.7888	-0.042644	-0.026	2.4278	0.78659	3.087	1.6072	0.82062
14.00	7.4362	5.7888	-0.04907	-0.030	2.4404	0.79302	3.077	1.6167	0.8237
14.29	7.4459	5.7888	-0.055496	-0.033	2.4566	0.79944	3.073	1.628	0.82857
14.59	7.4665	5.7888	-0.061922	-0.037	2.4835	0.80587	3.082	1.6447	0.83883
14.88	7.4743	5.7888	-0.068932	-0.041	2.4983	0.81288	3.073	1.6556	0.84273
15.17	7.4963	5.7888	-0.075942	-0.044	2.5274	0.81989	3.083	1.6736	0.85376
15.47	7.5037	5.7888	-0.082367	-0.048	2.5412	0.82631	3.075	1.6838	0.85746
15.77	7.5262	5.7888	-0.089961	-0.052	2.5713	0.83391	3.083	1.7026	0.86869
15.99	7.5332	5.7888	-0.094635	-0.054	2.583	0.83858	3.080	1.7108	0.87219

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soi 1 Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.67

	Time min	Vertical Strain \%	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1	0	0	6.353	0	0	5.0454	6.2928	6.2928
2	5.0038	0.0388	6.3555	29.35	0.3325	5.1985	6.2928	6.6253
3	10.004	0.085062	6.3584	39.31	0.44513	5.2806	6.2928	6.7379
4	15.004	0.13132	6.3613	45.38	0.51363	5.3339	6.2928	6.8064
5	20.004	0.17908	6.3644	50.036	0.56606	5.3744	6.2928	6.8589
6	25	0.22683	6.3674	53.985	0.61044	5.4054	6.2928	6.9032
7	30	0.27459	6.3705	57.344	0.64811	5.4298	6.2928	6.9409
8	35	0.32234	6.3735	60.35	0.68176	5.4504	6.2928	6.9746
9	40	0.37159	6.3767	62.884	0.71004	5.4676	6.2928	7.0028
10	45	0.42083	6.3798	65.477	0.73895	5.482	6.2928	7.0317
11	50	0.46859	6.3829	67.658	0.76319	5.4936	6.2928	7.056
12	55.001	0.51634	6.386	70.074	0.79007	5.5042	6.2928	7.0829
13	60.001	0.5641	6.389	72.196	0.8136	5.513	6.2928	7.1064
14	70.001	0.65961	6.3952	76.204	0.85794	5.5269	6.2928	7.1507
15	80.001	0.75512	6.4013	80.27	0.90285	5.5375	6.2928	7.1957
16	90.001	0.85361	6.4077	84.573	0.9503	5.5436	6.2928	7.2431
17	100	0.95061	6.414	88.698	0.99568	5.5474	6.2928	7.2885
18	110	1.0491	6.4203	92.706	1.0396	5.5497	6.2928	7.3324
19	120	1.1446	6.4265	96.124	1.0769	5.5502	6.2928	7.3697
20	130	1.2401	6.4328	99.719	1.1161	5.5497	6.2928	7.4089
21	140	1.3356	6.439	104.26	1.1658	5.5474	6.2928	7.4586
22	150	1.4326	6.4453	108.32	1.2101	5.5452	6.2928	7.5029
23	160	1.5266	6.4515	111.57	1.2451	5.5408	6.2928	7.5379
24	170	1.6251	6.4579	115.28	1.2852	5.5369	6.2928	7.578
25	180	1.7206	6.4642	118.28	1.3175	5.5314	6.2928	7.6103
26	190	1.8162	6.4705	121.41	1.351	5.5258	6.2928	7.6438
27	200	1.9102	6.4767	124.71	1.3863	5.5197	6.2928	7.6791
28	210	2.0057	6.483	127.83	1.4197	5.5125	6.2928	7.7125
29	220	2.1012	6.4893	131.01	1.4536	5.5053	6.2928	7.7464
30	230	2.1967	6.4957	134.2	1.4875	5.4975	6.2928	7.7803
31	240	2.2907	6.5019	137.2	1.5193	5.4892	6.2928	7.8121
32	270	2.5817	6.5213	146.28	1.615	5.4637	6.2928	7.9078
33	300	2.8757	6.5411	152.23	1.6757	5.4365	6.2928	7.9685
34	330	3.1682	6.5608	158.3	1.7372	5.4082	6.2928	8.03
35	360	3.4592	6.5806	164.61	1.801	5.3805	6.2928	8.0938
36	390	3.7502	6.6005	169.79	1.8521	5.3527	6.2928	8.1449
37	420	4.0397	6.6204	175.22	1.9055	5.325	6.2928	8.1983
38	450	4.3292	6.6405	180.28	1.9547	5.2989	6.2928	8.2475
39	480	4.6202	6.6607	185.23	2.0023	5.2712	6.2928	8.2951
40	510	4.9127	6.6812	189.48	2.0419	5.2451	6.2928	8.3347
41	540	5.2082	6.702	194.43	2.0887	5.2201	6.2928	8.3815
42	570	5.5007	6.7228	199.32	2.1347	5.1957	6.2928	8.4275
43	600	5.7902	6.7434	204.39	2.1823	5.1702	6.2928	8.4751
44	630	6.0782	6.7641	209.28	2.2277	5.1469	6.2928	8.5205
45	660	6.3692	6.7851	213.41	2.2645	5.1242	6.2928	8.5573
46	690	6.6587	6.8062	217.65	2.3024	5.1014	6.2928	8.5952
47	720	6.9497	6.8275	222.13	2.3425	5.0798	6.2928	8.6353
48	750	7.2407	6.8489	226.9	2.3853	5.0582	6.2928	8.6781
49	780	7.5362	6.8708	231.56	2.4265	5.0382	6.2928	8.7193
50	810	7.8302	6.8927	234.5	2.4496	5.0188	6.2928	8.7424
51	840	8.1197	6.9144	238.39	2.4824	4.9982	6.2928	8.7752
52	870	8.4107	6.9364	243.17	2.5241	4.9805	6.2928	8.8169
53	900	8.6987	6.9583	247.82	2.5643	4.9622	6.2928	8.8571
54	930	8.9883	6.9804	250.54	2.5842	4.9444	6.2928	8.877
55	960	9.2793	7.0028	253.72	2.6086	4.9267	6.2928	8.9014
56	990	9.5718	7.0254	257.61	2.6401	4.9106	6.2928	8.9329
57	1020	9.8643	7.0482	261.97	2.6761	4.8945	6.2928	8.9689
58	1050	10.157	7.0712	265.5	2.7034	4.8806	6.2928	8.9962
59	1080	10.446	7.094	268.63	2.7264	4.8646	6.2928	9.0192
60	1110	10.736	7.1171	271.69	2.7486	4.8507	6.2928	9.0414
61	1140	11.024	7.1401	273.58	2.7587	4.8363	6.2928	9.0515
62	1170	11.31	7.1632	277	2.7842	4.8224	6.2928	9.077
63	1200	11.6	7.1866	280.18	2.807	4.8096	6.2928	9.0998
64	1230	11.889	7.2102	282.3	2.819	4.7969	6.2928	9.1118
65	1260	12.183	7.2344	285.01	2.8366	4.7836	6.2928	9.1294
66	1290	12.477	7.2587	287.49	2.8516	4.7714	6.2928	9.1444
67	1320	12.771	7.2831	291.2	2.8788	4.7608	6.2928	9.1716
68	1350	13.064	7.3076	293.85	2.8952	4.7492	6.2928	9.188
69	1380	13.355	7.3322	297.62	2.9226	4.7392	6.2928	9.2154
70	1410	13.643	7.3566	299.45	2.9308	4.7292	6.2928	9.2236
71	1440	13.932	7.3814	302.28	2.9485	4.7198	6.2928	9.2413
72	1470	14.226	7.4067	305.4	2.9688	4.7109	6.2928	9.2616
73	1500	14.519	7.432	307.76	2.9815	4.7015	6.2928	9.2743
74	1530	14.814	7.4578	309.29	2.986	4.6926	6.2928	9.2788
75	1560	15.107	7.4835	312.12	3.003	4.6837	6.2928	9.2958
76	1590	15.398	7.5092	314.54	3.0159	4.6743	6.2928	9.3087
77	1613.1	15.62	7.529	316.72	3.0288	4.6682	6.2928	9.3216

Project: COLETO CREEK FACILITY
Sample No.: S-14
Test No.: 17.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
SOi De
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in	Piston Area: 0.00 in^2	Filter Strip Correction: 0.00 tsf
Specimen Area: 6.35 in^2	Piston Friction: 0.00 1b	Membrane Correction: 0.00 1b/in
Specimen Volume: 38.65 in^3	Piston Weight: 0.00 1b	Correction Type: Uniform

Membrane Correction: 0.00 1b/in Correction Type: Uniform

	Vertical	Total Vertical	$\begin{array}{r} \text { Total } \\ \text { Horizontal } \end{array}$	$\begin{array}{r} \text { Excess } \\ \text { Pore } \end{array}$	A	Effective Vertical	Effective Horizontal	Stress	Effective	
	Strain \%	$\begin{array}{r} \text { Stress } \\ \text { tsf } \end{array}$	Stress tsf	Pressure tsf	Parameter	Stress tsf	Stress tsf	Ratio	$\underset{\text { tsf }}{p}$	tsf
1	0.00	6.2928	6.2928	0	0.000	1.2474	1.2474	1.000	1.2474	0
2	0.04	6.6253	6.2928	0.15311	0.460	1.4268	1.0943	1.304	1.2605	0.16625
3	0.09	6.7379	6.2928	0.23521	0.528	1.4573	1.0122	1.440	1.2348	0.22257
4	0.13	6.8064	6.2928	0.28847	0.562	1.4726	0.95893	1.536	1.2158	0.25682
5	0.18	6.8589	6.2928	0.32896	0.581	1.4845	0.91844	1.616	1.2015	0.28303
6	0.23	6.9032	6.2928	0.36003	0.590	1.4978	0.88737	1.688	1.1926	0.30522
7	0.27	6.9409	6.2928	0.38444	0.593	1.5111	0.86296	1.751	1.187	0.32406
8	0.32	6.9746	6.2928	0.40496	0.594	1.5242	0.84244	1.809	1.1833	0.34088
9	0.37	7.0028	6.2928	0.42216	0.595	1.5353	0.82524	1.860	1.1803	0.35502
10	0.42	7.0317	6.2928	0.43658	0.591	1.5498	0.81082	1.911	1.1803	0.36947
11	0.47	7.056	6.2928	0.44823	0.587	1.5624	0.79917	1.955	1.1808	0.3816
12	0.52	7.0829	6.2928	0.45877	0.581	1.5787	0.78863	2.002	1.1837	0.39504
13	0.56	7.1064	6.2928	0.46765	0.575	1.5934	0.77975	2.043	1.1866	0.4068
14	0.66	7.1507	6.2928	0.48152	0.561	1.6238	0.76588	2.120	1.1949	0.42897
15	0.76	7.1957	6.2928	0.49206	0.545	1.6582	0.75534	2.195	1.2068	0.45143
16	0.85	7.2431	6.2928	0.49816	0.524	1.6995	0.74924	2.268	1.2244	0.47515
17	0.95	7.2885	6.2928	0.50204	0.504	1.741	0.74536	2.336	1.2432	0.49784
18	1.05	7.3324	6.2928	0.50426	0.485	1.7828	0.74314	2.399	1.263	0.51982
19	1.14	7.3697	6.2928	0.50482	0.469	1.8195	0.74258	2.450	1.281	0.53846
20	1.24	7.4089	6.2928	0.50426	0.452	1.8593	0.74314	2.502	1.3012	0.55806
21	1.34	7.4586	6.2928	0.50204	0.431	1.9111	0.74536	2.564	1.3283	0.5829
22	1.43	7.5029	6.2928	0.49982	0.413	1.9576	0.74758	2.619	1.3526	0.60504
23	1.53	7.5379	6.2928	0.49539	0.398	1.9971	0.75202	2.656	1.3746	0.62255
24	1.63	7.578	6.2928	0.4915	0.382	2.0411	0.7559	2.700	1.3985	0.64262
25	1.72	7.6103	6.2928	0.48596	0.369	2.0789	0.76145	2.730	1.4202	0.65874
26	1.82	7.6438	6.2928	0.48041	0.356	2.1179	0.76699	2.761	1.4425	0.67548
27	1.91	7.6791	6.2928	0.47431	0.342	2.1594	0.7731	2.793	1.4663	0.69317
28	2.01	7.7125	6.2928	0.46709	0.329	2.2	0.78031	2.819	1.4902	0.70984
29	2.10	7.7464	6.2928	0.45988	0.316	2.2411	0.78752	2.846	1.5143	0.72681
30	2.20	7.7803	6.2928	0.45212	0.304	2.2828	0.79529	2.870	1.539	0.74374
31	2.29	7.8121	6.2928	0.4438	0.292	2.3229	0.80361	2.891	1.5633	0.75966
32	2.58	7.9078	6.2928	0.41828	0.259	2.4441	0.82912	2.948	1.6366	0.8075
33	2.88	7.9685	6.2928	0.39109	0.233	2.532	0.85631	2.957	1.6941	0.83783
34	3.17	. 8.03	6.2928	0.3628	0.209	2.6218	0.8846	2.964	1.7532	0.86861
35	3.46	8.0938	6.2928	0.33507	0.186	2.7133	0.91234	2.974	1.8128	0.9005
36	3.75	8.1449	6.2928	0.30733	0.166	2.7922	0.94007	2.970	1.8661	0.92607
37	4.04	8.1983	6.2928	0.27959	0.147	2.8734	0.96781	2.969	1.9206	0.95277
38	4.33	8.2475	6.2928	0.25352	0.130	2.9486	0.99388	2.967	1.9713	0.97737
39	4.62	8.2951	6.2928	0.22578	0.113	3.0239	1.0216	2.960	2.0228	1.0012
40	4.91	8.3347	6.2928	0.19971	0.098	3.0896	1.0477	2.949	2.0686	1.021
41	5.21	8.3815	6.2928	0.17474	0.084	3.1614	1.0727	2.947	2.117	1.0444
42	5.50	8.4275	6.2928	0.15034	0.070	3.2318	1.0971	2.946	2.1644	1.0673
43	5.79	8.4751	6.2928	0.12482	0.057	3.3048	1.1226	2.944	2.2137	1.0911
44	6.08	8.5205	6.2928	0.10152	0.046	3.3735	1.1459	2.944	2.2597	1.1138
45	6.37	8.5573	6.2928	0.078774	0.035	3.4332	1.1686	2.938	2.3009	1.1323
46	6.66	8.5952	6.2928	0.056029	0.024	3.4938	1.1914	2.933	2.3426	1.1512
47	6.95	8.6353	6.2928	0.034394	0.015	3.5555	1.213	2.931	2.3842	1.1712
48	7.24	8.6781	6.2928	0.012759	0.005	3.62	1.2346	2.932	2.4273	1.1927
49	7.54	8.7193	6.2928	-0.0072117	-0.003	3.6811	1.2546	2.934	2.4679	1.2133
50	7.83	8.7424	6.2928	-0.026628	-0.011	3.7236	1.274	2.923	2.4988	1.2248
51	8.12	8.7752	6.2928	-0.047153	-0.019	3.777	1.2946	2.918	2.5358	1.2412
52	8.41	8.8169	6.2928	-0.064905	-0.026	3.8364	1.3123	2.923	2.5744	1.262
53	8.70	8.8571	6.2928	-0.083212	-0.032	3.895	1.3306	2.927	2.6128	1.2822
54	8.99	8.877	6.2928	-0.10096	-0.039	3.9325	1.3484	2.917	2.6404	1.2921
55	9.28	8.9014	6.2928	-0.11872	-0.046	3.9747	1.3661	2.910	2.6704	1.3043
56	9.57	8.9329	6.2928	-0.1348	-0.051	4.0223	1.3822	2.910	2.7022	1.32
57	9.86	8.9689	6.2928	-0.15089	-0.056	4.0744	1.3983	2.914	2.7363	1.338
58	10.16	8.9962	6.2928	-0.16476	-0.061	4.1156	1.4122	2.914	2.7639	1.3517
59	10.45	9.0192	6.2928	-0.18085	-0.066	4.1547	1.4282	2.909	2.7915	1.3632
60	10.74	9.0414	6.2928	-0.19472	-0.071	4.1907	1.4421	2.906	2.8164	1.3743
61	11.02	9.0515	6.2928	-0.20914	-0.076	4.2153	1.4565	2.894	2.8359	1.3794
62	11.31	9.077	6.2928	-0.22301	-0.080	4.2546	1.4704	2.893	2.8625	1.3921
63	11.60	9.0998	6.2928	-0.23577	-0.084	4.2902	1.4832	2.893	2.8867	1.4035
64	11.89	9.1118	6.2928	-0.24853	-0.088	4.3149	1.4959	2.884	2.9054	1.4095
65	12.18	9.1294	6.2928	-0.26184	-0.092	4.3458	1.5092	2.879	2.9275	1.4183
66	12.48	9.1444	6.2928	-0.27404	-0.096	4.3731	1.5214	2.874	2.9473	1.4258
67	12.77	9.1716	6.2928	-0.28458	-0.099	4.4108	1.532	2.879	2.9714	1.4394
68	13.06	9.188	6.2928	-0.29623	-0.102	4.4389	1.5436	2.876	2.9913	1.4476
69	13.35	9.2154	6.2928	-0.30622	-0.105	4.4762	1.5536	2.881	3.0149	1.4613
70	13.64	9.2236	6.2928	-0.3162	-0.108	4.4944	1.5636	2.874	3.029	1.4654
71	13.93	9.2413	6.2928	-0.32563	-0.110	4.5216	1.573	2.874	3.0473	1.4743
72	14.23	9.2616	6.2928	-0.33451	-0.113	4.5507	1.5819	2.877	3.0663	1.4844
73	14.52	9.2743	6.2928	-0.34394	-0.115	4.5729	1.5913	2.874	3.0821	1.4908
74	14.81	9.2788	6.2928	-0.35282	-0.118	4.5862	1.6002	2.866	3.0932	1.493
75	15.11	9.2958	6.2928	-0.36169	-0.120	4.6121	1.6091	2.866	3.1106	1.5015
76	15.40	9.3087	6.2928	-0.37112	-0.123	4.6344	1.6185	2.863	3.1265	1.5079
77	15.62	9.3216	6.2928	-0.37723	-0.125	4.6534	1.6246	2.864	3.139	1.5144

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ---

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.02 in
Specimen Area: 6.36 in^2 Specimen Volume: $38.27 \mathrm{in} \mathrm{\wedge} 3$

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform

	Time min	$\begin{array}{r} \text { Vertical } \\ \text { Strain } \\ \% \end{array}$	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure	Horizontal Stress tsf	$\begin{array}{r} \text { Vertical } \\ \text { Stress } \\ \text { tsf } \end{array}$
1	0	0	6.36	0	0	5.0404	6.8328	6.8328
2	5.0037	0.032682	6.3621	36.347	0.41134	5.2561	6.8328	7.2441
3	10.004	0.078153	6.365	49.512	0.56007	5.3969	6.8328	7.3929
4	15.004	0.12504	6.368	56.855	0.64283	5.4904	6.8328	7.4756
5	20.004	0.17194	6.371	61.995	0.70062	5.5581	6.8328	7.5334
6	25.004	0.22025	6.3741	66.401	0.75005	5.6109	6.8328	7.5828
7	30	0.26714	6.3771	70.072	0.79115	5.6527	6.8328	7.6239
8	35	0.31261	6.38	73.376	0.82808	5.6874	6.8328	7.6609
9	40	0.3595	6.383	76.366	0.86141	5.716	6.8328	7.6942
10	45	0.40924	6.3862	79.355	0.89468	5.7402	6.8328	7.7275
11	50	0.45755	6.3893	81.978	0.9238	5.7605	6.8328	7.7566
12	55	0.50444	6.3923	84.443	0.95113	5.7781	6.8328	7.7839
13	60.001	0.55133	6.3953	86.961	0.97903	5.793	6.8328	7.8118
14	70.001	0.64512	6.4013	92.153	1.0365	5.8172	6.8328	7.8693
15	80.001	0.74458	6.4077	97.083	1.0909	5.8354	6.8328	7.9237
16	90.001	0.83695	6.4137	101.44	1.1387	5.7374	6.8328	7.9715
17	100	0.92789	6.4196	106.63	1.1959	5.8392	6.8328	8.0287
18	110	1.0217	6.4257	111.51	1.2494	5.8392	6.8328	8.0822
19	120	1.1169	6.4319	116.07	1.2993	5.8414	6.8328	8.1321
20	130	1.2107	6.438	120.95	1.3526	5.842	6.8328	8.1854
21	140	1.3059	6.4442	125.67	1.4041	5.8398	6.8328	8.2369
22	150	1.4039	6.4506	130.28	1.4542	5.8381	6.8328	8.287
23	160	1.4949	6.4565	134.85	1.5037	5.8337	6.8328	8.3365
24	170	1.5943	6.4631	139.57	1.5548	5.8282	6.8328	8.3876
25	180	1.6924	6.4695	144.34	1.6064	5.8194	6.8328	8.4392
26	190	1.7862	6.4757	148.8	1.6544	5.8101	6.8328	8.4872
27	200	1.8814	6.482	153.15	1.7012	5.8002	6.8328	8.534
28	210	1.9794	6.4885	157.5	1.7478	5.7892	6.8328	8.5806
29	220	2.076	6.4949	161.7	1.7926	5.777	6.8328	8.6254
30	230	2.1727	6.5013	165.74	1.8355	5.766	6.8328	8.6683
31	240	2.2707	6.5078	169.99	1.8807	5.7523	6.8328	8.7135
32	270	2.5577	6.527	181.26	1.9996	5.7083	6.8328	8.8324
33	300	2.8433	6.5462	192.44	2.1166	5.6637	6.8328	8.9494
34	330	3.1219	6.565	202.56	2.2215	5.6214	6.8328	9.0543
35	360	3.406	6.5843	212.47	2.3234	5.6076	6.8328	9.1562
36	390	3.6945	6.604	222.12	2.4217	5.5625	6.8328	9.2545
37	420	3.9815	6.6238	231.46	2.5159	5.519	6.8328	9.3487
38	450	4.2714	6.6438	240.43	2.6055	5.4761	6.8328	9.4383
39	480	4.557	6.6637	248.71	2.6873	5.4343	6.8328	9.5201
40	510	4.8398	6.6835	256.9	2.7675	5.3947	6.8328	9.6003
41	540	5.1254	6.7036	264.34	2.8392	5.354	6.8328	9.672
42	570	5.411	6.7239	272.37	2.9166	5.316	6.8328	9.7494
43	600	5.6995	6.7444	280.03	2.9894	5.2759	6.8328	9.8222
44	630	5.9894	6.7652	287.37	3.0584	5.2401	6.8328	9.8912
45	660	6.2778	6.786	294.03	3.1197	5.2054	6.8328	9.9525
46	690	6.5705	6.8073	301.01	3.1837	5.1713	6.8328	10.016
47	720	6.8604	6.8285	307.77	3.2452	5.1389	6.8328	10.078
48	750	7.1432	6.8493	314.07	3.3015	5.1086	6.8328	10.134
49	780	7.426	6.8702	320.31	3.3568	5.0784	6.8328	10.19
50	810	7.7101	6.8914	324.19	3.3871	5.0492	6.8328	10.22
51	840	7.9943	6.9126	331.48	3.4526	5.0212	6.8328	10.285
52	870	8.2828	6.9344	336.93	3.4984	4.9942	6.8328	10.331
53	900	8.5741	6.9565	342.91	3.5492	4.9705	6.8328	10.382
54	930	8.8668	6.9788	348.21	3.5925	4.9458	6.8328	10.425
55	960	9.1609	7.0014	353.93	3.6396	4.9216	6.8328	10.472
56	990	9.448	7.0236	357.76	3.6674	4.9012	6.8328	10.5
57	1020	9.7336	7.0458	363.58	3.7153	4.8809	6.8328	10.548
8	1050	10.022	7.0684	368.98	3.7585	4.8589	6.8328	10.591
59	1080	10.301	7.0904	373.02	3.7879	4.8391	6.8328	10.621
60	1110	10.585	7.1129	377.95	3.8258	4.8192	6.8328	10.659
61	1140	10.877	7.1363	382.93	3.8635	4.8005	6.8328	10.696
62	1170	11.167	7.1596	387.34	3.8952	4.7813	6.8328	10.728
63	1200	11.457	7.183	392.06	3.9299	4.7626	6.8328	10.763
4	1230	11.743	7.2062	396.36	3.9601	4.7472	6.8328	10.793
65	1260	12.027	7.2295	401.76	4.0012	4.7279	6.8328	10.834
66	1290	12.308	7.2527	404.59	4.0165	4.7098	6.8328	10.849
7	1320	12.591	7.2762	409.47	4.0518	4.6944	6.8328	10.885
68	1350	12.88	7.3003	413.98	4.0829	4.6795	6.8328	10.916
69	1380	13.172	7.3249	417.76	4.1063	4.6652	6.8328	10.939
70	1410	13.464	7.3495	422.16	4.1357	4.6526	6.8328	10.969
71	1440	13.758	7.3746	425.99	4.1591	4.6388	6.8328	10.992
72	1470	14.042	7.399	429.93	4.1836	4.625	6.8328	11.016
73	1500	14.323	7.4233	434.02	4.2096	4.6096	6.8328	11.042
74	1530	14.609	7.4481	436.53	4.2199	4.5953	6.8328	11.053
75	1560	14.897	7.4734	441.31	4.2516	4.5816	6.8328	11.084
6	1590	15.19	7.4992	445.29	4.2753	4.5662	6.8328	11.108
77	1614.3	15.429	7.5203	447.97	4.2889	4.5552	6.8328	11.122

Projeject: COLETO CREEK FACILITY
Sample No.: S-14
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: $12 / 5 / 11$
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.02 in
Specimen Area: 6.36 in^2
Specimen Area: 6.36 in^2
```

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b Piston Weight: 0.007 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: $0.00 \mathrm{bb} / \mathrm{in}$ Correction Type: Uniform

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& Total \& $$
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
$$ \& \& \& Effective \& Effective Horizontal \& \& \&

\hline $$
\begin{array}{r}
\text { Strain } \\
\hline
\end{array}
$$ \& $$
\begin{aligned}
& \text { Vertical } \\
& \text { Stress } \\
& \text { tsf }
\end{aligned}
$$ \& Horizontal
Stress
tsf \& $$
\begin{aligned}
& \text { Pressure } \\
& \text { tsf }
\end{aligned}
$$ \& Parameter ${ }^{\text {A }}$ \& $$
\begin{aligned}
& \text { Stress } \\
& \text { tsf }
\end{aligned}
$$ \& Horizonta
Stress
tsf \& Stress \& \& ${ }_{\text {tsf }}^{\text {q }}$

\hline 0.00 \& 6.8328 \& 6.8328 \& 0 \& 0.000 \& 1.7924 \& 1.7924 \& 1.000 \& 1.7924 \&

\hline 0.03 \& 7.2441 \& 6.8328 \& 0.21566 \& 0.524 \& 1.9881 \& 1.5767 \& 1.261 \& 1.7824 \& 0.20567

\hline 0.08 \& 7.3929 \& 6.8328 \& 0.35649 \& 0.637 \& 1.996 \& 1.4359 \& 1.390 \& 1.7159 \& 0.28004

\hline 0.13 \& 7.4756 \& 6.8328 \& 0.45002 \& 0.700 \& 1.9852 \& 1.3424 \& 1.479 \& 1.6638 \& 0.32142

\hline 0.17 \& 7.5334 \& 6.8328 \& 0.51768 \& 0.739 \& 1.9753 \& 1.2747 \& 1.550 \& 1.625 \& 0.35031

\hline 0.22 \& 7.5828 \& 6.8328 \& 0.5705 \& 0.761 \& 1.9719 \& 1.2219 \& 1.614 \& 1.5969 \& 0.37502

\hline 0.27 \& 7.6239 \& 6.8328 \& 0.61231 \& 0.774 \& 1.9712 \& 1.1801 \& 1.670 \& 1.5757 \& 0.39557

\hline 0.31
0.36 \& 7.6609 \& 6.8328
6.8328 \& 0.64697
0.67558 \& 0.781
0.784 \& 1.9735 \& 1.1454
1.1168 \& ${ }_{1}^{1.723}$ \& 1.5595
1.5475 \& 0.41404
0.4307

\hline ${ }_{0.41}$ \& 7.7275 \& 6.8328
6.8328 \& ${ }_{0} .699978$ \& 0.782 \& 1.9873 \& 1.0926 \& 1.819 \& 1.5475
1.54 \& 0.44734
0.4

\hline 0.46 \& 7.7566 \& 6.8328 \& 0.72014 \& 0.780 \& 1.9961 \& 1.0723 \& 1.862 \& 1.5342 \& 0.4619

\hline 0.50 \& 7.7839 \& 6.8328 \& 0.73774 \& 0.776 \& 2.0058 \& 1.0547 \& 1.902 \& 1.5302 \& 0.47557

\hline 0.55
0.65 \& 7.8118
7.8693 \& 6. 63328
6.8328 \& 0.7526
0.7768 \& 0.769
0.749 \& 2.0188 \& 1.0398 \& ${ }^{1} .942$ \& 1.5323
1.5338 \& 0.48951
0.51825

\hline 0.65
0.74 \& 7.8693 \& 6.8328 \& 0.7768
0.79496 \& 0.749
0.729 \& 2.0521 \& 1.0156 \& ${ }_{2} 2.021$ \& 1.5338 \& 0.51825

\hline ${ }_{0.84}$ \& 7.9715 \& 6.8328
6.8328 \& ${ }_{0.69703}$ \& 0.612 \& 2.2831 \& 1.0954 \& 2.040 \& 1.6647 \& 0.54543
0.56936

\hline 0.93 \& 8.0287 \& 6.8328 \& 0.79881 \& 0.668 \& 2.1895 \& 0.99359 \& 2.204 \& 1.5915 \& 0.59796

\hline 1.02 \& 8.0822 \& 6.8328 \& 0.79881 \& 0.639 \& 2.243 \& 0.99359 \& 2.258 \& 1.6183 \& 0.62472

\hline 1.12 \& 8.1321 \& 6.8328 \& 0.80101 \& 0.616 \& 2.2907 \& 0.99139 \& 2.311 \& 1.641 \& 0.64966

\hline 1.21 \& 8.1854 \& 6.8328 \& 0.80156 \& 0.593 \& 2.3435 \& 0.99084 \& 2.365 \& 1.6672 \& 0.67632

\hline 1.31 \& 8.2369 \& 6.8328 \& 0.79936 \& 0.569 \& 2.3971 \& 0.99304 \& 2.414 \& 1.6951 \& 0.70204

\hline 1.40 \& 8.287 \& 6.8328 \& 0.79771 \& 0.549 \& 2.4489 \& 0.99469 \& 2.462 \& 1.7218 \& 0.7271

\hline 1.49 \& 8.3365 \& 6.8328 \& 0.79331 \& 0.528 \& 2.5028 \& 0.99909 \& 2.505 \& 1.751 \& 0.75187

\hline 1.59 \& 8.3876 \& 6.8328 \& 0.7878 \& 0.507 \& 2.5594 \& 1.0046 \& 2.548 \& 1.782 \& 0.7774

\hline 1.69 \& 8.4392 \& 6.8328 \& 0.779 \& 0.485 \& 2.6198 \& 1.0134 \& 2.585 \& 1.8166 \& 0.80319

\hline 1.79 \& 8.4872 \& 6.8328 \& 0.76965 \& 0.465 \& 2.6772 \& 1.0227 \& 2.618 \& 1.8499 \& 0.82721

\hline 1.88
1.98 \& 8.534 \& 6.8328
6.8328 \& 0.75975
0.74874 \& 0.447 \& 2.7338 \& 1.0326 \& 2.647 \& 1.8832 \& 0.85058

\hline 1.98
2.08 \& 8.5806
8.6254 \& 6.8328
6.8328 \& 0.74874
0.73664 \& 0.428
0.411 \& 2.7914
2.8483 \& 1.0436 \& 2.675
2.698 \& 1.9175 \& 0.87389
0.89628

\hline 2.17 \& 8.6683 \& 6.8328 \& 0.72564 \& 0.395 \& 2.8483
2.923 \& 1.0668 \& 2.721 \& 1.9845 \& 0.91776

\hline 2.27 \& 8.7135 \& 6.8328 \& 0.71188 \& 0.379 \& 2.9612 \& 1.0805 \& 2.741 \& 2.0209 \& 0.94034

\hline 2.56 \& 8.8324 \& 6.8328 \& 0.66787 \& 0.334 \& 3.1241 \& 1.1245 \& 2.778 \& 2.1243 \& 0.99978

\hline 2.84 \& 8.9494 \& 6.8328 \& 0.62331 \& 0.294 \& 3.2856 \& 1.1691 \& 2.810 \& 2.2274 \& 1.0583

\hline 3.12 \& 9.0543 \& 6.8328 \& 0.58095 \& 0.262 \& 3.433 \& 1.2114 \& 2.834 \& 2.3222 \& 1.1108

\hline 3.41
3.69 \& 9.1562
9.2545 \& 6.8328
6.8328 \& 0.5672
0.52209 \& 0.244 \& 3.5486 \& \& \& \&

\hline $\begin{array}{r}3.69 \\ 3.98 \\ \hline\end{array}$ \& 9.2545
9.3487 \& 6.8328
6.8328 \& 0.52209
0.47862 \& 0.216
0.190 \& 3.692
3.8297 \& 1.2703
1.3138 \& 2.906
2.915 \& 2.4811
2.5717 \& 1.2108

\hline 4.27 \& 9.4383 \& 6.8328 \& 0.43571 \& 0.167 \& 3.9622 \& 1.3567 \& 2.921 \& 2.6595 \& 1.3028

\hline 4.56 \& 9.5201 \& 6.8328 \& 0.3939 \& 0.147 \& 4.0858 \& 1.3985 \& 2.922 \& 2.7421 \& 1.3437

\hline 4.84 \& 9.6003 \& 6.8328 \& 0.35429 \& 0.128 \& 4.2056 \& 1.4381 \& 2.924 \& 2.8218 \& 1.3837

\hline 5.13 \& 9.672 \& 6.8328 \& 0.31358 \& 0.110 \& 4.318 \& 1.4788 \& 2.920 \& 2.8984 \& 1.4196

\hline 5.41
5.70 \& 9.7494
9.8222 \& 6.8328
6.8328 \& 0.27562
0.23546 \& 0.095
0.079 \& 4.4333
4.5463 \& 1.5168 \& 2.923
2.920 \& 2.9751 \& 1.4583

\hline 5.99 \& 9.8912 \& 6.8328 \& 0.1997 \& 0.065 \& 4.6511 \& 1.5927 \& 2.920 \& 3.1219 \& 1.5292

\hline 6.28 \& 9.9525 \& 6.8328 \& 0.16504 \& 0.053 \& 4.747 \& 1.6274 \& 2.917 \& 3.1872 \& 1.5598

\hline 6.57 \& 10.016 \& 6.8328 \& 0.13093 \& 0.041 \& 4.8452 \& 1.6615 \& 2.916 \& 3.2533 \& 1.5918

\hline 6.86 \& 10.078 \& 6.8328 \& 0.098476 \& 0.030 \& 4.9391 \& 1.6939 \& 2.916 \& 3.3165 \& 1.6226

\hline 7.14 \& 10.134 \& 6.8328 \& 0.068218 \& 0.021 \& 5.0256 \& 1.7242 \& 2.915 \& 3.3749 \& 1.6507

\hline 7.43
7.71 \& 10.19 \& 6. 63328
6.8328 \& 0.03796
0.0088023 \& \& 5.1173
5.1707 \& 1.7544 \& 2. 913 \& 3.4328 \& 1. 6784

\hline 7.71 \& 10.22
10.235 \& 6.8328
6.8328 \& 0.0088023
-0.019255 \& 0.003
-0.006 \& 5.1707
5.2642 \& 1.7836
1.8116 \& 2.899

2.906 \& 3.4771
3.5379 \& 1.6935
1.7263

\hline 8.28 \& 10.331 \& 6.8328 \& -0.046212 \& -0.013 \& 5.337 \& 1.8386 \& ${ }_{2}^{2.903}$ \& 3.5878 \& 1.7492

\hline 8.57 \& 10.382 \& 6.8328 \& -0.069868 \& -0.020 \& 5.4114 \& 1.8623 \& 2.906 \& 3.6368 \& 1.7746

\hline 8.87 \& 10.425 \& 6.8328 \& -0.094625 \& -0.026 \& 5.4795 \& 1.887 \& 2.904 \& 3.6832 \& 1.7962

\hline 9.16 \& 10.472 \& 6.83328 \& -0.11883 \& -0.033 \& 5.5509 \& 1.9112 \& 2.904 \& 3.731 \& 1.8198

\hline 9.45
9.73 \& 10.5
10.548 \& 6.83288
6.8328 \& -0.13919 \& -0.038 \& 5.599
5.6673 \& 1.9316 \& $\begin{array}{r}2.899 \\ \\ \\ \text { 2 } \\ \hline\end{array}$ \& 3.7653
3.8096 \& 1.8337

\hline 10.02 \& 10.591 \& 6.8328 \& ${ }_{-}-0.18155$ \& -0.048 \& 5.7324 \& 1.9739 \& 2.904 \& 3.8096
3.8532 \& 1.8792

\hline 10.30 \& 10.621 \& 6.8328 \& -0.20135 \& -0.053 \& 5.7816 \& 1.9937 \& 2.900 \& 3.8877 \& 1.8939

\hline 10.58 \& 10.659 \& 6.8328 \& -0.22116 \& -0.058 \& 5.8393 \& 2.0136 \& 2.900 \& 3.9264 \& 1.9129

\hline 10.88 \& 10.696 \& 6.8328 \& -0.23986 \& -0.062 \& 5.8958 \& 2.0323 \& 2.901 \& \&

\hline 11.17 \& 10.728 \& 6.8328 \& -0.25912 \& -0.067 \& 5.9468 \& 2.0515 \& 2.899 \& 3.9991 \& 1.9476

\hline 11.46 \& 10.763 \& 6.8328 \& -0.27782 \& -0.071 \& 6.0001 \& 2.0702 \& 2.898 \& 4.0351 \& 1.9649

\hline 11.74 \& 10.793 \& 6.8328 \& -0.29323 \& -0.074 \& 6.0458 \& 2.0856 \& 2.899 \& 4.0657 \& 1.9801

\hline 12.03 \& 10.834 \& 6.8328 \& -0.31248 \& -0.078 \& 6.1061 \& 2.1049 \& 2.901 \& 4.1055 \& 2.0006

\hline 12.31 \& 10.849 \& 6.8328 \& -0.33064 \& -0.082 \& 6.1395 \& 2.123 \& 2.892 \& 4.1313 \& 2.0083

\hline 12.59 \& 10.885 \& 6.8328 \& -0.34604 \& -0.085 \& 6.1903 \& 2.1384 \& 2.895 \& 4.1643 \& 2.0259

\hline 12.88 \& 10.916 \& 6.8328 \& -0.36089 \& -0.088 \& 6.2362 \& 2.1533 \& 2.896 \& 4.1948 \& 2.0415

\hline 13.17 \& 10.939 \& 6.8328 \& -0.3752 \& -0.091 \& 6.2739 \& 2.1676 \& 2.894 \& 4.2208 \& 2.0532

\hline 13.46 \& 10.969 \& 6.8328 \& -0.38785 \& -0.094 \& 6.316 \& 2.1802 \& 2.897 \& 4.2481 \& 2.0679

\hline 13.76 \& 10.992 \& 6.8328 \& -0.4016 \& -0.097 \& 6.3531 \& 2.194 \& 2.896 \& 4.2735 \& 2.0795

\hline 14.04
14.32 \& 11.016
11.042 \& 6.8328

6.8328 \& -0.41536 \& -0.099 \& | 6. |
| :--- |
| 6.43914 | \& 2.2078

2.2232 \& 2.895
2.894 \& 4.2996
4.328
4. \& 2.0918
2.1048

\hline 14.61 \& 11.053 \& 6.8328 \& -0.44507 \& -0.105 \& 6.4574 \& 2.2375 \& 2.886 \& 4.3474 \& 2.11

\hline 14.90 \& 11.084 \& 6.8328 \& -0.45882 \& -0.108 \& 6.5029 \& 2.2512 \& 2.889 \& 4.377 \& 2.1258

\hline 15.19 \& 11.108 \& 6.8328 \& -0.47422 \& -0.111 \& 6.5419 \& 2.2666 \& 2.886 \& 4.4043 \& 2.1376

\hline 15.43 \& 11.122 \& 6.8328 \& -0.48523 \& -0.113 \& 6.5665 \& 2.2776 \& 2.883 \& 4.4221 \& 2.1444

\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: $B-4-1 S-7$
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		7 PSI	13.9 PSI	20.8 PSI	
$\frac{\overline{\bar{a}}}{\underline{\bar{E}}}$	Diameter, in	2.8457	2.8382	2.837	
	Height, in	5.9839	5.9646	5.7075	
	Water Content, \%	13.01	13.76	17.65	
	Dry Density, pcf	117.3	118.	109.8	
	Saturation, \%	83.50	90.24	92.02	
	Void Ratio	0.41352	0.40495	0.50912	
$\begin{array}{\|c} \frac{1}{0} \\ \frac{0}{\omega} \\ \frac{1}{\omega} \\ \frac{0}{0} \\ \frac{0}{0} \\ 0 \end{array}$	Water Content, \%	15.40	14.54	18.60	
	Dry Density, pcf	117.7	119.6	111.	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.40877	0.3861	0.49381	
	Back Press., tsf	5.046	5.0443	5.0958	
Minor Prin. Stress, tsf		0.49798	0.99651	1.4418	
Max. Dev. Stress, tsf		3.6849	7.0909	7.9769	
Time to Failure, min		770.98	772.22	773.86	
Strain Rate, \%/min		0.02	0.02	0.02	
B-Value		. 97	. 95	. 99	
Measured Specific Gravity		2.65	2.65	2.65	
Liquid Limit		27	27	27	
Plastic Limit		11	11	11	
Plasticity Index		16	16	16	
Failure Sketch					

Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-7	Tested By: BCM	Checked By: WPQ
Sample No.: S-7	Test Date: $12 / 1 / 11$	Depth: $12.0^{\prime}-14.0^{\prime}$
Test No.: B-4-1 S-7	Sample Type: $3^{\prime \prime}$ ST	Elevation: ----
Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767		

Project: COLETO CREEK FACILITY
Boring No.: B-4-1 S-7
Sample No.: S-7
Test No.: 7 PSI

Soi Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

	Time min	Vertical Strain \%	Corrected Area in^2	Deviator Load 1b	Deviator Stress tsf	Pore Pressure tsf	Horizontal Stress tsf	Vertical Stress tsf
1	0	0	6.36	0	0	5.046	5.544	5.544
2	5	0.086461	6.3655	19.795	0.2239	5.1593	5.544	5.7679
3	10	0.18589	6.3719	24.744	0.2796	5.1856	5.544	5.8236
4	15	0.28388	6.3781	28.64	0.3233	5.2008	5.544	5.8673
5	20	0.38187	6.3844	31.851	0.3592	5.209	5.544	5.9032
6	25	0.47842	6.3906	34.536	0.38911	5.2137	5.544	5.9331
7	30.001	0.57785	6.397	37.116	0.41775	5.216	5.544	5.9618
8	35.001	0.6744	6.4032	40.064	0.4505	5.2166	5.544	5.9945
9	40.001	0.77094	6.4094	42.433	0.47667	5.216	5.544	6.0207
10	45.001	0.86893	6.4158	44.961	0.50456	5.2148	5.544	6.0486
11	50.001	0.96692	6.4221	47.488	0.5324	5.2125	5.544	6.0764
12	55.001	1.0649	6.4285	50.015	0.56017	5.2102	5.544	6.1042
13	60.001	1.1629	6.4349	52.436	0.58671	5.2078	5.544	6.1307
14	70.001	1.3589	6.4476	57.701	0.64434	5.2014	5.544	6.1883
15	80.001	1.5549	6.4605	63.545	0.70819	5.1932	5.544	6.2522
16	90.002	1.7494	6.4733	69.652	0.77472	5.1851	5.544	6.3187
17	100	1.9454	6.4862	75.812	0.84155	5.1751	5.544	6.3855
18	110	2.1399	6.4991	82.287	0.91162	5.1652	5.544	6.4556
19	120	2.333	6.5119	89.026	0.98433	5.1535	5.544	6.5283
20	130	2.5261	6.5248	95.87	1.0579	5.1407	5.544	6.6019
21	140	2.7178	6.5377	102.5	1.1289	5.1278	5.544	6.6729
22	150	2.9109	6.5507	109.3	1.2013	5.1126	5.544	6.7453
23	160	3.1054	6.5639	115.93	1.2716	5.0963	5.544	6.8156
24	170	3.2999	6.5771	122.56	1.3417	5.0793	5.544	6.8857
25	180	3.4959	6.5904	129.2	1.4115	5.0618	5.544	6.9555
26	190	3.6904	6.6037	135.46	1.4769	5.0443	5.544	7.0209
27	200	3.8879	6.6173	141.83	1.5432	5.0262	5.544	7.0872
28	210	4.0838	6.6308	148.15	1.6087	5.0081	5.544	7.1527
29	220	4.2798	6.6444	154.31	1.6721	4.9905	5.544	7.2161
30	230	4.4744	6.6579	160.52	1.7359	4.973	5.544	7.2799
31	240	4.6675	6.6714	166.1	1.7926	4.9555	5.544	7.3366
32	270	5.2482	6.7123	182.69	1.9596	4.9052	5.544	7.5036
33	300	5.839	6.7544	198.8	2.1191	4.8568	5.544	7.6631
34	330	6.4298	6.7971	214.22	2.2692	4.8118	5.544	7.8132
35	360	7.012	6.8396	228.12	2.4014	4.7674	5.544	7.9454
36	390	7.597	6.8829	242.18	2.5333	4.723	5.544	8.0773
37	420	8.1879	6.9272	255.97	2.6605	4.6786	5.544	8.2045
38	450	8.7758	6.9719	269.13	2.7794	4.6354	5.544	8.3234
39	480	9.3565	7.0165	281.45	2.8881	4.5921	5.544	8.4321
40	510	9.943	7.0622	293.66	2.9939	4.5506	5.544	8.5379
41	540	10.532	7.1087	305.19	3.0911	4.5098	5.544	8.6351
42	570	11.116	7.1554	316.25	3.1822	4.47	5.544	8.7262
43	600	11.698	7.2026	326.89	3.2677	4.428	5.544	8.8117
44	630	12.285	7.2508	337.63	3.3526	4.3812	5.544	8.8966
45	660	12.874	7.2998	347.58	3.4282	4.3368	5.544	8.9722
46	690	13.463	7.3495	357.84	3.5056	4.2901	5.544	9.0496
47	720	14.047	7.3994	367.48	3.5757	4.2381	5.544	9.1197
48	750	14.632	7.4501	376.32	3.6369	4.2264	5.544	9.1809
49	770.98	15.049	7.4867	383.16	3.6849	4.1663	5.544	9.2289

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC

```
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
```

Specimen Height: 5.96 in
Specimen Area: 6.33 in^2
Specimen Volume: 37.74 in^3

Liquid Limit: 27
Time

0
5.0001
10
15
20
25
30.001 35.001
40.001 45.001 50.001
55.001
60.001 70.001
80.002
90.002

100
110

120 130

140
140
150
160
170
180
180
190
200
200
210

$$
0
$$

Vertica1
Strain
$\%$
0
0.088226
Corrected
Area
in^2

Deviator	Deviator
Load	Stress
1 b	tsf

0.08822^{0}
0.18929
0.29035
0.39301
0.49407
0.59834
6.3266
6.3322
6.3386

Piston Area: 0.00 in^2
Piston Friction: 0.001 b
Piston Weight: 0.001 b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Pore	Horizontal	Vertical
Pressure	Stress	Stress
tsf	tsf	tsf
5.0443	6.0408	6.0408
5.1902	6.0408	6.5251
5.2828	6.0408	6.6978
5.3416	6.0408	6.8014
5.381	6.0408	6.88
5.4104	6.0408	6.9452
5.4304	6.0408	7.0061
5.4431	6.0408	7.0628
5.4526	6.0408	7.1227
5.4565	6.0408	7.1799
5.4587	6.0408	7.2395
5.4581	6.0408	7.299
5.4554	6.0408	7.3608
5.4448	6.0408	7.4766
5.4271	6.0408	7.6041
5.406	6.0408	7.7328
5.3805	6.0408	7.8633
5.3527	6.0408	7.9933
5.3222	6.0408	8.1251
5.2895	6.0408	8.258
5.2534	6.0408	8.3871
5.219	6.0408	8.5155
5.1813	6.0408	8.6426
5.1441	6.0408	8.7675
5.107	6.0408	8.8869
5.0693	6.0408	9.0019
5.0321	6.0408	9.114
4.9949	6.0408	9.2232
4.9583	6.0408	9.3264
4.9222	6.0408	9.4276
4.8873	6.0408	9.5259
4.7863	6.0408	9.7987
4.6926	6.0408	10.052
4.6066	6.0408	10.279
4.5289	6.0408	10.496
4.454	6.0408	10.702
4.3803	6.0408	10.914
4.3087	6.0408	11.12
4.2377	6.0408	11.333
4.1678	6.0408	11.545
4.1007	6.0408	11.733
4.0319	6.0408	11.935
3.9659	6.0408	12.117
3.9004	6.0408	12.312
3.8366	6.0408	12.503
3.7706	6.0408	12.666
3.7068	6.0408	12.839
3.543	6.0408	13.006
3.5959	6.0408	13.132

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
Specimen Height: 5.96 in

Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Liquid Limit: 27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Vertical	Total Vertical	Total Horizontal	Excess Pore	A
Strain \%	Stress tsf	Stress tsf	Pressure tsf	Parameter
0.00	6.0408	6.0408	0	0.000
0.09	6.5251	6.0408	0.1459	0.301
0.19	6.6978	6.0408	0.23854	0.363
0.29	6.8014	6.0408	0.29734	0.391
0.39	6.88	6.0408	0.33673	0.401
0.49	6.9452	6.0408	0.36613	0.405
0.60	7.0061	6.0408	0.3861	0.400
0.70	7.0628	6.0408	0.39886	0.390
0.81	7.1227	6.0408	0.40829	0.377
0.91	7.1799	6.0408	0.41217	0.362
1.02	7.2395	6.0408	0.41439	0.346
1.12	7.299	6.0408	0.41384	0.329
1.22	7.3608	6.0408	0.41107	0.311
1.44	7.4766	6.0408	0.40053	0.279
1.65	7.6041	6.0408	0.38277	0.245
1.86	7.7328	6.0408	0.36169	0.214
2.07	7.8633	6.0408	0.33617	0.184
2.27	7.9933	6.0408	0.30844	0.158
2.48	8.1251	6.0408	0.27793	0.133
2.69	8.258	6.0408	0.2452	0.111
2.90	8.3871	6.0408	0.20914	0.089
3.11	8.5155	6.0408	0.17474	0.071
3.32	8.6426	6.0408	0.13702	0.053
3.52	8.7675	6.0408	0.099854	0.037
3.74	8.8869	6.0408	0.062686	0.022
3.95	9.0019	6.0408	0.024963	0.008
4.16	9.114	6.0408	-0.012204	-0.004
4.36	9.2232	6.0408	-0.049372	-0.016
4.57	9.3264	6.0408	-0.085985	-0.026
4.78	9.4276	6.0408	-0.12204	-0.036
4.98	9.5259	6.0408	-0.15699	-0.045
5.60	9.7987	6.0408	-0.25796	-0.069
6.22	10.052	6.0408	-0.35171	-0.088
6.83	10.279	6.0408	-0.43769	-0.103
7.45	10.496	6.0408	-0.51536	-0.116
8.07	10.702	6.0408	-0.59025	-0.127
8.69	10.914	6.0408	-0.66403	-0.136
9.31	11.12	6.0408	-0.73559	-0.145
9.93	11.333	6.0408	-0.8066	-0.152
10.55	11.545	6.0408	-0.8765	-0.159
11.18	11.733	6.0408	-0.94362	-0.166
11.80	11.935	6.0408	-1.0124	-0.172
12.42	12.117	6.0408	-1.0784	-0.177
13.03	12.312	6.0408	-1.1439	-0.182
13.66	12.503	6.0408	-1.2077	-0.187
14.28	12.666	6.0408	-1.2737	-0.192
14.90	12.839	6.0408	-1.3375	-0.197
15.52	13.006	6.0408	-1.4013	-0.201
15.99	13.132	6.0408	-1.4484	-0.204

Effective

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7
Test No.: 20.8 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in
Specimen Area: 6.32 in^2 Specimen Volume: $36.08 \mathrm{in} \wedge 3$

Liquid Limit: 27
Time
Vertica1
Strain
$\%$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
5.0038
10.004
15.004
20.004
25.004
30
35
40
45.002
50.003
55.003
60.003
70.003
80.004
90.004
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
270
300
330
360
390
420
450
480
510
540
570
600
630
660
690
720
750
773.86

Corrected
Area
in^2

Deviator	Deviator
Load	Stress
$1 b$	tsf

0
0.07
0.1
0.2
0.3
0
0.4749
0.57677
0.57677
0.67415

Piston Area: 0.00 in^2
Piston Friction: 0.001 b
Piston Weight: 0.001 b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65

Pore	Horizontal	Vertical
Pressure	Stress	Stress
tsf	tsf	tsf
5.0958	6.5376	6.5376
5.2246	6.5376	7.0504
5.3665	6.5376	7.2455
5.4806	6.5376	7.3663
5.5686	6.5376	7.4524
5.636	6.5376	7.5156
5.6898	6.5376	7.5616
5.7316	6.5376	7.5985
5.7648	6.5376	7.6449
5.7909	6.5376	7.6739
5.8104	6.5376	7.7213
5.8262	6.5376	7.7526
5.8387	6.5376	7.7926
5.8539	6.5376	7.8543
5.8583	6.5376	7.9274
5.855	6.5376	7.9932
5.8463	6.5376	8.0716
5.8338	6.5376	8.1484
5.8186	6.5376	8.2227
5.7979	6.5376	8.2931
5.7762	6.5376	8.3741
5.7523	6.5376	8.4769
5.7278	6.5376	8.5521
5.7018	6.5376	8.6477
5.6735	6.5376	8.7263
5.6442	6.5376	8.8033
5.6148	6.5376	8.8828
5.5849	6.5376	8.9849
5.5534	6.5376	9.0877
5.5208	6.5376	9.1746
5.4876	6.5376	9.2583
5.3849	6.5376	9.5364
5.2746	6.5376	9.8297
5.1589	6.5376	10.121
5.0409	6.5376	10.419
4.9187	6.5376	10.72
4.7937	6.5376	11.033
4.6665	6.5376	11.349
4.535	6.5376	11.656
4.4035	6.5376	11.951
4.2698	6.5376	12.271
4.1361	6.5376	12.587
4.0008	6.5376	12.896
3.8687	6.5376	13.213
3.7378	6.5376	13.498
3.6073	6.5376	13.775
3.4807	6.5376	14.052
3.3563	6.5376	14.327
3.2617	6.5376	14.514

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: $3^{\prime \prime}$ ST

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in
Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27

	Vertical	Total Vertical	Total Horizontal
	Strain	Stress	Stress
	\%	tsf	tsf
1	0.00	6.5376	6.5376
2	0.07	7.0504	6.5376
3	0.17	7.2455	6.5376
4	0.27	7.3663	6.5376
5	0.37	7.4524	6.5376
6	0.47	7.5156	6.5376
7	0.58	7.5616	6.5376
8	0.67	7.5985	6.5376
9	0.78	7.6449	6.5376
10	0.88	7.6739	6.5376
11	0.98	7.7213	6.5376
12	1.08	7.7526	6.5376
13	1.18	7.7926	6.5376
14	1.38	7.8543	6.5376
15	1.59	7.9274	6.5376
16	1.79	7.9932	6.5376
17	1.99	8.0716	6.5376
18	2.20	8.1484	6.5376
19	2.40	8.2227	6.5376
20	2.60	8.2931	6.5376
21	2.81	8.3741	6.5376
22	3.01	8.4769	6.5376
23	3.21	8.5521	6.5376
24	3.41	8.6477	6.5376
25	3.61	8.7263	6.5376
26	3.81	8.8033	6.5376
27	4.02	8.8828	6.5376
28	4.22	8.9849	6.5376
29	4.42	9.0877	6.5376
30	4.62	9.1746	6.5376
31	4.82	9.2583	6.5376
32	5.43	9.5364	6.5376
33	6.04	9.8297	6.5376
34	6.64	10.121	6.5376
35	7.24	10.419	6.5376
36	7.86	10.72	6.5376
37	8.46	11.033	6.5376
38	9.06	11.349	6.5376
39	9.67	11.656	6.5376
40	10.28	11.951	6.5376
41	10.89	12.271	6.5376
42	11.48	12.587	6.5376
43	12.08	12.896	6.5376
44	12.70	13.213	6.5376
45	13.30	13.498	6.5376
46	13.90	13.775	6.5376
47	14.50	14.052	6.5376
48	15.12	14.327	6.5376

49

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

Excess
Pore
Pore
Pressure

Effective Vertical	Effective Horizontal	Stress	Effective
Stress tsf	Stress tsf	Ratio	$p_{t s f}^{p}$
1.4418	1.4418	1.000	1.4418
1.8258	1.313	1.391	1.5694
1.879	1.1711	1.604	1.5251
1.8857	1.057	1.784	1.4714
1.8838	0.96898	1.944	1.4264
1.8796	0.9016	2.085	1.3906
1.8718	0.8478	2.208	1.3598
1.8669	0.80595	2.316	1.3364
1.8801	0.7728	2.433	1.3264
1.883	0.74672	2.522	1.3149
1.9108	0.72715	2.628	1.319
1.9264	0.71139	2.708	1.3189
1.9539	0.69889	2.796	1.3264
2.0004	0.68368	2.926	1.342
2.0691	0.67933	3.046	1.3742
2.1382	0.68259	3.132	1.4104
2.2253	0.69129	3.219	1.4583
2.3146	0.70379	3.289	1.5092
2.4041	0.719	3.344	1.5616
2.4951	0.73965	3.373	1.6174
2.5979	0.76139	3.412	1.6797
2.7246	0.7853	3.469	1.7549
2.8242	0.80976	3.488	1.817
2.9459	0.83584	3.524	1.8909
3.0528	0.8641	3.533	1.9584
3.1592	0.89345	3.536	2.0263
3.268	0.92279	3.541	2.0954
3.3999	0.95268	3.569	2.1763
3.5343	0.9842	3.591	2.2593
3.6538	1.0168	3.593	2.3353
3.7707	1.05	3.591	2.4103
4.1515	1.1527	3.602	2.6521
4.5551	1.263	3.607	2.909
4.9621	1.3787	3.599	3.1704
5.3783	1.4967	3.594	3.4375
5.8017	1.6189	3.584	3.7103
6.2388	1.7439	3.577	3.9914
6.6822	1.8711	3.571	4.2767
7.1206	2.0026	3.556	4.5616
7.5479	2.1341	3.537	4.841
8.0013	2.2678	3.528	5.1345
8.4506	2.4015	3.519	5.426
8.8949	2.5368	3.506	5.7159
9.3444	2.6689	3.501	6.0066
9.7607	2.7998	3.486	6.2803
10.168	2.9303	3.470	6.5489
10.571	3.0569	3.458	6.8139
10.971	3.1813	3.449	7.0762
11.253	3.2759	3.435	7.2643

Effective	Effective		
Vertical	Horizontal	Stress	Effective
$\begin{aligned} & \text { Stress } \\ & \text { tsf } \end{aligned}$	Stress	Ratio	¢ ${ }_{\text {p }}$
1.4418	1.4418	1.000	1.4418
1.8258	1.313	1.391	1.5694
1.879	1.1711	1.604	1.5251
1.8857	1.057	1.784	1.4714
1.8838	0.96898	1.944	1.4264
1.8796	0.9016	2.085	1.3906
1.8718	0.8478	2.208	1.3598
1.8669	0.80595	2.316	1.3364
1.8801	0.7728	2.433	1.3264
1.883	0.74672	2.522	1.3149
1.9108	0.72715	2.628	1.319
1.9264	0.71139	2.708	1.3189
1.9539	0.69889	2.796	1.3264
2.0004	0.68368	2.926	1.342
2.0691	0.67933	3.046	1.3742
2.1382	0.68259	3.132	1.4104
2.2253	0.69129	3.219	1.4583
2.3146	0.70379	3.289	1.5092
2.4041	0.719	3.344	1.5616
2.4951	0.73965	3.373	1.6174
2.5979	0.76139	3.412	1.6797
2.7246	0.7853	3.469	1.7549
2.8242	0.80976	3.488	1.817
2.9459	0.83584	3.524	1.8909
3.0528	0.8641	3.533	1.9584
3.1592	0.89345	3.536	2.0263
3.268	0.92279	3.541	2.0954
3.3999	0.95268	3.569	2.1763
3.5343	0.9842	3.591	2.2593
3.6538	1.0168	3.593	2.3353
3.7707	1.05	3.591	2.4103
4.1515	1.1527	3.602	2.6521
4.5551	1.263	3.607	2.909
4.9621	1.3787	3.599	3.1704
5.3783	1.4967	3.594	3.4375
5.8017	1.6189	3.584	3.7103
6.2388	1.7439	3.577	3.9914
6.6822	1.8711	3.571	4.2767
7.1206	2.0026	3.556	4.5616
7.5479	2.1341	3.537	4.841
8.0013	2.2678	3.528	5.1345
8.4506	2.4015	3.519	5.426
8.8949	2.5368	3.506	5.7159
9.3444	2.6689	3.501	6.0066
9.7607	2.7998	3.486	6.2803
10.168	2.9303	3.470	6.5489
10.571	3.0569	3.458	6.8139
10.971	3.1813	3.449	7.0762
11.253	3.2759	3.435	7.2643

Effective Horizontal	Stress	Effective
Stress tsf	Ratio	
1.4418	1.000	1.4418
1.313	1.391	1.5694
1.1711	1.604	1.5251
1.057	1.784	1.4714
0.96898	1.944	1.4264
0.9016	2.085	1.3906
0.8478	2.208	1.3598
0.80595	2.316	1.3364
0.7728	2.433	1.3264
0.74672	2.522	1.3149
0.72715	2.628	1.319
0.71139	2.708	1.3189
0.69889	2.796	1.3264
0.68368	2.926	1.342
0.67933	3.046	1.3742
0.68259	3.132	1.4104
0.69129	3.219	1.4583
0.70379	3.289	1.5092
0.719	3.344	1.5616
0.73965	3.373	1.6174
0.76139	3.412	1.6797
0.7853	3.469	1.7549
0.80976	3.488	1.817
0.83584	3.524	1.8909
0.8641	3.533	1.9584
0.89345	3.536	2.0263
0.92279	3.541	2.0954
0.95268	3.569	2.1763
0.9842	3.591	2.2593
1.0168	3.593	2.3353
1.05	3.591	2.4103
1.1527	3.602	2.6521
1.263	3.607	2.909
1.3787	3.599	3.1704
1.4967	3.594	3.4375
1.6189	3.584	3.7103
1.7439	3.577	3.9914
1.8711	3.571	4.2767
2.0026	3.556	4.5616
2.1341	3.537	4.841
2.2678	3.528	5.1345
2.4015	3.519	5.426
2.5368	3.506	5.7159
2.6689	3.501	6.0066
2.7998	3.486	6.2803
2.9303	3.470	6.5489
3.0569	3.458	6.8139
3.1813	3.449	7.0762
3.2759	3.435	7.2643

$$
0.55363
$$

$$
\begin{aligned}
& 0.56816 \\
& 0.59183
\end{aligned}
$$

$$
\begin{aligned}
& 0.59183 \\
& 0.60749
\end{aligned}
$$

$$
0.62751
$$

$$
0.65834
$$

$$
\begin{aligned}
& 0.69489 \\
& 0.69489
\end{aligned}
$$

$$
0.72781
$$

$$
\begin{aligned}
& 0.76699 \\
& 080547
\end{aligned}
$$

$$
\begin{aligned}
& 0.80542 \\
& 0.84255
\end{aligned}
$$

$$
\begin{aligned}
& 0.04774 \\
& 0.8774
\end{aligned}
$$

$$
\begin{aligned}
& 0.91827 \\
& 0.96965
\end{aligned}
$$

$$
\begin{array}{r}
9.96965 \\
1.0072
\end{array}
$$

$$
\begin{array}{r}
1.0072 \\
1.055
\end{array}
$$

$$
\begin{aligned}
& 1.0993 \\
& 1.1329
\end{aligned}
$$

$$
\begin{aligned}
& 1.1329 \\
& 1.1726
\end{aligned}
$$

$$
\begin{aligned}
& 1.1726 \\
& 1.2236
\end{aligned}
$$

$$
\begin{aligned}
& 1.226 \\
& 1.2751
\end{aligned}
$$

$$
1.3185
$$

$$
\begin{aligned}
& 1.3604 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& 1.4994 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& 1.641 \\
& 1.7917
\end{aligned}
$$

$$
\begin{aligned}
& 1.7917 \\
& 1.9408
\end{aligned}
$$

$$
\begin{aligned}
& 1.0400 \\
& 2.0944 \\
& 2.2475
\end{aligned}
$$

$$
\begin{aligned}
& 2.2475 \\
& 2.405
\end{aligned}
$$

$$
\begin{array}{r}
2.559 \\
2.559
\end{array}
$$

$$
\begin{aligned}
& 2.7069 \\
& 2.8667
\end{aligned}
$$

$$
\begin{aligned}
& 2.82015 \\
& 3.0245
\end{aligned}
$$

$$
\begin{aligned}
& 3.1791 \\
& 3.3378
\end{aligned}
$$

$$
\begin{aligned}
& 3.3378 \\
& 2 .
\end{aligned}
$$

$$
\begin{array}{r}
3.4800 \\
3.404
\end{array}
$$

$$
\begin{array}{r}
3.6186 \\
3.757 \\
3.750
\end{array}
$$

$$
3.8948
$$

$$
3.9884
$$

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-13
Sample Type: 3" ST

Symbol		(1)	\triangle	\square	
Test No.		10.4 PSI	17.4 PSI	24.3 PSI	
$\begin{aligned} & \overline{\bar{O}} \\ & : \overline{\bar{E}} \\ & \underline{\underline{5}} \end{aligned}$	Diameter, in	2.722	2.8299	2.6157	
	Height, in	6.0571	5.4106	5.9323	
	Water Content, \%	5.02	7.46	5.91	
	Dry Density, pcf	121.2	121.3	120.9	
	Saturation, \%	36.18	53.82	42.11	
	Void Ratio	0.36923	0.3684	0.37292	
	Water Content, \%	13.55	13.79	12.58	
	Dry Density, pcf	122.	121.5	124.4	
	Saturation, \%	100.00	100.00	100.00	
	Void Ratio	0.36021	0.36668	0.33456	
	Back Press., tsf	5.0425	5.0399	5.042	
Minor Prin. Stress, tsf		0.74626	1.2529	1.798	
Max. Dev. Stress, tsf		1.6147	1.6669	2.202	
Time to Failure, min		3930	2700	3930	
Strain Rate, \%/min		0.006	0.006	0.006	
B-Value		. 95	. 95	. 97	
Measured Specific Gravity		2.66	2.66	2.66	
Liquid Limit		40	40	40	
Plastic Limit		24	24	24	
Plasticity Index		16	16	16	
Failure Sketch					

Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Project: COLETO CREEK FACILITY	Location: IPR-GDF SUEZ	Project No.: 60225561
Boring No.: B-4-1 S-13	Tested By: BCM	Checked By: WPQ
Sample No.: S-13	Test Date: $12 / 2 / 11$	Depth: 24.0'-26.0'
Test No.: B-4-1 S-13	Sample Type: 3' ST	Elevation: -----
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC		
Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767		

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA $=$ MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

```
Specimen Height: 6.06 in
Specimen Area: 5.82 in^2
``` Specimen volume: 35.25 in^3

Liquid Limit: 40
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & \begin{tabular}{l}
Deviator \\
Load 1b
\end{tabular} & Deviator Stress tsf & Pore Pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 5.8194 & 0 & 0 & 5.0425 & 5.7888 & 5.7888 \\
\hline 2 & 5.0041 & 0.017083 & 5.8204 & 6.8968 & 0.085314 & 5.2419 & 5.7888 & 5.8741 \\
\hline 3 & 5.0010 & 0.037013 & 5.8216 & 11.372 & 0.14064 & 5.2811 & 5.7888 & 5.9294 \\
\hline 4 & 15 & 0.056944 & 5.8228 & 14.478 & 0.17902 & 5.308 & 5.7888 & 5.9678 \\
\hline 5 & 20 & 0.075451 & 5.8238 & 16.9 & 0.20893 & 5.3273 & 5.7888 & 5.9977 \\
\hline 6 & 25 & 0.093957 & 5.8249 & 18.795 & 0.23232 & 5.3425 & 5.7888 & 6.0211 \\
\hline 7 & 30 & 0.11389 & 5.8261 & 20.48 & 0.25309 & 5.3553 & 5.7888 & 6.0419 \\
\hline 8 & 35.001 & 0.13239 & 5.8272 & 21.901 & 0.27061 & 5.3658 & 5.7888 & 6.0594 \\
\hline 9 & 40.001 & 0.1509 & 5.8282 & 23.27 & 0.28747 & 5.3746 & 5.7888 & 6.0763 \\
\hline 10 & 45.001 & 0.17083 & 5.8294 & 24.428 & 0.30172 & 5.3828 & 5.7888 & 6.0905 \\
\hline 11 & 50.001 & 0.19076 & 5.8306 & 25.481 & 0.31466 & 5.3892 & 5.7888 & 6.1035 \\
\hline 12 & 55.001 & 0.21069 & 5.8317 & 26.481 & 0.32695 & 5.3951 & 5.7888 & 6.1157 \\
\hline 13 & 60.001 & 0.2292 & 5.8328 & 27.482 & 0.33923 & 5.4003 & 5.7888 & 6.128 \\
\hline 14 & 70.001 & 0.26764 & 5.8351 & 29.272 & 0.36119 & 5.4097 & 5.7888 & 6.15 \\
\hline 15 & 80.001 & 0.3075 & 5.8374 & 30.904 & 0.38118 & 5.4173 & 5.7888 & 6.17 \\
\hline 16 & 90.002 & 0.34593 & 5.8396 & 32.325 & 0.39856 & 5.4231 & 5.7888 & 6.1874 \\
\hline 17 & 100 & 0.38579 & 5.842 & 33.694 & 0.41527 & 5.4284 & 5.7888 & 6.2041 \\
\hline 18 & 110 & 0.42281 & 5.8441 & 34.905 & 0.43003 & 5.4337 & 5.7888 & 6.2188 \\
\hline 19 & 120 & 0.46124 & 5.8464 & 36.063 & 0.44413 & 5.4372 & 5.7888 & 6.2329 \\
\hline 20 & 130 & 0.50111 & 5.8487 & 37.116 & 0.45691 & 5.4407 & 5.7888 & 6.2457 \\
\hline 21 & 140 & 0.54097 & 5.8511 & 38.169 & 0.46969 & 5.4436 & 5.7888 & 6.2585 \\
\hline 22 & 150 & 0.5794 & 5.8534 & 39.117 & 0.48116 & 5.4454 & 5.7888 & 6.27 \\
\hline 23 & 160 & 0.61784 & 5.8556 & 40.012 & 0.49198 & 5.4477 & 5.7888 & 6.2808 \\
\hline 24 & 170 & 0.65628 & 5.8579 & 40.907 & 0.50279 & 5.4494 & 5.7888 & 6.2916 \\
\hline 25 & 180 & 0.69471 & 5.8602 & 41.802 & 0.51359 & 5.4512 & 5.7888 & 6.3024 \\
\hline 26 & 190 & 0.73457 & 5.8625 & 42.644 & 0.52373 & 5.453 & 5.7888 & 6.3125 \\
\hline 27 & 200 & 0.77159 & 5.8647 & 43.276 & 0.53129 & 5.4541 & 5.7888 & 6.3201 \\
\hline 28 & 210 & 0.81145 & 5.867 & 44.013 & 0.54012 & 5.4553 & 5.7888 & 6.3289 \\
\hline 29 & 220 & 0.84846 & 5.8692 & 44.75 & 0.54896 & 5.4565 & 5.7888 & 6.3378 \\
\hline 30 & 230 & 0.8869 & 5.8715 & 45.645 & 0.55973 & 5.4565 & 5.7888 & 6.3485 \\
\hline 31 & 270 & 1.0406 & 5.8806 & 48.593 & 0.59495 & 5.4576 & 5.7888 & 6.3838 \\
\hline 32 & 300 & 1.156 & 5.8875 & 50.541 & 0.61808 & 5.4576 & 5.7888 & 6.4069 \\
\hline 33 & 330 & 1.2713 & 5.8944 & 52.489 & 0.64116 & 5.4565 & 5.7888 & 6.43 \\
\hline 34 & 360 & 1.3866 & 5.9013 & 54.174 & 0.66096 & 5.4553 & 5.7888 & 6.4498 \\
\hline 35 & 390 & 1.5005 & 5.9081 & 55.911 & 0.68137 & 5.453 & 5.7888 & 6.4702 \\
\hline 36 & 420 & 1.6172 & 5.9151 & 57.596 & 0.70107 & 5.4506 & 5.7888 & 6.4899 \\
\hline 37 & 450 & 1.7325 & 5.922 & 59.07 & 0.71817 & 5.4465 & 5.7888 & 6.507 \\
\hline 38 & 480 & 1.8492 & 5.9291 & 60.702 & 0.73714 & 5.4436 & 5.7888 & 6.5259 \\
\hline 39 & 510 & 1.966 & 5.9361 & 62.334 & 0.75606 & 5.4407 & 5.7888 & 6.5449 \\
\hline 40 & 540 & 2.0841 & 5.9433 & 63.966 & 0.77492 & 5.4366 & 5.7888 & 6.5637 \\
\hline 41 & 570 & 2.2009 & 5.9504 & 65.44 & 0.79183 & 5.4331 & 5.7888 & 6.5806 \\
\hline 42 & 600 & 2.3176 & 5.9575 & 66.862 & 0.80806 & 5.4284 & 5.7888 & 6.5969 \\
\hline 43 & 630 & 2.4358 & 5.9647 & 68.388 & 0.82551 & 5.4231 & 5.7888 & 6.6143 \\
\hline 44 & 660 & 2.5539 & 5.972 & 69.863 & 0.84229 & 5.4196 & 5.7888 & 6.6311 \\
\hline 45 & 690 & 2.6721 & 5.9792 & 71.179 & 0.85711 & 5.4144 & 5.7888 & 6.6459 \\
\hline 46 & 720 & 2.7902 & 5.9865 & 72.548 & 0.87254 & 5.4091 & 5.7888 & 6.6613 \\
\hline 47 & 750 & 2.9056 & 5.9936 & 73.916 & 0.88795 & 5.4038 & 5.7888 & 6.6767 \\
\hline 48 & 780 & 3.0223 & 6.0008 & 75.285 & 0.9033 & 5.3992 & 5.7888 & 6.6921 \\
\hline 49 & 810 & 3.1376 & 6.0079 & 76.391 & 0.91548 & 5.3939 & 5.7888 & 6.7043 \\
\hline 50 & 840 & 3.2515 & 6.015 & 77.707 & 0.93016 & 5.3886 & 5.7888 & 6.719 \\
\hline 51 & 870 & 3.3654 & 6.0221 & 78.971 & 0.94417 & 5.3828 & 5.7888 & 6.733 \\
\hline 52 & 900 & 3.4807 & 6.0293 & 80.287 & 0.95876 & 5.3781 & 5.7888 & 6.7476 \\
\hline 53 & 930 & 3.5946 & 6.0364 & 81.498 & 0.97207 & 5.3729 & 5.7888 & 6.7609 \\
\hline 54 & 960 & 3.7085 & 6.0436 & 82.656 & 0.98472 & 5.3664 & 5.7888 & 6.7735 \\
\hline 55 & 990 & 3.8238 & 6.0508 & 84.025 & 0.99983 & 5.3623 & 5.7888 & 6.7886 \\
\hline 56 & 1020 & 3.9377 & 6.058 & 85.235 & 1.013 & 5.3559 & 5.7888 & 6.8018 \\
\hline 57 & 1050 & 4.053 & 6.0653 & 86.446 & 1.0262 & 5.3518 & 5.7888 & 6.815 \\
\hline 58 & 1080 & 4.1683 & 6.0726 & 87.447 & 1.0368 & 5.346 & 5.7888 & 6.8256 \\
\hline 59 & 1110 & 4.285 & 6.08 & 88.658 & 1.0499 & 5.3413 & 5.7888 & 6.8387 \\
\hline 60 & 1140 & 4.4018 & 6.0874 & 89.658 & 1.0604 & 5.336 & 5.7888 & 6.8492 \\
\hline 61 & 1170 & 4.5185 & 6.0948 & 90.816 & 1.0728 & 5.3308 & 5.7888 & 6.8616 \\
\hline 62 & 1200 & 4.6352 & 6.1023 & 91.974 & 1.0852 & 5.3243 & 5.7888 & 6.874 \\
\hline 63 & 1230 & 4.752 & 6.1098 & 93.133 & 1.0975 & 5.3185 & 5.7888 & 6.8863 \\
\hline 64 & 1260 & 4.8701 & 6.1174 & 94.185 & 1.1085 & 5.3126 & 5.7888 & 6.8973 \\
\hline 65 & 1290 & 4.9883 & 6.125 & 95.238 & 1.1195 & 5.3056 & 5.7888 & 6.9083 \\
\hline 66 & 1320 & 5.1064 & 6.1326 & 96.502 & 1.133 & 5.301 & 5.7888 & 6.9218 \\
\hline 67 & 1350 & 5.2232 & 6.1402 & 97.45 & 1.1427 & 5.2945 & 5.7888 & 6.9315 \\
\hline 68 & 1380 & 5.3385 & 6.1476 & 98.555 & 1.1543 & 5.2881 & 5.7888 & 6.9431 \\
\hline 69 & 1410 & 5.4552 & 6.1552 & 99.555 & 1.1645 & 5.2834 & 5.7888 & 6.9533 \\
\hline 70 & 1440 & 5.5705 & 6.1627 & 100.56 & 1.1748 & 5.277 & 5.7888 & 6.9636 \\
\hline 71 & 1470 & 5.683 & 6.1701 & 101.61 & 1.1857 & 5.27 & 5.7888 & 6.9745 \\
\hline 72 & 1500 & 5.7983 & 6.1776 & 102.45 & 1.1941 & 5.2659 & 5.7888 & 6.9829 \\
\hline 73 & 1530 & 5.9136 & 6.1852 & 103.61 & 1.2061 & 5.26 & 5.7888 & 6.9949 \\
\hline 74 & 1560 & 6.0275 & 6.1927 & 104.35 & 1.2132 & 5.2524 & 5.7888 & 7.002 \\
\hline 75 & 1590 & 6.1428 & 6.2003 & 105.29 & 1.2227 & 5.2477 & 5.7888 & 7.0115 \\
\hline 76 & 1620 & 6.2581 & 6.2079 & 106.35 & 1.2334 & 5.2413 & 5.7888 & 7.0222 \\
\hline 77 & 1650 & 6.372 & 6.2155 & 107.24 & 1.2423 & 5.2355 & 5.7888 & 7.0311 \\
\hline 78 & 1680 & 6.4887 & 6.2233 & 107.98 & 1.2493 & 5.2302 & 5.7888 & 7.0381 \\
\hline 79 & 1710 & 6.6041 & 6.2309 & 108.87 & 1.2581 & 5.2238 & 5.7888 & 7.0469 \\
\hline
\end{tabular}

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.66

Project: COLETO CREEK FACILITY
Sample No.: S-13
Sample No: \(\mathrm{S}-13\)
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Test Date: \(12 / 2 / 11\)

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: -----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{ll}
Specimen Height: 6.06 in & Piston Area: 0.00 in^2 \\
Specimen Area: 5.82 in^2 & Piston Friction: 0.00 lb \\
Specimen Volume: 35.25 in^3 & Piston Weight: \(0.00 \mathrm{7b}\)
\end{tabular}

Filter Strip Correction: 0.00 tsf Membrane Correction: \(0.00 \mathrm{1b} / \mathrm{in}\) Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & Total Vertical & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & Excess Pore & A & \begin{tabular}{l}
Effective \\
Vertical
\end{tabular} & \begin{tabular}{l}
Effective \\
Horizontal
\end{tabular} & Stress & Effective & \\
\hline & Strain \% & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
{\underset{\text { tsf }}{\text { p }}}^{\text {(}}
\] & \[
\begin{gathered}
\mathrm{q} \\
\mathrm{tsf}
\end{gathered}
\] \\
\hline 1 & 0.00 & 5.7888 & 5.7888 & 0 & 0.000 & 0.74626 & 0.74626 & 1.000 & 0.74626 & 0 \\
\hline 2 & 0.02 & 5.8741 & 5.7888 & 0.19936 & 2.337 & 0.63221 & 0.5469 & 1.156 & 0.58956 & 0.042657 \\
\hline 3 & 0.04 & 5.9294 & 5.7888 & 0.23853 & 1.696 & 0.64837 & 0.50773 & 1.277 & 0.57805 & 0.070321 \\
\hline 4 & 0.06 & 5.9678 & 5.7888 & 0.26543 & 1.483 & 0.65986 & 0.48083 & 1.372 & 0.57035 & 0.089512 \\
\hline 5 & 0.08 & 5.9977 & 5.7888 & 0.28472 & 1.363 & 0.67047 & 0.46154 & 1.453 & 0.56601 & 0.10447 \\
\hline 6 & 0.09 & 6.0211 & 5.7888 & 0.29992 & 1.291 & 0.67866 & 0.44634 & 1.520 & 0.5625 & 0.11616 \\
\hline 7 & 0.11 & 6.0419 & 5.7888 & 0.31278 & 1.236 & 0.68657 & 0.43348 & 1.584 & 0.56002 & 0.12655 \\
\hline 8 & 0.13 & 6.0594 & 5.7888 & 0.32331 & 1.195 & 0.69356 & 0.42295 & 1.640 & 0.55826 & 0.1353 \\
\hline 9 & 0.15 & 6.0763 & 5.7888 & 0.33208 & 1.155 & 0.70165 & 0.41418 & 1.694 & 0.55792 & 0.14373 \\
\hline 10 & 0.17 & 6.0905 & 5.7888 & 0.34026 & 1.128 & 0.70772 & 0.406 & 1.743 & 0.55686 & 0.15086 \\
\hline 11 & 0.19 & 6.1035 & 5.7888 & 0.34669 & 1.102 & 0.71423 & 0.39957 & 1.787 & 0.5569 & 0.15733 \\
\hline 12 & 0.21 & 6.1157 & 5.7888 & 0.35254 & 1.078 & 0.72067 & 0.39372 & 1.830 & 0.5572 & 0.16347 \\
\hline 13 & 0.23 & 6.128 & 5.7888 & 0.3578 & 1.055 & 0.72769 & 0.38846 & 1.873 & 0.55808 & 0.16962 \\
\hline 14 & 0.27 & 6.15 & 5.7888 & 0.36716 & 1.017 & 0.7403 & 0.37911 & 1.953 & 0.5597 & 0.1806 \\
\hline 15 & 0.31 & 6.17 & 5.7888 & 0.37476 & 0.983 & 0.75268 & 0.37151 & 2.026 & 0.56209 & 0.19059 \\
\hline 16 & 0.35 & 6.1874 & 5.7888 & 0.3806 & 0.955 & 0.76421 & 0.36566 & 2.090 & 0.56494 & 0.19928 \\
\hline 17 & 0.39 & 6.2041 & 5.7888 & 0.38586 & 0.929 & 0.77566 & 0.3604 & 2.152 & 0.56803 & 0.20763 \\
\hline 18 & 0.42 & 6.2188 & 5.7888 & 0.39113 & 0.910 & 0.78517 & 0.35514 & 2.211 & 0.57015 & 0.21501 \\
\hline 19 & 0.46 & 6.2329 & 5.7888 & 0.39463 & 0.889 & 0.79576 & 0.35163 & 2.263 & 0.57369 & 0.22206 \\
\hline 20 & 0.50 & 6.2457 & 5.7888 & 0.39814 & 0.871 & 0.80503 & 0.34812 & 2.313 & 0.57658 & 0.22846 \\
\hline 21 & 0.54 & 6.2585 & 5.7888 & 0.40106 & 0.854 & 0.81488 & 0.3452 & 2.361 & 0.58004 & 0.23484 \\
\hline 22 & 0.58 & 6.27 & 5.7888 & 0.40282 & 0.837 & 0.8246 & 0.34344 & 2.401 & 0.58402 & 0.24058 \\
\hline 23 & 0.62 & 6.2808 & 5.7888 & 0.40516 & 0.824 & 0.83308 & 0.3411 & 2.442 & 0.58709 & 0.24599 \\
\hline 24 & 0.66 & 6.2916 & 5.7888 & 0.40691 & 0.809 & 0.84214 & 0.33935 & 2.482 & 0.59075 & 0.25139 \\
\hline 25 & 0.69 & 6.3024 & 5.7888 & 0.40866 & 0.796 & 0.85119 & 0.3376 & 2.521 & 0.59439 & 0.2568 \\
\hline 26 & 0.73 & 6.3125 & 5.7888 & 0.41042 & 0.784 & 0.85957 & 0.33584 & 2.559 & 0.59771 & 0.26187 \\
\hline 27 & 0.77 & 6.3201 & 5.7888 & 0.41159 & 0.775 & 0.86596 & 0.33467 & 2.587 & 0.60032 & 0.26565 \\
\hline 28 & 0.81 & 6.3289 & 5.7888 & 0.41276 & 0.764 & 0.87363 & 0.3335 & 2.620 & 0.60357 & 0.27006 \\
\hline 29 & 0.85 & 6.3378 & 5.7888 & 0.41393 & 0.754 & 0.8813 & 0.33233 & 2.652 & 0.60682 & 0.27448 \\
\hline 30 & 0.89 & 6.3485 & 5.7888 & 0.41393 & 0.740 & 0.89206 & 0.33233 & 2.684 & 0.6122 & 0.27986 \\
\hline 31 & 1.04 & 6.3838 & 5.7888 & 0.4151 & 0.698 & 0.92612 & 0.33117 & 2.797 & 0.62864 & 0.29748 \\
\hline 32 & 1.16 & 6.4069 & 5.7888 & 0.4151 & 0.672 & 0.94925 & 0.33117 & 2.866 & 0.64021 & 0.30904 \\
\hline 33 & 1.27 & 6.43 & 5.7888 & 0.41393 & 0.646 & 0.97349 & 0.33233 & 2.929 & 0.65291 & 0.32058 \\
\hline 34 & 1.39 & 6.4498 & 5.7888 & 0.41276 & 0.624 & 0.99447 & 0.3335 & 2.982 & 0.66398 & 0.33048 \\
\hline 35 & 1.50 & 6.4702 & 5.7888 & 0.41042 & 0.602 & 1.0172 & 0.33584 & 3.029 & 0.67653 & 0.34069 \\
\hline 36 & 1.62 & 6.4899 & 5.7888 & 0.40808 & 0.582 & 1.0393 & 0.33818 & 3.073 & 0.68872 & 0.35054 \\
\hline 37 & 1.73 & 6.507 & 5.7888 & 0.40399 & 0.563 & 1.0604 & 0.34227 & 3.098 & 0.70136 & 0.35909 \\
\hline 38 & 1.85 & 6.5259 & 5.7888 & 0.40106 & 0.544 & 1.0823 & 0.3452 & 3.135 & 0.71377 & 0.36857 \\
\hline 39 & 1.97 & 6.5449 & 5.7888 & 0.39814 & 0.527 & 1.1042 & 0.34812 & 3.172 & 0.72615 & 0.37803 \\
\hline 40 & 2.08 & 6.5637 & 5.7888 & 0.39405 & 0.509 & 1.1271 & 0.35221 & 3.200 & 0.73967 & 0.38746 \\
\hline 41 & 2.20 & 6.5806 & 5.7888 & 0.39054 & 0.493 & 1.1475 & 0.35572 & 3.226 & 0.75163 & 0.39591 \\
\hline 42 & 2.32 & 6.5969 & 5.7888 & 0.38586 & 0.478 & 1.1685 & 0.3604 & 3.242 & 0.76443 & 0.40403 \\
\hline 43 & 2.44 & 6.6143 & 5.7888 & 0.3806 & 0.461 & 1.1912 & 0.36566 & 3.258 & 0.77842 & 0.41276 \\
\hline 44 & 2.55 & 6.6311 & 5.7888 & 0.37709 & 0.448 & 1.2115 & 0.36917 & 3.282 & 0.79031 & 0.42114 \\
\hline 45 & 2.67 & 6.6459 & 5.7888 & 0.37183 & 0.434 & 1.2315 & 0.37443 & 3.289 & 0.80299 & 0.42856 \\
\hline 46 & 2.79 & 6.6613 & 5.7888 & 0.36657 & 0.420 & 1.2522 & 0.37969 & 3.298 & 0.81596 & 0.43627 \\
\hline 47 & 2.91 & 6.6767 & 5.7888 & 0.36131 & 0.407 & 1.2729 & 0.38495 & 3.307 & 0.82893 & 0.44397 \\
\hline 48 & 3.02 & 6.6921 & 5.7888 & 0.35663 & 0.395 & 1.2929 & 0.38963 & 3.318 & 0.84128 & 0.45165 \\
\hline 49 & 3.14 & 6.7043 & 5.7888 & 0.35137 & 0.384 & 1.3104 & 0.39489 & 3.318 & 0.85263 & 0.45774 \\
\hline 50 & 3.25 & 6.719 & 5.7888 & 0.34611 & 0.372 & 1.3303 & 0.40015 & 3.324 & 0.86523 & 0.46508 \\
\hline 51 & 3.37 & 6.733 & 5.7888 & 0.34026 & 0.360 & 1.3502 & 0.406 & 3.326 & 0.87808 & 0.47208 \\
\hline 52 & 3.48 & 6.7476 & 5.7888 & 0.33558 & 0.350 & 1.3694 & 0.41068 & 3.335 & 0.89006 & 0.47938 \\
\hline 53 & 3.59 & 6.7609 & 5.7888 & 0.33032 & 0.340 & 1.388 & 0.41594 & 3.337 & 0.90197 & 0.48603 \\
\hline 54 & 3.71 & 6.7735 & 5.7888 & 0.32389 & 0.329 & 1.4071 & 0.42237 & 3.331 & 0.91473 & 0.49236 \\
\hline 55 & 3.82 & 6.7886 & 5.7888 & 0.3198 & 0.320 & 1.4263 & 0.42646 & 3.344 & 0.92638 & 0.49991 \\
\hline 56 & 3.94 & 6.8018 & 5.7888 & 0.31337 & 0.309 & 1.4459 & 0.43289 & 3.340 & 0.93941 & 0.50652 \\
\hline 57 & 4.05 & 6.815 & 5.7888 & 0.30928 & 0.301 & 1.4632 & 0.43699 & 3.348 & 0.95008 & 0.5131 \\
\hline 58 & 4.17 & 6.8256 & 5.7888 & 0.30343 & 0.293 & 1.4797 & 0.44283 & 3.341 & 0.96124 & 0.51841 \\
\hline 59 & 4.29 & 6.8387 & 5.7888 & 0.29875 & 0.285 & 1.4974 & 0.44751 & 3.346 & 0.97246 & 0.52495 \\
\hline 60 & 4.40 & 6.8492 & 5.7888 & 0.29349 & 0.277 & 1.5132 & 0.45277 & 3.342 & 0.983 & 0.53022 \\
\hline 61 & 4.52 & 6.8616 & 5.7888 & 0.28823 & 0.269 & 1.5309 & 0.45803 & 3.342 & 0.99445 & 0.53642 \\
\hline 62 & 4.64 & 6.874 & 5.7888 & 0.2818 & 0.260 & 1.5497 & 0.46446 & 3.336 & 1.0071 & 0.5426 \\
\hline 63 & 4.75 & 6.8863 & 5.7888 & 0.27595 & 0.251 & 1.5678 & 0.47031 & 3.334 & 1.0191 & 0.54876 \\
\hline 64 & 4.87 & 6.8973 & 5.7888 & 0.2701 & 0.244 & 1.5847 & 0.47616 & 3.328 & 1.0304 & 0.55427 \\
\hline 65 & 4.99 & 6.9083 & 5.7888 & 0.26309 & 0.235 & 1.6027 & 0.48317 & 3.317 & 1.0429 & 0.55977 \\
\hline 66 & 5.11 & 6.9218 & 5.7888 & 0.25841 & 0.228 & 1.6208 & 0.48785 & 3.322 & 1.0543 & 0.56649 \\
\hline 67 & 5.22 & 6.9315 & 5.7888 & 0.25198 & 0.221 & 1.637 & 0.49428 & 3.312 & 1.0656 & 0.57135 \\
\hline 68 & 5.34 & 6.9431 & 5.7888 & 0.24555 & 0.213 & 1.655 & 0.50071 & 3.305 & 1.0778 & 0.57713 \\
\hline 69 & 5.46 & 6.9533 & 5.7888 & 0.24087 & 0.207 & 1.6699 & 0.50539 & 3.304 & 1.0877 & 0.58227 \\
\hline 70 & 5.57 & 6.9636 & 5.7888 & 0.23444 & 0.200 & 1.6866 & 0.51182 & 3.295 & 1.0992 & 0.5874 \\
\hline 71 & 5.68 & 6.9745 & 5.7888 & 0.22743 & 0.192 & 1.7045 & 0.51884 & 3.285 & 1.1117 & 0.59285 \\
\hline 72 & 5.80 & 6.9829 & 5.7888 & 0.22333 & 0.187 & 1.717 & 0.52293 & 3.283 & 1.12 & 0.59703 \\
\hline 73 & 5.91 & 6.9949 & 5.7888 & 0.21749 & 0.180 & 1.7349 & 0.52877 & 3.281 & 1.1318 & 0.60304 \\
\hline 74 & 6.03 & 7.002 & 5.7888 & 0.20989 & 0.173 & 1.7496 & 0.53637 & 3.262 & 1.143 & 0.6066 \\
\hline 75 & 6.14 & 7.0115 & 5.7888 & 0.20521 & 0.168 & 1.7638 & 0.54105 & 3.260 & 1.1524 & 0.61135 \\
\hline 76 & 6.26 & 7.0222 & 5.7888 & 0.19878 & 0.161 & 1.7809 & 0.54748 & 3.253 & 1.1642 & 0.61671 \\
\hline 77 & 6.37 & 7.0311 & 5.7888 & 0.19293 & 0.155 & 1.7956 & 0.55333 & 3.245 & 1.1745 & 0.62114 \\
\hline 78 & 6.49 & 7.0381 & 5.7888 & 0.18767 & 0.150 & 1.8079 & 0.55859 & 3.236 & 1.1832 & 0.62463 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
6.60 & 7.0469 & 5.7888 \\
6.72 & 7.0574 \\
6.84 & 7.0679 & 5.7888 \\
6.96 & 7.076 & 5.7888 \\
7.08 & 7.0829 & 5.7888 \\
7.19 & 7.0915 & 5.7888 \\
7.31 & 7.0989 & 5.7888 \\
7.43 & 7.1056 & 5.7888 \\
7.55 & 7.1136 & 5.7888 \\
7.66 & 7.121 & 5.7888 \\
7.78 & 7.1265 & 5.7888 \\
7.90 & 7.1339 & 5.7888 \\
8.01 & 7.14 & 5.7888 \\
8.12 & 7.1479 & 5.7888 \\
8.24 & 7.1552 & 5.7888 \\
8.35 & 7.1618 & 5.7888 \\
8.46 & 7.1679 & 5.7888 \\
8.58 & 7.1751 & 5.7888 \\
8.69 & 7.1799 & 5.7888 \\
8.81 & 7.1894 & 5.7888 \\
8.93 & 7.1947 & 5.7888 \\
9.04 & 7.1988 & 5.7888 \\
9.16 & 7.2053 & 5.7888 \\
9.28 & 7.2106 & 5.7888 \\
9.40 & 7.2152 & 5.7888 \\
9.51 & 7.2199 & 5.7888 \\
9.63 & 7.2245 & 5.7888 \\
9.75 & 7.232 & 5.7888 \\
9.87 & 7.2371 & 5.7888 \\
9.98 & 7.2406 & 5.7888 \\
10.10 & 7.2463 & 5.7888 \\
10.22 & 7.2491 & 5.7888 \\
10.33 & 7.2542 & 5.7888 \\
10.45 & 7.2593 & 5.7888 \\
10.56 & 7.2656 & 5.7888 \\
10.68 & 7.2719 & 5.7888 \\
10.79 & 7.2728 & 5.7888 \\
10.91 & 7.2755 & 5.7888 \\
11.02 & 7.2794 & 5.7888 \\
11.14 & 7.2839 & 5.7888 \\
11.26 & 7.2894 & 5.7888 \\
11.37 & 7.2932 & 5.7888 \\
11.49 & 7.2987 & 5.7888 \\
11.61 & 7.3007 & 5.7888 \\
11.73 & 7.305 & 5.7888 \\
11.85 & 7.311 & 5.7888 \\
11.97 & 7.313 & 5.7888 \\
12.08 & 7.3172 & 5.7888 \\
12.20 & 7.3221 & 5.7888 \\
12.32 & 7.3252 & 5.7888 \\
12.43 & 7.3266 & 5.7888 \\
12.55 & 7.3325 & 5.7888 \\
12.67 & 7.3395 & 5.7888 \\
12.78 & 7.3438 & 5.7888 \\
12.89 & 7.3468 & 5.7888 \\
13.01 & 7.3493 & 5.7888 \\
13.12 & 7.3512 & 5.7888 \\
13.24 & 7.3542 & 5.7888 \\
13.35 & 7.3561 & 5.7888 \\
13.47 & 7.3613 & 5.7888 \\
13.59 & 7.3654 & 5.7888 \\
13.71 & 7.3666 & 5.7888 \\
13.82 & 7.3678 & 5.7888 \\
13.94 & 7.3719 & 5.7888 \\
14.06 & 7.3775 & 5.7888 \\
14.17 & 7.3804 & 5.7888 \\
14.29 & 7.3821 & 5.7888 \\
14.41 & 7.3799 & 5.7888 \\
14.53 & 7.3805 & 5.7888 \\
14.64 & 7.3867 & 5.7888 \\
14.76 & 7.3956 & 5.7888 \\
14.88 & 7.3973 & 5.7888 \\
14.99 & 7.3985 & 5.7888 \\
15.10 & 7.4018 & 5.7888 \\
15.22 & 7.4035 & 5.7888 \\
\hline
\end{tabular}
0.18124
0.17598
\begin{tabular}{rrr}
0.144 & 1.8231 & 0.56502 \\
0.139 & 1.8389 & 0.57028 \\
0.133 & 1.8553 & 0.57613 \\
0.127 & 1.8704 & 0.58315 \\
0.122 & 1.8831 & 0.58899 \\
0.117 & 1.8964 & 0.59367 \\
0.112 & 1.9102 & 0.6001 \\
0.107 & 1.9216 & 0.60478 \\
0.102 & 1.936 & 0.61121 \\
0.097 & 1.9487 & 0.61647 \\
0.093 & 1.96 & 0.62332 \\
0.088 & 1.9726 & 0.62758 \\
0.083 & 1.9852 & 0.63401 \\
0.079 & 1.9978 & 0.63869 \\
0.074 & 2.0109 & 0.64453 \\
0.070 & 2.0228 & 0.6498 \\
0.065 & 2.0353 & 0.65623 \\
0.062 & 2.0472 & 0.6609 \\
0.058 & 2.0561 & 0.665 \\
0.054 & 2.0709 & 0.67026 \\
0.050 & 2.082 & 0.6761 \\
0.046 & 2.0914 & 0.68137 \\
0.042 & 2.1031 & 0.68663 \\
0.039 & 2.1125 & 0.69072 \\
0.035 & 2.123 & 0.69657 \\
0.032 & 2.1317 & 0.70066 \\
0.028 & 2.1416 & 0.70592 \\
0.025 & 2.1538 & 0.7106 \\
0.021 & 2.1636 & 0.71528 \\
0.018 & 2.1717 & 0.71995 \\
0.015 & 2.1815 & 0.72404 \\
0.012 & 2.189 & 0.72872 \\
0.009 & 2.1982 & 0.73281 \\
0.007 & 2.2069 & 0.73632 \\
0.002 & 2.2196 & 0.74275 \\
-0.001 & 2.2305 & 0.74743 \\
-0.004 & 2.2356 & 0.75152 \\
-0.006 & 2.2418 & 0.75503 \\
-0.009 & 2.2497 & 0.75912 \\
-0.011 & 2.2571 & 0.76205 \\
-0.014 & 2.2685 & 0.76789 \\
-0.017 & 2.277 & 0.77257 \\
-0.020 & 2.286 & 0.77608 \\
-0.022 & 2.2909 & 00.779 \\
-0.024 & 2.2987 & 0.78251 \\
-0.027 & 2.3094 & 0.78719 \\
-0.029 & 2.3149 & 0.79069 \\
-0.032 & 2.3238 & 0.79537 \\
-0.034 & 2.331 & 0.79771 \\
-0.038 & 2.3411 & 0.80473 \\
-0.039 & 2.3437 & 0.80589 \\
-0.041 & 2.3525 & 0.80882 \\
-0.043 & 2.3636 & 0.81291 \\
-0.045 & 2.3714 & 0.81642 \\
-0.047 & 2.378 & 0.81993 \\
-0.049 & 2.3834 & 0.82285 \\
-0.051 & 2.3888 & 0.82636 \\
-0.053 & 2.3947 & 0.82928 \\
-0.056 & 2.4006 & 0.83337 \\
-0.058 & 2.4094 & 0.83688 \\
-0.059 & 2.4158 & 0.83922 \\
-0.062 & 2.4211 & 0.84331 \\
-0.064 & 2.4258 & 0.84682 \\
-0.066 & 2.4334 & 0.85033 \\
-0.067 & 2.442 & 0.85325 \\
-0.068 & 2.4466 & 0.855 \\
-0.070 & 2.4518 & 0.85851 \\
-0.072 & 2.4519 & 0.86085 \\
-0.073 & 2.4549 & 0.86319 \\
-0.075 & 2.464 & 0.86611 \\
-0.077 & 2.4764 & 0.86962 \\
-0.078 & 2.4805 & 0.87196 \\
-0.080 & 2.4851 & 0.87547 \\
-0.082 & 2.4909 & 0.87781 \\
-0.083 & 2.4943 & 0.87956 \\
\hline
\end{tabular}
3.227
3.225
3.220
3.207
3.197
3.194
3.183
3.177
3.168
3.161
3.150
3.143
3.131
3.128
3.120
3.113
3.102
3.098
3.092
3.090
3.079
3.069
3.063
3.058
3.048
3.042
3.034
3.031
3.025
3.016
3.013
3.004
3.000
2.997
2.988
2.984
2.975
2.969
2.964
2.962
2.954
2.947
2.946
2.941
2.938
2.934
2.928
2.922
2.922
2.909
2.908
2.909
2.908
2.905
2.900
2.896
2.891
2.888
2.881
2.879
2.879
2.871
2.865
2.862
2.862
2.861
2.856
2.848
2.844
2.845
2.848
2.845
2.839
2.838
2.836 0.62903
0.6343
0.63957
0.64361
0.64703
0.65135
0.65504
0.65842
0.66241
0.6661
0.66886
0.67253
0.67561
0.67956
0.68319
0.68651
0.68954
0.69314
0.69554
0.70031
0.70297
0.70502
0.70826
0.71088
0.71321
0.71553
0.71783
0.72158
0.72416
0.72588
0.72874
0.73013
0.73271
0.73527
0.73841
0.74153
0.74202
0.74337
0.74531
0.74753
0.7503
0.7522
0.75495
0.75595
0.75808
0.7611
0.76209
0.76421
0.76663
0.76818
0.76888
0.77183
0.77536
0.77748
0.77902
0.78025
0.7812
0.78272
0.78364
0.78625
0.78828
0.78889
0.78951
0.79153
0.79435
0.79579
0.79666
0.79555
0.79584
0.79894
0.80341
0.80426
0.80484
0.80652

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3 " ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 5.41 in
Specimen Area: 6.29 in^2

```
Specimen Volume: \(34.03 \mathrm{in} \wedge 3\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 6.2898 & 0 & 0 & 5.0399 & 6.2928 & 6.2928 \\
\hline 2 & 5.0042 & 0.0151 & 6.2908 & 12.364 & 0.14151 & 5.111 & 6.2928 & 6.4343 \\
\hline 3 & 10 & 0.035234 & 6.292 & 19.701 & 0.22544 & 5.1588 & 6.2928 & 6.5182 \\
\hline 4 & 15 & 0.057045 & 6.2934 & 25.408 & 0.29068 & 5.1965 & 6.2928 & 6.5835 \\
\hline 5 & 20 & 0.078856 & 6.2948 & 29.756 & 0.34035 & 5.2265 & 6.2928 & 6.6331 \\
\hline 6 & 25 & 0.10067 & 6.2962 & 33.696 & 0.38533 & 5.2526 & 6.2928 & 6.6781 \\
\hline 7 & 30 & 0.12248 & 6.2975 & 23.234 & 0.26563 & 5.2232 & 6.2928 & 6.5584 \\
\hline 8 & 35.001 & 0.14261 & 6.2988 & 33.628 & 0.38439 & 5.2704 & 6.2928 & 6.6772 \\
\hline 9 & 40.001 & 0.16442 & 6.3002 & 37.976 & 0.434 & 5.2948 & 6.2928 & 6.7268 \\
\hline 10 & 45.001 & 0.18623 & 6.3016 & 28.533 & 0.32601 & 5.2676 & 6.2928 & 6.6188 \\
\hline 11 & 50.001 & 0.20637 & 6.3028 & 37.297 & 0.42606 & 5.307 & 6.2928 & 6.7189 \\
\hline 12 & 55.001 & 0.23154 & 6.3044 & 21.332 & 0.24362 & 5.2565 & 6.2928 & 6.5364 \\
\hline 13 & 60.001 & 0.24999 & 6.3056 & 34.375 & 0.39251 & 5.3098 & 6.2928 & 6.6853 \\
\hline 14 & 70.001 & 0.29529 & 6.3085 & 30.163 & 0.34426 & 5.3065 & 6.2928 & 6.6371 \\
\hline 15 & 80.001 & 0.33724 & 6.3111 & 23.845 & 0.27204 & 5.2959 & 6.2928 & 6.5648 \\
\hline 16 & 90.002 & 0.37583 & 6.3136 & 43.751 & 0.49893 & 5.377 & 6.2928 & 6.7917 \\
\hline 17 & 100 & 0.42113 & 6.3164 & 42.12 & 0.48012 & 5.3792 & 6.2928 & 6.7729 \\
\hline 18 & 110 & 0.46475 & 6.3192 & 37.636 & 0.42882 & 5.3715 & 6.2928 & 6.7216 \\
\hline 19 & 120 & 0.51005 & 6.3221 & 27.582 & 0.31412 & 5.3459 & 6.2928 & 6.6069 \\
\hline 20 & 130 & 0.55032 & 6.3246 & 48.098 & 0.54756 & 5.4242 & 6.2928 & 6.8404 \\
\hline 21 & 140 & 0.59394 & 6.3274 & 42.052 & 0.47851 & 5.4087 & 6.2928 & 6.7713 \\
\hline 22 & 150 & 0.64092 & 6.3304 & 29.552 & 0.33612 & 5.3737 & 6.2928 & 6.6289 \\
\hline 23 & 160 & 0.67951 & 6.3329 & 51.971 & 0.59087 & 5.4514 & 6.2928 & 6.8837 \\
\hline 24 & 170 & 0.72481 & 6.3357 & 42.935 & 0.48792 & 5.4248 & 6.2928 & 6.7807 \\
\hline 25 & 180 & 0.76507 & 6.3383 & 56.794 & 0.64515 & 5.477 & 6.2928 & 6.938 \\
\hline 26 & 190 & 0.8087 & 6.3411 & 50.612 & 0.57467 & 5.4603 & 6.2928 & 6.8675 \\
\hline 27 & 200 & 0.85567 & 6.3441 & 30.979 & 0.35158 & 5.4031 & 6.2928 & 6.6444 \\
\hline 28 & 210 & 0.89594 & 6.3467 & 55.639 & 0.6312 & 5.4864 & 6.2928 & 6.924 \\
\hline 29 & 220 & 0.94124 & 6.3496 & 38.723 & 0.4391 & 5.4364 & 6.2928 & 6.7319 \\
\hline 30 & 230 & 0.98151 & 6.3522 & 59.376 & 0.67301 & 5.5064 & 6.2928 & 6.9658 \\
\hline 31 & 240 & 1.0268 & 6.3551 & 41.984 & 0.47566 & 5.4553 & 6.2928 & 6.7685 \\
\hline 32 & 270 & 1.1543 & 6.3633 & 62.637 & 0.70873 & 5.5347 & 6.2928 & 7.0015 \\
\hline 33 & 300 & 1.2835 & 6.3716 & 68.751 & 0.77689 & 5.5636 & 6.2928 & 7.0697 \\
\hline 34 & 330 & 1.4161 & 6.3802 & 52.854 & 0.59645 & 5.5253 & 6.2928 & 6.8893 \\
\hline 35 & 360 & 1.5436 & 6.3884 & 72.691 & 0.81926 & 5.5963 & 6.2928 & 7.1121 \\
\hline 36 & 390 & 1.6728 & 6.3968 & 77.515 & 0.87247 & 5.6152 & 6.2928 & 7.1653 \\
\hline 37 & 420 & 1.8053 & 6.4055 & 80.504 & 0.90489 & 5.6297 & 6.2928 & 7.1977 \\
\hline 38 & 450 & 1.9362 & 6.414 & 83.425 & 0.93648 & 5.643 & 6.2928 & 7.2293 \\
\hline 39 & 480 & 2.0654 & 6.4225 & 87.229 & 0.9779 & 5.6547 & 6.2928 & 7.2707 \\
\hline 40 & 510 & 2.1962 & 6.4311 & 90.218 & 1.0101 & 5.6647 & 6.2928 & 7.3029 \\
\hline 41 & 540 & 2.3254 & 6.4396 & 92.936 & 1.0391 & 5.6735 & 6.2928 & 7.3319 \\
\hline 42 & 570 & 2.4563 & 6.4482 & 95.925 & 1.0711 & 5.6819 & 6.2928 & 7.3639 \\
\hline 43 & 600 & 2.5855 & 6.4568 & 98.439 & 1.0977 & 5.6885 & 6.2928 & 7.3905 \\
\hline 44 & 630 & 2.7163 & 6.4654 & 100.27 & 1.1167 & 5.6957 & 6.2928 & 7.4095 \\
\hline 45 & 660 & 2.8489 & 6.4743 & 102.18 & 1.1363 & 5.7013 & 6.2928 & 7.4291 \\
\hline 46 & 690 & 2.9781 & 6.4829 & 104.15 & 1.1567 & 5.7057 & 6.2928 & 7.4495 \\
\hline 47 & 720 & 3.1089 & 6.4916 & 105.84 & 1.1739 & 5.7102 & 6.2928 & 7.4667 \\
\hline 48 & 750 & 3.2381 & 6.5003 & 107.75 & 1.1934 & 5.7141 & 6.2928 & 7.4862 \\
\hline 49 & 780 & 3.369 & 6.5091 & 109.72 & 1.2136 & 5.7169 & 6.2928 & 7.5064 \\
\hline 50 & 810 & 3.4982 & 6.5178 & 111.55 & 1.2323 & 5.7191 & 6.2928 & 7.5251 \\
\hline 51 & 840 & 3.6307 & 6.5268 & 112.37 & 1.2396 & 5.7202 & 6.2928 & 7.5324 \\
\hline 52 & 870 & 3.7616 & 6.5357 & 112.91 & 1.2439 & 5.7213 & 6.2928 & 7.5367 \\
\hline 53 & 900 & 3.8925 & 6.5446 & 114.34 & 1.2579 & 5.7218 & 6.2928 & 7.5507 \\
\hline 54 & 930 & 4.0233 & 6.5535 & 115.56 & 1.2696 & 5.7218 & 6.2928 & 7.5624 \\
\hline 55 & 960 & 4.1525 & 6.5623 & 116.99 & 1.2835 & 5.7213 & 6.2928 & 7.5763 \\
\hline 56 & 990 & 4.2817 & 6.5712 & 118.21 & 1.2952 & 5.7207 & 6.2928 & 7.588 \\
\hline 57 & 1020 & 4.4143 & 6.5803 & 118.96 & 1.3016 & 5.7196 & 6.2928 & 7.5944 \\
\hline 58 & 1050 & 4.5418 & 6.5891 & 120.31 & 1.3147 & 5.7202 & 6.2928 & 7.6075 \\
\hline 59 & 1080 & 4.6726 & 6.5981 & 121.13 & 1.3218 & 5.7202 & 6.2928 & 7.6146 \\
\hline 60 & 1110 & 4.8018 & 6.6071 & 122.56 & 1.3355 & 5.7196 & 6.2928 & 7.6283 \\
\hline 61 & 1140 & 4.931 & 6.6161 & 123.71 & 1.3463 & 5.7174 & 6.2928 & 7.6391 \\
\hline 62 & 1170 & 5.0619 & 6.6252 & 125 & 1.3585 & 5.7146 & 6.2928 & 7.6513 \\
\hline 63 & 1200 & 5.1928 & 6.6343 & 126.09 & 1.3684 & 5.7113 & 6.2928 & 7.6612 \\
\hline 64 & 1230 & 5.322 & 6.6434 & 127.18 & 1.3783 & 5.708 & 6.2928 & 7.6711 \\
\hline 65 & 1260 & 5.4545 & 6.6527 & 128.06 & 1.3859 & 5.7052 & 6.2928 & 7.6787 \\
\hline 66 & 1290 & 5.5837 & 6.6618 & 128.81 & 1.3921 & 5.7019 & 6.2928 & 7.6849 \\
\hline 67 & 1320 & 5.7129 & 6.6709 & 129.89 & 1.4019 & 5.6991 & 6.2928 & 7.6947 \\
\hline 68 & 1350 & 5.8437 & 6.6802 & 130.71 & 1.4088 & 5.6957 & 6.2928 & 7.7016 \\
\hline 69 & 1380 & 5.9746 & 6.6895 & 131.73 & 1.4178 & 5.6924 & 6.2928 & 7.7106 \\
\hline 70 & 1410 & 6.1055 & 6.6988 & 133.15 & 1.4312 & 5.6896 & 6.2928 & 7.724 \\
\hline 71 & 1440 & 6.2363 & 6.7082 & 134.85 & 1.4474 & 5.6869 & 6.2928 & 7.7402 \\
\hline 72 & 1470 & 6.3655 & 6.7174 & 136.14 & 1.4592 & 5.683 & 6.2928 & 7.752 \\
\hline 73 & 1500 & 6.4947 & 6.7267 & 138.38 & 1.4812 & 5.6796 & 6.2928 & 7.774 \\
\hline 74 & 1530 & 6.6239 & 6.736 & 140.02 & 1.4966 & 5.6774 & 6.2928 & 7.7894 \\
\hline 75 & 1560 & 6.7531 & 6.7453 & 140.15 & 1.496 & 5.6735 & 6.2928 & 7.7888 \\
\hline 76 & 1590 & 6.884 & 6.7548 & 140.9 & 1.5018 & 5.6696 & 6.2928 & 7.7946 \\
\hline 77 & 1620 & 7.0132 & 6.7642 & 141.24 & 1.5034 & 5.6669 & 6.2928 & 7.7962 \\
\hline 78 & 1650 & 7.1407 & 6.7735 & 143.21 & 1.5223 & 5.6647 & 6.2928 & 7.8151 \\
\hline 79 & 1680 & 7.2682 & 6.7828 & 142.94 & 1.5173 & 5.6624 & 6.2928 & 7.8101 \\
\hline
\end{tabular}

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 80 & 1710 & 7.3991 & 6.7924 & 144.57 & 1.5324 & 5.6597 & 6.2928 & 7.8252 \\
\hline 81 & 1740 & 7.5299 & 6.802 & 144.91 & 1.5339 & 5.6585 & 6.2928 & 7.8267 \\
\hline 82 & 1770 & 7.6641 & 6.8119 & 145.45 & 1.5374 & 5.6563 & 6.2928 & 7.8302 \\
\hline 83 & 1800 & 7.7984 & 6.8218 & 144.97 & 1.5301 & 5.6547 & 6.2928 & 7.8229 \\
\hline 84 & 1830 & 7.9292 & 6.8315 & 146.13 & 1.5401 & 5.6524 & 6.2928 & 7.8329 \\
\hline 85 & 1860 & 8.0618 & 6.8414 & 147.01 & 1.5472 & 5.6497 & 6.2928 & 7.84 \\
\hline 86 & 1890 & 8.1927 & 6.8511 & 146.81 & 1.5428 & 5.6463 & 6.2928 & 7.8356 \\
\hline 87 & 1920 & 8.3235 & 6.8609 & 148.1 & 1.5542 & 5.6441 & 6.2928 & 7.847 \\
\hline 88 & 1950 & 8.4527 & 6.8706 & 149.8 & 1.5698 & 5.6408 & 6.2928 & 7.8626 \\
\hline 89 & 1980 & 8.5836 & 6.8804 & 149.39 & 1.5633 & 5.6386 & 6.2928 & 7.8561 \\
\hline 90 & 2010 & 8.7128 & 6.8901 & 150.75 & 1.5753 & 5.6358 & 6.2928 & 7.8681 \\
\hline 91 & 2040 & 8.842 & 6.8999 & 150.48 & 1.5702 & 5.6319 & 6.2928 & 7.863 \\
\hline 92 & 2070 & 8.9695 & 6.9096 & 150.82 & 1.5716 & 5.6291 & 6.2928 & 7.8644 \\
\hline 93 & 2100 & 9.0987 & 6.9194 & 151.63 & 1.5778 & 5.6263 & 6.2928 & 7.8706 \\
\hline 94 & 2130 & 9.2295 & 6.9294 & 153.33 & 1.5932 & 5.6241 & 6.2928 & 7.886 \\
\hline 95 & 2160 & 9.3604 & 6.9394 & 154.76 & 1.6057 & 5.6213 & 6.2928 & 7.8985 \\
\hline 96 & 2190 & 9.4913 & 6.9494 & 156.66 & 1.6231 & 5.6191 & 6.2928 & 7.9159 \\
\hline 97 & 2220 & 9.6238 & 6.9596 & 156.32 & 1.6172 & 5.6169 & 6.2928 & 7.91 \\
\hline 98 & 2250 & 9.7547 & 6.9697 & 155.71 & 1.6085 & 5.6152 & 6.2928 & 7.9013 \\
\hline 99 & 2280 & 9.8872 & 6.9799 & 155.5 & 1.6041 & 5.6119 & 6.2928 & 7.8969 \\
\hline 100 & 2310 & 10.02 & 6.9902 & 155.3 & 1.5996 & 5.6097 & 6.2928 & 7.8924 \\
\hline 101 & 2340 & 10.151 & 7.0004 & 155.71 & 1.6015 & 5.6069 & 6.2928 & 7.8943 \\
\hline 102 & 2370 & 10.285 & 7.0109 & 156.18 & 1.604 & 5.6041 & 6.2928 & 7.8968 \\
\hline 103 & 2400 & 10.417 & 7.0213 & 157.2 & 1.612 & 5.6008 & 6.2928 & 7.9048 \\
\hline 104 & 2430 & 10.548 & 7.0315 & 157.75 & 1.6153 & 5.598 & 6.2928 & 7.9081 \\
\hline 105 & 2460 & 10.681 & 7.042 & 157.75 & 1.6129 & 5.5963 & 6.2928 & 7.9057 \\
\hline 106 & 2490 & 10.81 & 7.0522 & 158.22 & 1.6154 & 5.5925 & 6.2928 & 7.9082 \\
\hline 107 & 2520 & 10.939 & 7.0624 & 158.97 & 1.6207 & 5.5886 & 6.2928 & 7.9135 \\
\hline 108 & 2550 & 11.07 & 7.0728 & 159.78 & 1.6266 & 5.5858 & 6.2928 & 7.9194 \\
\hline 109 & 2580 & 11.199 & 7.0831 & 160.26 & 1.6291 & 5.5825 & 6.2928 & 7.9219 \\
\hline 110 & 2610 & 11.328 & 7.0934 & 161.14 & 1.6356 & 5.5797 & 6.2928 & 7.9284 \\
\hline 111 & 2640 & 11.459 & 7.1039 & 159.85 & 1.6202 & 5.578 & 6.2928 & 7.913 \\
\hline 112 & 2670 & 11.59 & 7.1144 & 160.6 & 1.6253 & 5.5752 & 6.2928 & 7.9181 \\
\hline 113 & 2700 & 11.718 & 7.1247 & 164.95 & 1.6669 & 5.573 & 6.2928 & 7.9597 \\
\hline 114 & 2730 & 11.852 & 7.1355 & 159.92 & 1.6137 & 5.5703 & 6.2928 & 7.9065 \\
\hline 115 & 2760 & 11.983 & 7.1461 & 158.56 & 1.5976 & 5.5669 & 6.2928 & 7.8904 \\
\hline 116 & 2790 & 12.112 & 7.1566 & 159.78 & 1.6075 & 5.5647 & 6.2928 & 7.9003 \\
\hline 117 & 2820 & 12.243 & 7.1673 & 159.92 & 1.6065 & 5.5619 & 6.2928 & 7.8993 \\
\hline 118 & 2850 & 12.375 & 7.1781 & 159.85 & 1.6034 & 5.5603 & 6.2928 & 7.8962 \\
\hline 119 & 2880 & 12.506 & 7.1889 & 160.26 & 1.6051 & 5.558 & 6.2928 & 7.8979 \\
\hline 120 & 2910 & 12.639 & 7.1998 & 160.06 & 1.6006 & 5.5541 & 6.2928 & 7.8934 \\
\hline 121 & 2940 & 12.771 & 7.2107 & 160.4 & 1.6016 & 5.5525 & 6.2928 & 7.8944 \\
\hline 122 & 2970 & 12.904 & 7.2217 & 160.19 & 1.5971 & 5.5497 & 6.2928 & 7.8899 \\
\hline 123 & 3000 & 13.035 & 7.2326 & 160.33 & 1.5961 & 5.5475 & 6.2928 & 7.8889 \\
\hline 124 & 3030 & 13.169 & 7.2438 & 160.74 & 1.5976 & 5.5458 & 6.2928 & 7.8904 \\
\hline 125 & 3060 & 13.298 & 7.2545 & 160.87 & 1.5966 & 5.5442 & 6.2928 & 7.8894 \\
\hline 126 & 3090 & 13.427 & 7.2654 & 160.87 & 1.5942 & 5.543 & 6.2928 & 7.887 \\
\hline 127 & 3120 & 13.56 & 7.2765 & 161.62 & 1.5992 & 5.5403 & 6.2928 & 7.892 \\
\hline 128 & 3150 & 13.689 & 7.2874 & 162.43 & 1.6049 & 5.5397 & 6.2928 & 7.8977 \\
\hline 129 & 3180 & 13.818 & 7.2983 & 162.98 & 1.6078 & 5.538 & 6.2928 & 7.9006 \\
\hline 130 & 3210 & 13.947 & 7.3093 & 162.84 & 1.6041 & 5.5369 & 6.2928 & 7.8969 \\
\hline 131 & 3240 & 14.078 & 7.3204 & 163.39 & 1.607 & 5.5353 & 6.2928 & 7.8998 \\
\hline 132 & 3270 & 14.208 & 7.3314 & 163.93 & 1.6099 & 5.5342 & 6.2928 & 7.9027 \\
\hline 133 & 3300 & 14.338 & 7.3426 & 165.02 & 1.6181 & 5.533 & 6.2928 & 7.9109 \\
\hline 134 & 3330 & 14.468 & 7.3537 & 164.4 & 1.6097 & 5.5319 & 6.2928 & 7.9025 \\
\hline 135 & 3360 & 14.598 & 7.365 & 165.02 & 1.6132 & 5.5314 & 6.2928 & 7.906 \\
\hline 136 & 3390 & 14.731 & 7.3765 & 165.15 & 1.612 & 5.5303 & 6.2928 & 7.9048 \\
\hline 137 & 3420 & 14.864 & 7.3879 & 165.49 & 1.6128 & 5.5292 & 6.2928 & 7.9056 \\
\hline 138 & 3450 & 14.994 & 7.3993 & 165.56 & 1.611 & 5.5275 & 6.2928 & 7.9038 \\
\hline 139 & 3480 & 15.127 & 7.4109 & 165.42 & 1.6072 & 5.5258 & 6.2928 & 7.9 \\
\hline 140 & 3510 & 15.261 & 7.4226 & 165.9 & 1.6092 & 5.5242 & 6.2928 & 7.902 \\
\hline 141 & 3540 & 15.394 & 7.4342 & 166.31 & 1.6107 & 5.523 & 6.2928 & 7.9035 \\
\hline 142 & 3570 & 15.525 & 7.4457 & 167.12 & 1.6161 & 5.5219 & 6.2928 & 7.9089 \\
\hline 143 & 3600 & 15.655 & 7.4573 & 166.99 & 1.6122 & 5.5197 & 6.2928 & 7.905 \\
\hline 144 & 3630 & 15.788 & 7.469 & 167.19 & 1.6117 & 5.5181 & 6.2928 & 7.9045 \\
\hline 145 & 3660 & 15.916 & 7.4804 & 167.6 & 1.6132 & 5.5169 & 6.2928 & 7.906 \\
\hline 146 & 3690 & 16.048 & 7.4922 & 168.55 & 1.6198 & 5.5153 & 6.2928 & 7.9126 \\
\hline 147 & 3695.9 & 16.073 & 7.4944 & 168.96 & 1.6232 & 5.5158 & 6.2928 & 7.916 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: \(\mathrm{B}-4-\mathrm{A}\)
Sample No.: \(\mathrm{S}-13\)
Sample No. \(\mathrm{S}-13\)
Test No.: 17.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 2 / 11\)
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{|c|c|c|}
\hline Specimen Height: 5.41 in & Piston Area: 0.00 in^2 & Fi7ter Strip Correction: 0.00 tsf \\
\hline Specimen Area: 6.29 in^2 & Piston Friction: 0.00 1b & Membrane Correction: 0.00 1b/in \\
\hline Specimen Volume: 34.03 in^3 & Piston Weight: 0.00 1b & Correction Type: Uniform \\
\hline
\end{tabular}

Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Tota 1 \\
Vertical
\end{tabular} & Tota 1 Horizontal & Excess Pore & A & Effective Vertical & Effective Horizontal & Stress & Effective & \\
\hline & Strain \% & Stress tsf & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
\mathrm{p}_{\mathrm{ts}}^{\mathrm{f}}
\] & tsf \\
\hline 1 & 0.00 & 6.2928 & 6.2928 & 0 & 0.000 & 1.2529 & 1.2529 & 1.000 & 1.2529 & 0 \\
\hline 2 & 0.02 & 6.4343 & 6.2928 & 0.071079 & 0.502 & 1.3233 & 1.1818 & 1.120 & 1.2525 & 0.070757 \\
\hline 3 & 0.04 & 6.5182 & 6.2928 & 0.11883 & 0.527 & 1.3595 & 1.134 & 1.199 & 1.2468 & 0.11272 \\
\hline 4 & 0.06 & 6.5835 & 6.2928 & 0.1566 & 0.539 & 1.3869 & 1.0963 & 1.265 & 1.2416 & 0.14534 \\
\hline 5 & 0.08 & 6.6331 & 6.2928 & 0.18658 & 0.548 & 1.4066 & 1.0663 & 1.319 & 1.2365 & 0.17017 \\
\hline 6 & 0.10 & 6.6781 & 6.2928 & 0.21268 & 0.552 & 1.4255 & 1.0402 & 1.370 & 1.2328 & 0.19267 \\
\hline 7 & 0.12 & 6.5584 & 6.2928 & 0.18325 & 0.690 & 1.3352 & 1.0696 & 1.248 & 1.2024 & 0.13282 \\
\hline 8 & 0.14 & 6.6772 & 6.2928 & 0.23045 & 0.600 & 1.4068 & 1.0224 & 1.376 & 1.2146 & 0.1922 \\
\hline 9 & 0.16 & 6.7268 & 6.2928 & 0.25488 & 0.587 & 1.432 & 0.99798 & 1.435 & 1.215 & 0.217 \\
\hline 10 & 0.19 & 6.6188 & 6.2928 & 0.22767 & 0.698 & 1.3512 & 1.0252 & 1.318 & 1.1882 & 0.16301 \\
\hline 11 & 0.21 & 6.7189 & 6.2928 & 0.2671 & 0.627 & 1.4118 & 0.98576 & 1.432 & 1.1988 & 0.21303 \\
\hline 12 & 0.23 & 6.5364 & 6.2928 & 0.21657 & 0.889 & 1.2799 & 1.0363 & 1.235 & 1.1581 & 0.12181 \\
\hline 13 & 0.25 & 6.6853 & 6.2928 & 0.26988 & 0.688 & 1.3755 & 0.98299 & 1.399 & 1.1792 & 0.19626 \\
\hline 14 & 0.30 & 6.6371 & 6.2928 & 0.26655 & 0.774 & 1.3306 & 0.98632 & 1.349 & 1.1585 & 0.17213 \\
\hline 15 & 0.34 & 6.5648 & 6.2928 & 0.25599 & 0.941 & 1.2689 & 0.99687 & 1.273 & 1.1329 & 0.13602 \\
\hline 16 & 0.38 & 6.7917 & 6.2928 & 0.33707 & 0.676 & 1.4147 & 0.9158 & 1.545 & 1.1653 & 0.24947 \\
\hline 17 & 0.42 & 6.7729 & 6.2928 & 0.33929 & 0.707 & 1.3937 & 0.91357 & 1.526 & 1.1536 & 0.24006 \\
\hline 18 & 0.46 & 6.7216 & 6.2928 & 0.33152 & 0.773 & 1.3502 & 0.92135 & 1.465 & 1.1358 & 0.21441 \\
\hline 19 & 0.51 & 6.6069 & 6.2928 & 0.30597 & 0.974 & 1.261 & 0.94689 & 1.332 & 1.104 & 0.15706 \\
\hline 20 & 0.55 & 6.8404 & 6.2928 & 0.38427 & 0.702 & 1.4161 & 0.86859 & 1.630 & 1.1424 & 0.27378 \\
\hline 21 & 0.59 & 6.7713 & 6.2928 & 0.36872 & 0.771 & 1.3627 & 0.88414 & 1.541 & 1.1234 & 0.23926 \\
\hline 22 & 0.64 & 6.6289 & 6.2928 & 0.33374 & 0.993 & 1.2552 & 0.91913 & 1.366 & 1.0872 & 0.16806 \\
\hline 23 & 0.68 & 6.8837 & 6.2928 & 0.41148 & 0.696 & 1.4323 & 0.84138 & 1.702 & 1.1368 & 0.29543 \\
\hline 24 & 0.72 & 6.7807 & 6.2928 & 0.38483 & 0.789 & 1.356 & 0.86804 & 1.562 & 1.112 & 0.24396 \\
\hline 25 & 0.77 & 6.938 & 6.2928 & 0.43702 & 0.677 & 1.461 & 0.81584 & 1.791 & 1.1384 & 0.32258 \\
\hline 26 & 0.81 & 6.8675 & 6.2928 & 0.42036 & 0.731 & 1.4072 & 0.8325 & 1.690 & 1.1198 & 0.28734 \\
\hline 27 & 0.86 & 6.6444 & 6.2928 & 0.36317 & 1.033 & 1.2413 & 0.8897 & 1.395 & 1.0655 & 0.17579 \\
\hline 28 & 0.90 & 6.924 & 6.2928 & 0.44646 & 0.707 & 1.4376 & 0.8064 & 1.783 & 1.122 & 0.3156 \\
\hline 29 & 0.94 & 6.7319 & 6.2928 & 0.39649 & 0.903 & 1.2955 & 0.85638 & 1.513 & 1.0759 & 0.21955 \\
\hline 30 & 0.98 & 6.9658 & 6.2928 & 0.46646 & 0.693 & 1.4594 & 0.78641 & 1.856 & 1.1229 & 0.3365 \\
\hline 31 & 1.03 & 6.7685 & 6.2928 & 0.41537 & 0.873 & 1.3132 & 0.8375 & 1.568 & 1.0753 & 0.23783 \\
\hline 32 & 1.15 & 7.0015 & 6.2928 & 0.49478 & 0.698 & 1.4668 & 0.75809 & 1.935 & 1.1125 & 0.35436 \\
\hline 33 & 1.28 & 7.0697 & 6.2928 & 0.52365 & 0.674 & 1.5061 & 0.72921 & 2.065 & 1.1177 & 0.38845 \\
\hline 34 & 1.42 & 6.8893 & 6.2928 & 0.48534 & 0.814 & 1.364 & 0.76753 & 1.777 & 1.0658 & 0.29823 \\
\hline 35 & 1.54 & 7.1121 & 6.2928 & 0.55641 & 0.679 & 1.5157 & 0.69645 & 2.176 & 1.1061 & 0.40963 \\
\hline 36 & 1.67 & 7.1653 & 6.2928 & 0.57529 & 0.659 & 1.55 & 0.67757 & 2.288 & 1.1138 & 0.43624 \\
\hline 37 & 1.81 & 7.1977 & 6.2928 & 0.58973 & 0.652 & 1.568 & 0.66313 & 2.365 & 1.1156 & 0.45245 \\
\hline 38 & 1.94 & 7.2293 & 6.2928 & 0.60306 & 0.644 & 1.5863 & 0.6498 & 2.441 & 1.118 & 0.46824 \\
\hline 39 & 2.07 & 7.2707 & 6.2928 & 0.61472 & 0.629 & 1.616 & 0.63814 & 2.532 & 1.1271 & 0.48895 \\
\hline 40 & 2.20 & 7.3029 & 6.2928 & 0.62472 & 0.618 & 1.6382 & 0.62815 & 2.608 & 1.1332 & 0.50503 \\
\hline 41 & 2.33 & 7.3319 & 6.2928 & 0.6336 & 0.610 & 1.6584 & 0.61926 & 2.678 & 1.1388 & 0.51955 \\
\hline 42 & 2.46 & 7.3639 & 6.2928 & 0.64193 & 0.599 & 1.682 & 0.61093 & 2.753 & 1.1465 & 0.53554 \\
\hline 43 & 2.59 & 7.3905 & 6.2928 & 0.64859 & 0.591 & 1.702 & 0.60427 & 2.817 & 1.1531 & 0.54885 \\
\hline 44 & 2.72 & 7.4095 & 6.2928 & 0.65581 & 0.587 & 1.7137 & 0.59705 & 2.870 & 1.1554 & 0.55833 \\
\hline 45 & 2.85 & 7.4291 & 6.2928 & 0.66137 & 0.582 & 1.7278 & 0.5915 & 2.921 & 1.1596 & 0.56814 \\
\hline 46 & 2.98 & 7.4495 & 6.2928 & 0.66581 & 0.576 & 1.7437 & 0.58706 & 2.970 & 1.1654 & 0.57833 \\
\hline 47 & 3.11 & 7.4667 & 6.2928 & 0.67025 & 0.571 & 1.7565 & 0.58261 & 3.015 & 1.1696 & 0.58697 \\
\hline 48 & 3.24 & 7.4862 & 6.2928 & 0.67414 & 0.565 & 1.7722 & 0.57873 & 3.062 & 1.1754 & 0.59672 \\
\hline 49 & 3.37 & 7.5064 & 6.2928 & 0.67692 & 0.558 & 1.7896 & 0.57595 & 3.107 & 1.1828 & 0.60681 \\
\hline 50 & 3.50 & 7.5251 & 6.2928 & 0.67914 & 0.551 & 1.806 & 0.57373 & 3.148 & 1.1899 & 0.61613 \\
\hline 51 & 3.63 & 7.5324 & 6.2928 & 0.68025 & 0.549 & 1.8122 & 0.57262 & 3.165 & 1.1924 & 0.61978 \\
\hline 52 & 3.76 & 7.5367 & 6.2928 & 0.68136 & 0.548 & 1.8154 & 0.57151 & 3.176 & 1.1934 & 0.62193 \\
\hline 53 & 3.89 & 7.5507 & 6.2928 & 0.68191 & 0.542 & 1.8288 & 0.57095 & 3.203 & 1.1999 & 0.62893 \\
\hline 54 & 4.02 & 7.5624 & 6.2928 & 0.68191 & 0.537 & 1.8405 & 0.57095 & 3.224 & 1.2057 & 0.63479 \\
\hline 55 & 4.15 & 7.5763 & 6.2928 & 0.68136 & 0.531 & 1.855 & 0.57151 & 3.246 & 1.2133 & 0.64176 \\
\hline 56 & 4.28 & 7.588 & 6.2928 & 0.6808 & 0.526 & 1.8673 & 0.57206 & 3.264 & 1.2197 & 0.6476 \\
\hline 57 & 4.41 & 7.5944 & 6.2928 & 0.67969 & 0.522 & 1.8748 & 0.57317 & 3.271 & 1.224 & 0.65079 \\
\hline 58 & 4.54 & 7.6075 & 6.2928 & 0.68025 & 0.517 & 1.8873 & 0.57262 & 3.296 & 1.23 & 0.65734 \\
\hline 59 & 4.67 & 7.6146 & 6.2928 & 0.68025 & 0.515 & 1.8944 & 0.57262 & 3.308 & 1.2335 & 0.66089 \\
\hline 60 & 4.80 & 7.6283 & 6.2928 & 0.67969 & 0.509 & 1.9087 & 0.57317 & 3.330 & 1.2409 & 0.66777 \\
\hline 61 & 4.93 & 7.6391 & 6.2928 & 0.67747 & 0.503 & 1.9217 & 0.57539 & 3.340 & 1.2485 & 0.67315 \\
\hline 62 & 5.06 & 7.6513 & 6.2928 & 0.67469 & 0.497 & 1.9366 & 0.57817 & 3.350 & 1.2574 & 0.67923 \\
\hline 63 & 5.19 & 7.6612 & 6.2928 & 0.67136 & 0.491 & 1.9499 & 0.5815 & 3.353 & 1.2657 & 0.6842 \\
\hline 64 & 5.32 & 7.6711 & 6.2928 & 0.66803 & 0.485 & 1.9631 & 0.58483 & 3.357 & 1.274 & 0.68915 \\
\hline 65 & 5.45 & 7.6787 & 6.2928 & 0.66525 & 0.480 & 1.9735 & 0.58761 & 3.359 & 1.2806 & 0.69297 \\
\hline 66 & 5.58 & 7.6849 & 6.2928 & 0.66192 & 0.475 & 1.9831 & 0.59094 & 3.356 & 1.287 & 0.69606 \\
\hline 67 & 5.71 & 7.6947 & 6.2928 & 0.65915 & 0.470 & 1.9957 & 0.59372 & 3.361 & 1.2947 & 0.70097 \\
\hline 68 & 5.84 & 7.7016 & 6.2928 & 0.65581 & 0.466 & 2.0058 & 0.59705 & 3.360 & 1.3014 & 0.70439 \\
\hline 69 & 5.97 & 7.7106 & 6.2928 & 0.65248 & 0.460 & 2.0182 & 0.60038 & 3.361 & 1.3093 & 0.7089 \\
\hline 70 & 6.11 & 7.724 & 6.2928 & 0.64971 & 0.454 & 2.0343 & 0.60316 & 3.373 & 1.3187 & 0.71558 \\
\hline 71 & 6.24 & 7.7402 & 6.2928 & 0.64693 & 0.447 & 2.0533 & 0.60594 & 3.389 & 1.3296 & 0.7237 \\
\hline 72 & 6.37 & 7.752 & 6.2928 & 0.64304 & 0.441 & 2.0691 & 0.60982 & 3.393 & 1.3394 & 0.72962 \\
\hline 73 & 6.49 & 7.774 & 6.2928 & 0.63971 & 0.432 & 2.0944 & 0.61315 & 3.416 & 1.3538 & 0.74061 \\
\hline 74 & 6.62 & 7.7894 & 6.2928 & 0.63749 & 0.426 & 2.112 & 0.61538 & 3.432 & 1.3637 & 0.7483 \\
\hline 75 & 6.75 & 7.7888 & 6.2928 & 0.6336 & 0.424 & 2.1152 & 0.61926 & 3.416 & 1.3673 & 0.74799 \\
\hline 76 & 6.88 & 7.7946 & 6.2928 & 0.62971 & 0.419 & 2.125 & 0.62315 & 3.410 & 1.3741 & 0.75092 \\
\hline 77 & 7.01 & 7.7962 & 6.2928 & 0.62694 & 0.417 & 2.1293 & 0.62593 & 3.402 & 1.3776 & 0.75169 \\
\hline 78 & 7.14 & 7.8151 & 6.2928 & 0.62472 & 0.410 & 2.1504 & 0.62815 & 3.423 & 1.3893 & 0.76113 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 79 & 7.27 & 7.8101 & 6.2928 & 0.6225 & 0.410 & 2.1476 & 0.63037 & 3.407 & 1.389 & 0.75864 \\
\hline 80 & 7.40 & 7.8252 & 6.2928 & 0.61972 & 0.404 & 2.1656 & 0.63315 & 3.420 & 1.3994 & 0.76621 \\
\hline 81 & 7.53 & 7.8267 & 6.2928 & 0.61861 & 0.403 & 2.1681 & 0.63426 & 3.418 & 1.4012 & 0.76693 \\
\hline 82 & 7.66 & 7.8302 & 6.2928 & 0.61639 & 0.401 & 2.1738 & 0.63648 & 3.415 & 1.4052 & 0.76868 \\
\hline 83 & 7.80 & 7.8229 & 6.2928 & 0.61472 & 0.402 & 2.1683 & 0.63814 & 3.398 & 1.4032 & 0.76506 \\
\hline 84 & 7.93 & 7.8329 & 6.2928 & 0.6125 & 0.398 & 2.1805 & 0.64036 & 3.405 & 1.4104 & 0.77006 \\
\hline 85 & 8.06 & 7.84 & 6.2928 & 0.60972 & 0.394 & 2.1903 & 0.64314 & 3.406 & 1.4167 & 0.7736 \\
\hline 86 & 8.19 & 7.8356 & 6.2928 & 0.60639 & 0.393 & 2.1893 & 0.64647 & 3.387 & 1.4179 & 0.77142 \\
\hline 87 & 8.32 & 7.847 & 6.2928 & 0.60417 & 0.389 & 2.2029 & 0.64869 & 3.396 & 1.4258 & 0.7771 \\
\hline 88 & 8.45 & 7.8626 & 6.2928 & 0.60084 & 0.383 & 2.2218 & 0.65203 & 3.408 & 1.4369 & 0.7849 \\
\hline 89 & 8.58 & 7.8561 & 6.2928 & 0.59862 & 0.383 & 2.2175 & 0.65425 & 3.389 & 1.4359 & 0.78165 \\
\hline 90 & 8.71 & 7.8681 & 6.2928 & 0.59584 & 0.378 & 2.2323 & 0.65702 & 3.398 & 1.4447 & 0.78764 \\
\hline 91 & 8.84 & 7.863 & 6.2928 & 0.59195 & 0.377 & 2.2311 & 0.66091 & 3.376 & 1.446 & 0.78511 \\
\hline 92 & 8.97 & 7.8644 & 6.2928 & 0.58918 & 0.375 & 2.2352 & 0.66369 & 3.368 & 1.4495 & 0.78578 \\
\hline 93 & 9.10 & 7.8706 & 6.2928 & 0.5864 & 0.372 & 2.2443 & 0.66646 & 3.367 & 1.4554 & 0.78891 \\
\hline 94 & 9.23 & 7.886 & 6.2928 & 0.58418 & 0.367 & 2.2619 & 0.66869 & 3.383 & 1.4653 & 0.79659 \\
\hline 95 & 9.36 & 7.8985 & 6.2928 & 0.5814 & 0.362 & 2.2772 & 0.67146 & 3.391 & 1.4743 & 0.80285 \\
\hline 96 & 9.49 & 7.9159 & 6.2928 & 0.57918 & 0.357 & 2.2968 & 0.67368 & 3.409 & 1.4852 & 0.81154 \\
\hline 97 & 9.62 & 7.91 & 6.2928 & 0.57696 & 0.357 & 2.2931 & 0.6759 & 3.393 & 1.4845 & 0.8086 \\
\hline 98 & 9.75 & 7.9013 & 6.2928 & 0.57529 & 0.358 & 2.2861 & 0.67757 & 3.374 & 1.4818 & 0.80427 \\
\hline 99 & 9.89 & 7.8969 & 6.2928 & 0.57196 & 0.357 & 2.285 & 0.6809 & 3.356 & 1.4829 & 0.80204 \\
\hline 100 & 10.02 & 7.8924 & 6.2928 & 0.56974 & 0.356 & 2.2827 & 0.68312 & 3.342 & 1.4829 & 0.79981 \\
\hline 101 & 10.15 & 7.8943 & 6.2928 & 0.56696 & 0.354 & 2.2874 & 0.6859 & 3.335 & 1.4866 & 0.80074 \\
\hline 102 & 10.28 & 7.8968 & 6.2928 & 0.56419 & 0.352 & 2.2926 & 0.68868 & 3.329 & 1.4907 & 0.80198 \\
\hline 103 & 10.42 & 7.9048 & 6.2928 & 0.56086 & 0.348 & 2.3041 & 0.69201 & 3.330 & 1.498 & 0.80602 \\
\hline 104 & 10.55 & 7.9081 & 6.2928 & 0.55808 & 0.346 & 2.31 & 0.69478 & 3.325 & 1.5024 & 0.80763 \\
\hline 105 & 10.68 & 7.9057 & 6.2928 & 0.55641 & 0.345 & 2.3093 & 0.69645 & 3.316 & 1.5029 & 0.80643 \\
\hline 106 & 10.81 & 7.9082 & 6.2928 & 0.55253 & 0.342 & 2.3157 & 0.70034 & 3.307 & 1.508 & 0.80769 \\
\hline 107 & 10.94 & 7.9135 & 6.2928 & 0.54864 & 0.339 & 2.3249 & 0.70422 & 3.301 & 1.5146 & 0.81033 \\
\hline 108 & 11.07 & 7.9194 & 6.2928 & 0.54586 & 0.336 & 2.3336 & 0.707 & 3.301 & 1.5203 & 0.81329 \\
\hline 109 & 11.20 & 7.9219 & 6.2928 & 0.54253 & 0.333 & 2.3394 & 0.71033 & 3.293 & 1.5249 & 0.81453 \\
\hline 110 & 11.33 & 7.9284 & 6.2928 & 0.53976 & 0.330 & 2.3488 & 0.71311 & 3.294 & 1.5309 & 0.81782 \\
\hline 111 & 11.46 & 7.913 & 6.2928 & 0.53809 & 0.332 & 2.3349 & 0.71478 & 3.267 & 1.5249 & 0.81008 \\
\hline 112 & 11.59 & 7.9181 & 6.2928 & 0.53531 & 0.329 & 2.3429 & 0.71755 & 3.265 & 1.5302 & 0.81266 \\
\hline 113 & 11.72 & 7.9597 & 6.2928 & 0.53309 & 0.320 & 2.3867 & 0.71977 & 3.316 & 1.5532 & 0.83346 \\
\hline 114 & 11.85 & 7.9065 & 6.2928 & 0.53031 & 0.329 & 2.3362 & 0.72255 & 3.233 & 1.5294 & 0.80683 \\
\hline 115 & 11.98 & 7.8904 & 6.2928 & 0.52698 & 0.330 & 2.3235 & 0.72588 & 3.201 & 1.5247 & 0.79878 \\
\hline 116 & 12.11 & 7.9003 & 6.2928 & 0.52476 & 0.326 & 2.3356 & 0.7281 & 3.208 & 1.5319 & 0.80376 \\
\hline 117 & 12.24 & 7.8993 & 6.2928 & 0.52199 & 0.325 & 2.3374 & 0.73088 & 3.198 & 1.5341 & 0.80325 \\
\hline 118 & 12.38 & 7.8962 & 6.2928 & 0.52032 & 0.325 & 2.3359 & 0.73255 & 3.189 & 1.5342 & 0.8017 \\
\hline 119 & 12.51 & 7.8979 & 6.2928 & 0.5181 & 0.323 & 2.3398 & 0.73477 & 3.184 & 1.5373 & 0.80254 \\
\hline 120 & 12.64 & 7.8934 & 6.2928 & 0.51421 & 0.321 & 2.3393 & 0.73865 & 3.167 & 1.539 & 0.8003 \\
\hline 121 & 12.77 & 7.8944 & 6.2928 & 0.51255 & 0.320 & 2.3419 & 0.74032 & 3.163 & 1.5411 & 0.80079 \\
\hline 122 & 12.90 & 7.8899 & 6.2928 & 0.50977 & 0.319 & 2.3402 & 0.7431 & 3.149 & 1.5416 & 0.79855 \\
\hline 123 & 13.03 & 7.8889 & 6.2928 & 0.50755 & 0.318 & 2.3414 & 0.74532 & 3.141 & 1.5433 & 0.79803 \\
\hline 124 & 13.17 & 7.8904 & 6.2928 & 0.50588 & 0.317 & 2.3446 & 0.74698 & 3.139 & 1.5458 & 0.79882 \\
\hline 125 & 13.30 & 7.8894 & 6.2928 & 0.50422 & 0.316 & 2.3453 & 0.74865 & 3.133 & 1.547 & 0.79831 \\
\hline 126 & 13.43 & 7.887 & 6.2928 & 0.50311 & 0.316 & 2.344 & 0.74976 & 3.126 & 1.5469 & 0.79712 \\
\hline 127 & 13.56 & 7.892 & 6.2928 & 0.50033 & 0.313 & 2.3517 & 0.75254 & 3.125 & 1.5521 & 0.7996 \\
\hline 128 & 13.69 & 7.8977 & 6.2928 & 0.49977 & 0.311 & 2.3579 & 0.75309 & 3.131 & 1.5555 & 0.80243 \\
\hline 129 & 13.82 & 7.9006 & 6.2928 & 0.49811 & 0.310 & 2.3626 & 0.75476 & 3.130 & 1.5587 & 0.80391 \\
\hline 130 & 13.95 & 7.8969 & 6.2928 & 0.497 & 0.310 & 2.3599 & 0.75587 & 3.122 & 1.5579 & 0.80203 \\
\hline 131 & 14.08 & 7.8998 & 6.2928 & 0.49533 & 0.308 & 2.3645 & 0.75753 & 3.121 & 1.561 & 0.80349 \\
\hline 132 & 14.21 & 7.9027 & 6.2928 & 0.49422 & 0.307 & 2.3685 & 0.75864 & 3.122 & 1. 5636 & 0.80495 \\
\hline 133 & 14.34 & 7.9109 & 6.2928 & 0.49311 & 0.305 & 2.3779 & 0.75975 & 3.130 & 1. 5688 & 0.80905 \\
\hline 134 & 14.47 & 7.9025 & 6.2928 & 0.492 & 0.306 & 2.3705 & 0.76087 & 3.116 & 1.5657 & 0.80484 \\
\hline 135 & 14.60 & 7.906 & 6.2928 & 0.49144 & 0.305 & 2.3746 & 0.76142 & 3.119 & 1.568 & 0.80659 \\
\hline 136 & 14.73 & 7.9048 & 6.2928 & 0.49033 & 0.304 & 2.3745 & 0.76253 & 3.114 & 1.5685 & 0.806 \\
\hline 137 & 14.86 & 7.9056 & 6.2928 & 0.48922 & 0.303 & 2.3765 & 0.76364 & 3.112 & 1.57 & 0.80641 \\
\hline 138 & 14.99 & 7.9038 & 6.2928 & 0.48756 & 0.303 & 2.3763 & 0.76531 & 3.105 & 1.5708 & 0.8055 \\
\hline 139 & 15.13 & 7.9 & 6.2928 & 0.48589 & 0.302 & 2.3741 & 0.76697 & 3.095 & 1.5706 & 0.80358 \\
\hline 140 & 15.26 & 7.902 & 6.2928 & 0.48422 & 0.301 & 2.3779 & 0.76864 & 3.094 & 1.5733 & 0.80462 \\
\hline 141 & 15.39 & 7.9035 & 6.2928 & 0.48311 & 0.300 & 2.3804 & 0.76975 & 3.092 & 1.5751 & 0.80533 \\
\hline 142 & 15.52 & 7.9089 & 6.2928 & 0.482 & 0.298 & 2.3869 & 0.77086 & 3.096 & 1.5789 & 0.80803 \\
\hline 143 & 15.66 & 7.905 & 6.2928 & 0.47978 & 0.298 & 2.3853 & 0.77308 & 3.085 & 1.5792 & 0.80612 \\
\hline 144 & 15.79 & 7.9045 & 6.2928 & 0.47812 & 0.297 & 2.3864 & 0.77475 & 3.080 & 1.5806 & 0.80584 \\
\hline 145 & 15.92 & 7.906 & 6.2928 & 0.47701 & 0.296 & 2.389 & 0.77586 & 3.079 & 1.5824 & 0.80658 \\
\hline 146 & 16.05 & 7.9126 & 6.2928 & 0.47534 & 0.293 & 2.3973 & 0.77752 & 3.083 & 1.5874 & 0.80988 \\
\hline 147 & 16.07 & 7.916 & 6.2928 & 0.4759 & 0.293 & 2.4002 & 0.77697 & 3.089 & 1.5886 & 0.81159 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: \({ }^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soi 1 Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Liquid Limit: 40

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 1b/in
Correction Type: Uniform Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore Pressure tsf & \begin{tabular}{l}
Horizontal \\
Stress tsf
\end{tabular} & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 5.3738 & 0 & 0 & 5.042 & 6.84 & 6.84 \\
\hline 2 & 5 & 0.017296 & 5.3747 & 9.9129 & 0.13279 & 5.1121 & 6.84 & 6.9728 \\
\hline 3 & 10 & 0.036033 & 5.3757 & 12.588 & 0.16859 & 5.1464 & 6.84 & 7.0086 \\
\hline 4 & 15 & 0.054771 & 5.3767 & 13.427 & 0.1798 & 5.167 & 6.84 & 7.0198 \\
\hline 5 & 20 & 0.073508 & 5.3778 & 13.847 & 0.18538 & 5.1822 & 6.84 & 7.0254 \\
\hline 6 & 25 & 0.092245 & 5.3788 & 14.319 & 0.19167 & 5.1958 & 6.84 & 7.0317 \\
\hline 7 & 30.001 & 0.11242 & 5.3799 & 14.843 & 0.19865 & 5.2083 & 6.84 & 7.0386 \\
\hline 8 & 35.001 & 0.13116 & 5.3809 & 15.945 & 0.21335 & 5.2214 & 6.84 & 7.0533 \\
\hline 9 & 40.001 & 0.15134 & 5.3819 & 17.046 & 0.22804 & 5.2344 & 6.84 & 7.068 \\
\hline 10 & 45.001 & 0.17152 & 5.383 & 18.515 & 0.24764 & 5.2485 & 6.84 & 7.0876 \\
\hline 11 & 50.001 & 0.19026 & 5.384 & 19.931 & 0.26653 & 5.2632 & 6.84 & 7.1065 \\
\hline 12 & 55.001 & 0.20899 & 5.3851 & 21.189 & 0.28331 & 5.2768 & 6.84 & 7.1233 \\
\hline 13 & 60.001 & 0.22773 & 5.3861 & 22.553 & 0.30149 & 5.2898 & 6.84 & 7.1415 \\
\hline 14 & 70.001 & 0.26521 & 5.3881 & 29.739 & 0.39739 & 5.3404 & 6.84 & 7.2374 \\
\hline 15 & 80.001 & 0.30124 & 5.39 & 35.088 & 0.46871 & 5.3887 & 6.84 & 7.3087 \\
\hline 16 & 90.002 & 0.34015 & 5.3921 & 39.127 & 0.52245 & 5.4322 & 6.84 & 7.3625 \\
\hline 17 & 100 & 0.37907 & 5.3943 & 42.746 & 0.57055 & 5.4703 & 6.84 & 7.4106 \\
\hline 18 & 110 & 0.41799 & 5.3964 & 45.788 & 0.61092 & 5.5056 & 6.84 & 7.4509 \\
\hline 19 & 120 & 0.45546 & 5.3984 & 48.463 & 0.64637 & 5.5376 & 6.84 & 7.4864 \\
\hline 20 & 130 & 0.49582 & 5.4006 & 51.138 & 0.68177 & 5.5664 & 6.84 & 7.5218 \\
\hline 21 & 140 & 0.53473 & 5.4027 & 53.498 & 0.71295 & 5.5925 & 6.84 & 7.553 \\
\hline 22 & 150 & 0.57365 & 5.4048 & 55.439 & 0.73853 & 5.6175 & 6.84 & 7.5785 \\
\hline 23 & 160 & 0.61401 & 5.407 & 57.274 & 0.76267 & 5.6393 & 6.84 & 7.6027 \\
\hline 24 & 170 & 0.65292 & 5.4091 & 58.9 & 0.78401 & 5.6594 & 6.84 & 7.624 \\
\hline 25 & 180 & 0.69184 & 5.4112 & 60.474 & 0.80464 & 5.6789 & 6.84 & 7.6446 \\
\hline 26 & 190 & 0.7322 & 5.4134 & 61.837 & 0.82245 & 5.6974 & 6.84 & 7.6625 \\
\hline 27 & 200 & 0.77111 & 5.4156 & 63.306 & 0.84166 & 5.7132 & 6.84 & 7.6817 \\
\hline 28 & 210 & 0.81147 & 5.4178 & 63.935 & 0.84968 & 5.7284 & 6.84 & 7.6897 \\
\hline 29 & 220 & 0.85039 & 5.4199 & 65.824 & 0.87443 & 5.7431 & 6.84 & 7.7144 \\
\hline 30 & 230 & 0.8893 & 5.422 & 67.082 & 0.8908 & 5.7566 & 6.84 & 7.7308 \\
\hline 31 & 240 & 0.92966 & 5.4242 & 68.131 & 0.90436 & 5.7697 & 6.84 & 7.7444 \\
\hline 32 & 270 & 1.0493 & 5.4308 & 71.121 & 0.9429 & 5.8034 & 6.84 & 7.7829 \\
\hline 33 & 300 & 1.1689 & 5.4374 & 73.639 & 0.9751 & 5.8306 & 6.84 & 7.8151 \\
\hline 34 & 330 & 1.2871 & 5.4439 & 75.999 & 1.0052 & 5.8545 & 6.84 & 7.8452 \\
\hline 35 & 360 & 1.4053 & 5.4504 & 77.939 & 1.0296 & 5.8746 & 6.84 & 7.8696 \\
\hline 36 & 390 & 1.5235 & 5.4569 & 79.775 & 1.0526 & 5.8925 & 6.84 & 7.8926 \\
\hline 37 & 420 & 1.6417 & 5.4635 & 81.611 & 1.0755 & 5.9083 & 6.84 & 7.9155 \\
\hline 38 & 450 & 1.7599 & 5.4701 & 83.184 & 1.0949 & 5.9219 & 6.84 & 7.9349 \\
\hline 39 & 480 & 1.8781 & 5.4767 & 84.653 & 1.1129 & 5.9333 & 6.84 & 7.9529 \\
\hline 40 & 510 & 1.9977 & 5.4833 & 86.174 & 1.1315 & 5.9441 & 6.84 & 7.9715 \\
\hline 41 & 540 & 2.1159 & 5.49 & 87.538 & 1.148 & 5.9534 & 6.84 & 7.988 \\
\hline 42 & 570 & 2.2326 & 5.4965 & 88.849 & 1.1638 & 5.9615 & 6.84 & 8.0038 \\
\hline 43 & 600 & 2.3494 & 5.5031 & 90.265 & 1.181 & 5.9675 & 6.84 & 8.021 \\
\hline 44 & 630 & 2.4704 & 5.5099 & 91.838 & 1.2001 & 5.974 & 6.84 & 8.0401 \\
\hline 45 & 660 & 2.5872 & 5.5165 & 93.097 & 1.2151 & 5.9805 & 6.84 & 8.0551 \\
\hline 46 & 690 & 2.7068 & 5.5233 & 94.146 & 1.2273 & 5.9843 & 6.84 & 8.0673 \\
\hline 47 & 720 & 2.8236 & 5.5299 & 95.667 & 1.2456 & 5.9876 & 6.84 & 8.0856 \\
\hline 48 & 750 & 2.9418 & 5.5367 & 96.821 & 1.2591 & 5.992 & 6.84 & 8.0991 \\
\hline 49 & 780 & 3.0599 & 5.5434 & 97.818 & 1.2705 & 5.9952 & 6.84 & 8.1105 \\
\hline 50 & 810 & 3.1781 & 5.5502 & 99.129 & 1.2859 & 5.9979 & 6.84 & 8.1259 \\
\hline 51 & 840 & 3.2934 & 5.5568 & 99.968 & 1.2953 & 6.0001 & 6.84 & 8.1353 \\
\hline 52 & 870 & 3.4102 & 5.5635 & 101.02 & 1.3073 & 6.0034 & 6.84 & 8.1473 \\
\hline 53 & 900 & 3.5284 & 5.5703 & 101.86 & 1.3166 & 6.0045 & 6.84 & 8.1566 \\
\hline 54 & 930 & 3.6451 & 5.5771 & 102.96 & 1.3292 & 6.0061 & 6.84 & 8.1692 \\
\hline 55 & 960 & 3.7633 & 5.5839 & 104.01 & 1.3411 & 6.0072 & 6.84 & 8.1811 \\
\hline 56 & 990 & 3.883 & 5.5909 & 104.95 & 1.3516 & 6.0083 & 6.84 & 8.1916 \\
\hline 57 & 1020 & 3.9997 & 5.5977 & 105.95 & 1.3627 & 6.0093 & 6.84 & 8.2027 \\
\hline 58 & 1050 & 4.1179 & 5.6046 & 106.89 & 1.3732 & 6.011 & 6.84 & 8.2132 \\
\hline 59 & 1080 & 4.2346 & 5.6114 & 107.99 & 1.3857 & 6.011 & 6.84 & 8.2257 \\
\hline 60 & 1110 & 4.3514 & 5.6183 & 108.83 & 1.3947 & 6.0126 & 6.84 & 8.2347 \\
\hline 61 & 1140 & 4.4681 & 5.6251 & 109.46 & 1.4011 & 6.0131 & 6.84 & 8.2411 \\
\hline 62 & 1170 & 4.5849 & 5.632 & 110.25 & 1.4094 & 6.0148 & 6.84 & 8.2494 \\
\hline 63 & 1200 & 4.7045 & 5.6391 & 111.14 & 1.419 & 6.0142 & 6.84 & 8.259 \\
\hline 64 & 1230 & 4.8213 & 5.646 & 112.03 & 1.4287 & 6.0126 & 6.84 & 8.2687 \\
\hline 65 & 1260 & 4.9438 & 5.6533 & 112.98 & 1.4388 & 6.0131 & 6.84 & 8.2788 \\
\hline 66 & 1290 & 5.0576 & 5.6601 & 113.81 & 1.4478 & 6.0115 & 6.84 & 8.2878 \\
\hline 67 & 1320 & 5.1744 & 5.667 & 114.97 & 1.4607 & 6.0104 & 6.84 & 8.3007 \\
\hline 68 & 1350 & 5.294 & 5.6742 & 115.81 & 1.4695 & 6.0093 & 6.84 & 8.3095 \\
\hline 69 & 1380 & 5.4093 & 5.6811 & 116.8 & 1.4803 & 6.0088 & 6.84 & 8.3203 \\
\hline 70 & 1410 & 5.5261 & 5.6881 & 117.91 & 1.4924 & 6.0077 & 6.84 & 8.3324 \\
\hline 71 & 1440 & 5.6443 & 5.6953 & 118.95 & 1.5038 & 6.005 & 6.84 & 8.3438 \\
\hline 72 & 1470 & 5.7596 & 5.7022 & 120.06 & 1.5159 & 6.0028 & 6.84 & 8.3559 \\
\hline 73 & 1500 & 5.8763 & 5.7093 & 120.95 & 1.5253 & 6.0023 & 6.84 & 8.3653 \\
\hline 74 & 1530 & 5.9945 & 5.7165 & 121.94 & 1.5359 & 6.0012 & 6.84 & 8.3759 \\
\hline 75 & 1560 & 6.1141 & 5.7238 & 122.84 & 1.5452 & 5.999 & 6.84 & 8.3852 \\
\hline 76 & 1590 & 6.2309 & 5.7309 & 123.94 & 1.5571 & 5.9941 & 6.84 & 8.3971 \\
\hline 77 & 1620 & 6.3491 & 5.7381 & 124.93 & 1.5676 & 5.9914 & 6.84 & 8.4076 \\
\hline 78 & 1650 & 6.4673 & 5.7454 & 125.83 & 1.5768 & 5.9892 & 6.84 & 8.4168 \\
\hline 79 & 1680 & 6.5854 & 5.7526 & 126.87 & 1.588 & 5.9882 & 6.84 & 8.428 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: \(\mathrm{B}-4-\mathrm{A}\)
Sample No.
S -13
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Test Date: \(12 / 2 / 11\)

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{|c|c|c|}
\hline Specimen Height: 5.93 in & Piston Area: 0.00 in^2 & Filter Strip Correction: 0.00 tsf \\
\hline Specimen Area: 5.37 in^2 & Piston Friction: 0.00 1b & Membrane Correction: 0.00 1b/in \\
\hline Specimen Volume: 31.88 in^3 & Piston Weight: 0.00 1b & Correction Type: Uniform \\
\hline
\end{tabular}

Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & Excess Pore & A & Effective Vertical & \begin{tabular}{l}
Effective \\
Horizontal
\end{tabular} & Stress & Effective & \\
\hline & Strain \% & \[
\begin{aligned}
& \text { Stress } \\
& \text { tsf }
\end{aligned}
\] & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
\underset{\text { tsf }}{p}
\] & \[
\begin{gathered}
q \\
\operatorname{ts}
\end{gathered}
\] \\
\hline 1 & 0.00 & 6.84 & 6.84 & 0 & 0.000 & 1.798 & 1.798 & 1.000 & 1.798 & 0 \\
\hline 2 & 0.02 & 6.9728 & 6.84 & 0.070104 & 0.528 & 1.8607 & 1.7279 & 1.077 & 1.7943 & 0.066397 \\
\hline 3 & 0.04 & 7.0086 & 6.84 & 0.10434 & 0.619 & 1.8622 & 1.6936 & 1.100 & 1.7779 & 0.084297 \\
\hline 4 & 0.05 & 7.0198 & 6.84 & 0.12499 & 0.695 & 1.8528 & 1.673 & 1.107 & 1.7629 & 0.0899 \\
\hline 5 & 0.07 & 7.0254 & 6.84 & 0.14021 & 0.756 & 1.8432 & 1.6578 & 1.112 & 1.7505 & 0.092692 \\
\hline 6 & 0.09 & 7.0317 & 6.84 & 0.15379 & 0.802 & 1.8359 & 1.6442 & 1.117 & 1.74 & 0.095834 \\
\hline 7 & 0.11 & 7.0386 & 6.84 & 0.16629 & 0.837 & 1.8303 & 1.6317 & 1.122 & 1.731 & 0.099325 \\
\hline 8 & 0.13 & 7.0533 & 6.84 & 0.17933 & 0.841 & 1.832 & 1.6186 & 1.132 & 1.7253 & 0.10667 \\
\hline 9 & 0.15 & 7.068 & 6.84 & 0.19238 & 0.844 & 1.8336 & 1.6056 & 1.142 & 1.7196 & 0.11402 \\
\hline 10 & 0.17 & 7.0876 & 6.84 & 0.20651 & 0.834 & 1.8391 & 1.5915 & 1.156 & 1.7153 & 0.12382 \\
\hline 11 & 0.19 & 7.1065 & 6.84 & 0.22118 & 0.830 & 1.8433 & 1.5768 & 1.169 & 1.7101 & 0.13326 \\
\hline 12 & 0.21 & 7.1233 & 6.84 & 0.23477 & 0.829 & 1.8465 & 1.5632 & 1.181 & 1.7049 & 0.14165 \\
\hline 13 & 0.23 & 7.1415 & 6.84 & 0.24781 & 0.822 & 1.8517 & 1.5502 & 1.194 & 1.7009 & 0.15074 \\
\hline 14 & 0.27 & 7.2374 & 6.84 & 0.29835 & 0.751 & 1.897 & 1.4996 & 1.265 & 1.6983 & 0.1987 \\
\hline 15 & 0.30 & 7.3087 & 6.84 & 0.34671 & 0.740 & 1.92 & 1.4513 & 1.323 & 1.6856 & 0.23436 \\
\hline 16 & 0.34 & 7.3625 & 6.84 & 0.39019 & 0.747 & 1.9302 & 1.4078 & 1.371 & 1.669 & 0.26123 \\
\hline 17 & 0.38 & 7.4106 & 6.84 & 0.42823 & 0.751 & 1.9403 & 1.3697 & 1.417 & 1.655 & 0.28528 \\
\hline 18 & 0.42 & 7.4509 & 6.84 & 0.46355 & 0.759 & 1.9453 & 1.3344 & 1.458 & 1.6399 & 0.30546 \\
\hline 19 & 0.46 & 7.4864 & 6.84 & 0.49562 & 0.767 & 1.9487 & 1.3024 & 1.496 & 1.6255 & 0.32318 \\
\hline 20 & 0.50 & 7.5218 & 6.84 & 0.52442 & 0.769 & 1.9553 & 1.2736 & 1.535 & 1.6144 & 0.34088 \\
\hline 21 & 0.53 & 7.553 & 6.84 & 0.5505 & 0.772 & 1.9604 & 1.2475 & 1.572 & 1.6039 & 0.35648 \\
\hline 22 & 0.57 & 7.5785 & 6.84 & 0.5755 & 0.779 & 1.961 & 1.2225 & 1.604 & 1.5917 & 0.36926 \\
\hline 23 & 0.61 & 7.6027 & 6.84 & 0.59724 & 0.783 & 1.9634 & 1.2007 & 1.635 & 1.5821 & 0.38133 \\
\hline 24 & 0.65 & 7.624 & 6.84 & 0.61735 & 0.787 & 1.9646 & 1.1806 & 1.664 & 1.5726 & 0.39201 \\
\hline 25 & 0.69 & 7.6446 & 6.84 & 0.63691 & 0.792 & 1.9657 & 1.1611 & 1.693 & 1.5634 & 0.40232 \\
\hline 26 & 0.73 & 7.6625 & 6.84 & 0.65539 & 0.797 & 1.965 & 1.1426 & 1.720 & 1.5538 & 0.41123 \\
\hline 27 & 0.77 & 7.6817 & 6.84 & 0.67115 & 0.797 & 1.9685 & 1.1268 & 1.747 & 1.5477 & 0.42083 \\
\hline 28 & 0.81 & 7.6897 & 6.84 & 0.68636 & 0.808 & 1.9613 & 1.1116 & 1.764 & 1.5365 & 0.42484 \\
\hline 29 & 0.85 & 7.7144 & 6.84 & 0.70104 & 0.802 & 1.9714 & 1.0969 & 1.797 & 1.5342 & 0.43721 \\
\hline 30 & 0.89 & 7.7308 & 6.84 & 0.71462 & 0.802 & 1.9742 & 1.0834 & 1.822 & 1.5288 & 0.4454 \\
\hline 31 & 0.93 & 7.7444 & 6.84 & 0.72766 & 0.805 & 1.9747 & 1.0703 & 1.845 & 1.5225 & 0.45218 \\
\hline 32 & 1.05 & 7.7829 & 6.84 & 0.76136 & 0.807 & 1.9795 & 1.0366 & 1.910 & 1.5081 & 0.47145 \\
\hline 33 & 1.17 & 7.8151 & 6.84 & 0.78853 & 0.809 & 1.9845 & 1.0094 & 1.966 & 1.497 & 0.48755 \\
\hline 34 & 1.29 & 7.8452 & 6.84 & 0.81244 & 0.808 & 1.9907 & 0.98553 & 2.020 & 1.4881 & 0.50258 \\
\hline 35 & 1.41 & 7.8696 & 6.84 & 0.83255 & 0.809 & 1.995 & 0.96543 & 2.066 & 1.4802 & 0.51479 \\
\hline 36 & 1.52 & 7.8926 & 6.84 & 0.85048 & 0.808 & 2.0001 & 0.94749 & 2.111 & 1.4738 & 0.52628 \\
\hline 37 & 1.64 & 7.9155 & 6.84 & 0.86624 & 0.805 & 2.0072 & 0.93173 & 2.154 & 1.4695 & 0.53775 \\
\hline 38 & 1.76 & 7.9349 & 6.84 & 0.87983 & 0.804 & 2.0131 & 0.91815 & 2.193 & 1.4656 & 0.54746 \\
\hline 39 & 1.88 & 7.9529 & 6.84 & 0.89124 & 0.801 & 2.0196 & 0.90674 & 2.227 & 1.4632 & 0.55645 \\
\hline 40 & 2.00 & 7.9715 & 6.84 & 0.90211 & 0.797 & 2.0274 & 0.89587 & 2.263 & 1.4616 & 0.56576 \\
\hline 41 & 2.12 & 7.988 & 6.84 & 0.91135 & 0.794 & 2.0347 & 0.88663 & 2.295 & 1.4606 & 0.57402 \\
\hline 42 & 2.23 & 8.0038 & 6.84 & 0.9195 & 0.790 & 2.0423 & 0.87848 & 2.325 & 1.4604 & 0.58192 \\
\hline 43 & 2.35 & 8.021 & 6.84 & 0.92548 & 0.784 & 2.0535 & 0.8725 & 2.354 & 1.463 & 0.59049 \\
\hline 44 & 2.47 & 8.0401 & 6.84 & 0.932 & 0.777 & 2.0661 & 0.86598 & 2.386 & 1.466 & 0.60004 \\
\hline 45 & 2.59 & 8.0551 & 6.84 & 0.93852 & 0.772 & 2.0745 & 0.85946 & 2.414 & 1.467 & 0.60754 \\
\hline 46 & 2.71 & 8.0673 & 6.84 & 0.94232 & 0.768 & 2.0829 & 0.85565 & 2.434 & 1.4693 & 0.61363 \\
\hline 47 & 2.82 & 8.0856 & 6.84 & 0.94558 & 0.759 & 2.098 & 0.85239 & 2.461 & 1.4752 & 0.62279 \\
\hline 48 & 2.94 & 8.0991 & 6.84 & 0.94993 & 0.754 & 2.1071 & 0.84804 & 2.485 & 1.4776 & 0.62954 \\
\hline 49 & 3.06 & 8.1105 & 6.84 & 0.95319 & 0.750 & 2.1153 & 0.84478 & 2.504 & 1.48 & 0.63524 \\
\hline 50 & 3.18 & 8.1259 & 6.84 & 0.95591 & 0.743 & 2.128 & 0.84207 & 2.527 & 1.485 & 0.64297 \\
\hline 51 & 3.29 & 8.1353 & 6.84 & 0.95808 & 0.740 & 2.1352 & 0.83989 & 2.542 & 1.4875 & 0.64765 \\
\hline 52 & 3.41 & 8.1473 & 6.84 & 0.96134 & 0.735 & 2.1439 & 0.83663 & 2.563 & 1.4903 & 0.65365 \\
\hline 53 & 3.53 & 8.1566 & 6.84 & 0.96243 & 0.731 & 2.1521 & 0.83555 & 2.576 & 1.4938 & 0.65828 \\
\hline 54 & 3.65 & 8.1692 & 6.84 & 0.96406 & 0.725 & 2.1631 & 0.83392 & 2.594 & 1.4985 & 0.66459 \\
\hline 55 & 3.76 & 8.1811 & 6.84 & 0.96515 & 0.720 & 2.1739 & 0.83283 & 2.610 & 1.5034 & 0.67054 \\
\hline 56 & 3.88 & 8.1916 & 6.84 & 0.96623 & 0.715 & 2.1833 & 0.83174 & 2.625 & 1.5075 & 0.67578 \\
\hline 57 & 4.00 & 8.2027 & 6.84 & 0.96732 & 0.710 & 2.1934 & 0.83065 & 2.641 & 1.512 & 0.68137 \\
\hline 58 & 4.12 & 8.2132 & 6.84 & 0.96895 & 0.706 & 2.2022 & 0.82902 & 2.656 & 1.5156 & 0.68659 \\
\hline 59 & 4.23 & 8.2257 & 6.84 & 0.96895 & 0.699 & 2.2147 & 0.82902 & 2.671 & 1.5218 & 0.69283 \\
\hline 60 & 4.35 & 8.2347 & 6.84 & 0.97058 & 0.696 & 2.2221 & 0.82739 & 2.686 & 1.5248 & 0.69736 \\
\hline 61 & 4.47 & 8.2411 & 6.84 & 0.97112 & 0.693 & 2.2279 & 0.82685 & 2.694 & 1.5274 & 0.70053 \\
\hline 62 & 4.58 & 8.2494 & 6.84 & 0.97276 & 0.690 & 2.2346 & 0.82522 & 2.708 & 1.5299 & 0.70471 \\
\hline 63 & 4.70 & 8.259 & 6.84 & 0.97221 & 0.685 & 2.2448 & 0.82576 & 2.718 & 1.5353 & 0.70952 \\
\hline 64 & 4.82 & 8.2687 & 6.84 & 0.97058 & 0.679 & 2.2561 & 0.82739 & 2.727 & 1.5417 & 0.71433 \\
\hline 65 & 4.94 & 8.2788 & 6.84 & 0.97112 & 0.675 & 2.2657 & 0.82685 & 2.740 & 1.5463 & 0.71942 \\
\hline 66 & 5.06 & 8.2878 & 6.84 & 0.96949 & 0.670 & 2.2763 & 0.82848 & 2.748 & 1.5524 & 0.7239 \\
\hline 67 & 5.17 & 8.3007 & 6.84 & 0.96841 & 0.663 & 2.2902 & 0.82957 & 2.761 & 1.5599 & 0.73034 \\
\hline 68 & 5.29 & 8.3095 & 6.84 & 0.96732 & 0.658 & 2.3001 & 0.83065 & 2.769 & 1.5654 & 0.73474 \\
\hline 69 & 5.41 & 8.3203 & 6.84 & 0.96678 & 0.653 & 2.3115 & 0.8312 & 2.781 & 1.5714 & 0.74016 \\
\hline 70 & 5.53 & 8.3324 & 6.84 & 0.96569 & 0.647 & 2.3247 & 0.83228 & 2.793 & 1.5785 & 0.74622 \\
\hline 71 & 5.64 & 8.3438 & 6.84 & 0.96297 & 0.640 & 2.3388 & 0.835 & 2.801 & 1.5869 & 0.75192 \\
\hline 72 & 5.76 & 8.3559 & 6.84 & 0.9608 & 0.634 & 2.3531 & 0.83718 & 2.811 & 1.5951 & 0.75795 \\
\hline 73 & 5.88 & 8.3653 & 6.84 & 0.96026 & 0.630 & 2.363 & 0.83772 & 2.821 & 1.6004 & 0.76264 \\
\hline 74 & 5.99 & 8.3759 & 6.84 & 0.95917 & 0.624 & 2.3747 & 0.83881 & 2.831 & 1.6068 & 0.76795 \\
\hline 75 & 6.11 & 8.3852 & 6.84 & 0.957 & 0.619 & 2.3861 & 0.84098 & 2.837 & 1.6136 & 0.77258 \\
\hline 76 & 6.23 & 8.3971 & 6.84 & 0.9521 & 0.611 & 2.403 & 0.84587 & 2.841 & 1.6244 & 0.77854 \\
\hline 77 & 6.35 & 8.4076 & 6.84 & 0.94939 & 0.606 & 2.4162 & 0.84859 & 2.847 & 1.6324 & 0.78381 \\
\hline 78 & 6.47 & 8.4168 & 6.84 & 0.94721 & 0.601 & 2.4276 & 0.85076 & 2.853 & 1.6392 & 0.78841 \\
\hline
\end{tabular}

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
15

Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE
Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: . 75 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 17 / 11\)
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth: ----
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed & Vertical & Vertical & Horizontal & Horizontal & Cumulative \\
\hline & Time & Stress & Displacement & Stress & Displacement & Displacement \\
\hline & min & tsf & in & tsf & in & in \\
\hline 1 & 0.00 & 0.75 & 0.01082 & 0 & 0 & 0 \\
\hline 2 & 2.00 & 0.75 & 0.01127 & 0.06009 & 0.001129 & 0.001129 \\
\hline 3 & 4.00 & 0.75 & 0.01182 & 0.1469 & 0.004796 & 0.004796 \\
\hline 4 & 6.00 & 0.75 & 0.01225 & 0.143 & 0.008888 & 0.008888 \\
\hline 5 & 8.00 & 0.75 & 0.01266 & 0.2189 & 0.0127 & 0.0127 \\
\hline 6 & 10.00 & 0.75 & 0.0135 & 0.2873 & 0.01651 & 0.01651 \\
\hline 7 & 12.00 & 0.75 & 0.01429 & 0.3483 & 0.02031 & 0.02031 \\
\hline 8 & 14.00 & 0.75 & 0.01498 & 0.4009 & 0.02384 & 0.02384 \\
\hline 9 & 16.00 & 0.75 & 0.01557 & 0.4496 & 0.02751 & 0.02751 \\
\hline 10 & 18.00 & 0.75 & 0.01607 & 0.4908 & 0.03104 & 0.03104 \\
\hline 11 & 20.00 & 0.75 & 0.01648 & 0.5329 & 0.03456 & 0.03456 \\
\hline 12 & 22.00 & 0.75 & 0.01683 & 0.5689 & 0.03809 & 0.03809 \\
\hline 13 & 24.00 & 0.75 & 0.01715 & 0.6005 & 0.0419 & 0.0419 \\
\hline 14 & 26.00 & 0.75 & 0.01735 & 0.6294 & 0.04543 & 0.04543 \\
\hline 15 & 28.00 & 0.75 & 0.01757 & 0.6558 & 0.04938 & 0.04938 \\
\hline 16 & 98.00 & 0.75 & 0.02125 & 0.6014 & 0.1943 & 0.1943 \\
\hline 17 & 180.15 & 0.75 & 0.03304 & 0.6724 & 0.3589 & 0.3589 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: 1.25 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth:
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed Time min & \[
\begin{array}{r}
\text { Vertical } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] & \begin{tabular}{l}
Vertical \\
Displacement
\end{tabular} & Horizontal Stress tsf & Horizontal Displacement in & Cumulative Displacement in \\
\hline 1 & 0.00 & 1.25 & 0.01189 & 0 & 0 & 0 \\
\hline 2 & 12.00 & 1.25 & 0.01458 & 0.07233 & 0.002821 & 0.002821 \\
\hline 3 & 14.00 & 1.25 & 0.01451 & 0.07971 & 0.006913 & 0.006913 \\
\hline 4 & 16.00 & 1.25 & 0.01467 & 0.08127 & 0.011 & 0.011 \\
\hline 5 & 18.00 & 1.25 & 0.01488 & 0.1684 & 0.01481 & 0.01481 \\
\hline 6 & 20.00 & 1.25 & 0.01499 & 0.1843 & 0.0189 & 0.0189 \\
\hline 7 & 22.00 & 1.25 & 0.0153 & 0.313 & 0.02271 & 0.02271 \\
\hline 8 & 24.00 & 1.25 & 0.01616 & 0.413 & 0.0261 & 0.0261 \\
\hline 9 & 26.00 & 1.25 & 0.01703 & 0.5094 & 0.02963 & 0.02963 \\
\hline 10 & 28.00 & 1.25 & 0.01777 & 0.5879 & 0.03315 & 0.03315 \\
\hline 11 & 33.00 & 1.25 & 0.01959 & 0.7097 & 0.04246 & 0.04246 \\
\hline 12 & 38.00 & 1.25 & 0.02117 & 0.8061 & 0.05206 & 0.05206 \\
\hline 13 & 43.00 & 1.25 & 0.02223 & 0.8912 & 0.06193 & 0.06193 \\
\hline 14 & 48.00 & 1.25 & 0.02302 & 0.9647 & 0.07209 & 0.07209 \\
\hline 15 & 53.00 & 1.25 & 0.02348 & 1.018 & 0.08196 & 0.08196 \\
\hline 16 & 58.00 & 1.25 & 0.02364 & 1.05 & 0.09198 & 0.09198 \\
\hline 17 & 63.00 & 1.25 & 0.02373 & 1.067 & 0.1021 & 0.1021 \\
\hline 18 & 68.00 & 1.25 & 0.02364 & 1.064 & 0.1126 & 0.1126 \\
\hline 19 & 73.00 & 1.25 & 0.02385 & 1.029 & 0.123 & 0.123 \\
\hline 20 & 78.00 & 1.25 & 0.02424 & 0.9962 & 0.1333 & 0.1333 \\
\hline 21 & 83.00 & 1.25 & 0.0247 & 0.969 & 0.1436 & 0.1436 \\
\hline 22 & 88.00 & 1.25 & 0.02532 & 0.941 & 0.1542 & 0.1542 \\
\hline 23 & 93.00 & 1.25 & 0.02591 & 0.9196 & 0.1648 & 0.1648 \\
\hline 24 & 98.00 & 1.25 & 0.02646 & 0.9006 & 0.1754 & 0.1754 \\
\hline 25 & 103.00 & 1.25 & 0.02715 & 0.8831 & 0.1859 & 0.1859 \\
\hline 26 & 108.00 & 1.25 & 0.02788 & 0.8749 & 0.1964 & 0.1964 \\
\hline 27 & 113.00 & 1.25 & 0.02879 & 0.8695 & 0.2068 & 0.2068 \\
\hline 28 & 118.00 & 1.25 & 0.02939 & 0.8679 & 0.2174 & 0.2174 \\
\hline 29 & 123.00 & 1.25 & 0.03015 & 0.871 & 0.2277 & 0.2277 \\
\hline 30 & 128.00 & 1.25 & 0.03082 & 0.8718 & 0.2378 & 0.2378 \\
\hline 31 & 133.00 & 1.25 & 0.03154 & 0.8706 & 0.248 & 0.248 \\
\hline 32 & 138.00 & 1.25 & 0.03235 & 0.8772 & 0.2577 & 0.2577 \\
\hline 33 & 143.00 & 1.25 & 0.03304 & 0.8858 & 0.2673 & 0.2673 \\
\hline 34 & 148.00 & 1.25 & 0.0338 & 0.8955 & 0.2769 & 0.2769 \\
\hline 35 & 153.00 & 1.25 & 0.03439 & 0.9017 & 0.2872 & 0.2872 \\
\hline 36 & 158.00 & 1.25 & 0.03505 & 0.9064 & 0.2972 & 0.2972 \\
\hline 37 & 163.00 & 1.25 & 0.03568 & 0.9091 & 0.3074 & 0.3074 \\
\hline 38 & 168.00 & 1.25 & 0.0363 & 0.9185 & 0.3176 & 0.3176 \\
\hline 39 & 173.00 & 1.25 & 0.03691 & 0.922 & 0.3276 & 0.3276 \\
\hline 40 & 178.00 & 1.25 & 0.03753 & 0.9262 & 0.3377 & 0.3377 \\
\hline 41 & 183.00 & 1.25 & 0.03808 & 0.9321 & 0.3476 & 0.3476 \\
\hline 42 & 188.00 & 1.25 & 0.03874 & 0.9282 & 0.3578 & 0.3578 \\
\hline 43 & 193.00 & 1.25 & 0.0393 & 0.929 & 0.3678 & 0.3678 \\
\hline 44 & 198.00 & 1.25 & 0.03976 & 0.9309 & 0.3779 & 0.3779 \\
\hline 45 & 203.00 & 1.25 & 0.04033 & 0.941 & 0.3884 & 0.3884 \\
\hline 46 & 208.00 & 1.25 & 0.04084 & 0.9383 & 0.399 & 0.399 \\
\hline 47 & 213.00 & 1.25 & 0.04139 & 0.9371 & 0.4095 & 0.4095 \\
\hline 48 & 218.00 & 1.25 & 0.04193 & 0.9379 & 0.42 & 0.42 \\
\hline 49 & 223.00 & 1.25 & 0.04244 & 0.9356 & 0.4307 & 0.4307 \\
\hline 50 & 228.00 & 1.25 & 0.04296 & 0.936 & 0.4413 & 0.4413 \\
\hline 51 & 233.00 & 1.25 & 0.04351 & 0.9391 & 0.4517 & 0.4517 \\
\hline 52 & 238.00 & 1.25 & 0.04403 & 0.9406 & 0.462 & 0.462 \\
\hline 53 & 243.00 & 1.25 & 0.04459 & 0.9476 & 0.4723 & 0.4723 \\
\hline 54 & 248.00 & 1.25 & 0.04511 & 0.9566 & 0.4823 & 0.4823 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY Boring No.: B-1-1
Sample No.: S-16-18
Test No.: 1.75 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 17 / 11\)
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth: ----
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed Time min & Vertical Stress tsf & \begin{tabular}{l}
Vertical \\
Displacement
\end{tabular} & Horizontal Stress tsf & Horizontal Displacement in & \begin{tabular}{l}
Cumulative \\
Displacement in
\end{tabular} \\
\hline 1 & 0.00 & 1.75 & 0.01256 & 0 & 0 & 0 \\
\hline 2 & 4.00 & 1.75 & 0.01529 & 0.1083 & 0.001552 & 0.001552 \\
\hline 3 & 6.00 & 1.75 & 0.0162 & 0.107 & 0.00522 & 0.00522 \\
\hline 4 & 8.00 & 1.75 & 0.01687 & 0.1474 & 0.009311 & 0.009311 \\
\hline 5 & 10.00 & 1.75 & 0.01767 & 0.3553 & 0.0127 & 0.0127 \\
\hline 6 & 12.00 & 1.75 & 0.01877 & 0.497 & 0.01622 & 0.01622 \\
\hline 7 & 14.00 & 1.75 & 0.01979 & 0.615 & 0.01961 & 0.01961 \\
\hline 8 & 16.00 & 1.75 & 0.0207 & 0.7159 & 0.02328 & 0.02328 \\
\hline 9 & 18.00 & 1.75 & 0.02152 & 0.8062 & 0.02694 & 0.02694 \\
\hline 10 & 20.00 & 1.75 & 0.02223 & 0.904 & 0.03061 & 0.03061 \\
\hline 11 & 22.00 & 1.75 & 0.02289 & 0.9887 & 0.03414 & 0.03414 \\
\hline 12 & 24.00 & 1.75 & 0.02361 & 1.072 & 0.03809 & 0.03809 \\
\hline 13 & 26.00 & 1.75 & 0.02409 & 1.144 & 0.0419 & 0.0419 \\
\hline 14 & 28.00 & 1.75 & 0.02466 & 1.209 & 0.04585 & 0.04585 \\
\hline 15 & 98.00 & 1.75 & 0.0315 & 1.356 & 0.1888 & 0.1888 \\
\hline 16 & 198.00 & 1.75 & 0.04639 & 1.405 & 0.392 & 0.392 \\
\hline 17 & 243.36 & 1.75 & 0.0505 & 1.298 & 0.4572 & 0.4572 \\
\hline
\end{tabular}

APPENDIX C: SLIDE 7.0 STABILITY ANALYSIS MODELS

Bullock, Bennett \& Associates, LLC

APPENDIX D: LIQUEFACTION ASSESSMENT CALCULATIONS

\section*{APPENDIX D}

\section*{LIQUEFACTION FACTOR OF SAFETY}

\section*{ASSESSMENT METHODOLOGY}

\section*{Coleto Creek Power Station}

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall.
Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface
Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.
United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test
\[
\left(N_{1}\right)_{60}=N S P T \cdot C_{N} \cdot C E \cdot C B \cdot C S \cdot C_{R}
\]
where:
\(\left(N_{1}\right)_{60}=\) Measured blowcount normalized for overburden stress at the depth of the test \(\mathrm{C}_{\mathrm{N}}=\) Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress
\[
\mathrm{C}_{\mathrm{N}}=\sqrt{\frac{P a}{\sigma^{\prime}{ }_{v o}}} \leq 2.0
\]
where:
\(\mathrm{Pa}=\) one atmosphere of pressure \((101.325 \mathrm{kPa})\) in the same units as \(\sigma_{\mathrm{vo}}{ }^{\prime}\)
\(\sigma_{v o}=\) vertical efffective stress at depth of \(\mathrm{N}_{\text {SPT }}\)
\(\mathrm{C}_{\mathrm{E}}=\) Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release
\(C_{B}=\) Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range
\(\mathrm{C}_{\mathrm{S}}=\) Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler
\(C_{R}=\) Correction factor for loss of energy through reflection in short lengths of drill rod:
where:
For \(\mathrm{z}<3 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=0.75\)
For \(3<z<9 m ; C_{R}=(15+z) / 24\)
For \(z>9 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=1.0\)
where: \(z=\) length of drill rod in meters (approximately equal to depth of \(\mathrm{N}_{\text {SPT }}\))

Step 2: Compute a clean-sand equivalent value of \(\left(\mathrm{N}_{1}\right)_{60}\)
\[
\left(N_{1}\right)_{60}-c s=\left(N_{1}\right)_{60}+\Delta\left(N_{1}\right)
\]
where:
\(\Delta\left(N_{1}\right)_{60}=\) correction factor computed as follows:
For FC \(<5 \%, \Delta\left(N_{1}\right)_{60}=0.0\)
For \(5<\mathrm{FC}<35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7^{*}(\mathrm{FC}-5) / 30\)
For FC \(>35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7.0\)
where:
FC = Fines content (percent finer than 0.075 mm)
Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR \({ }_{\text {M7.5 }}\))
\[
100 \cdot C R R_{M 7.5}=\frac{95}{34-\left(N_{1}\right)_{60}-c s}+\frac{\left(N_{1}\right)_{60}-c s}{1.3}-\frac{1}{2}
\]

Note: A value of \(\left(\mathrm{N}_{1}\right)_{60}-\mathrm{cs}>30\) indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area
\[
C R R=C R R M_{75} . M S F \cdot K \sigma \cdot K \alpha
\]
where:
MSF = magnitude scaling factor computed as follows:
\[
\text { For } \mathrm{M}_{\mathrm{w}}<7.0 ; \text { MSF }=10^{3.00} * \mathrm{M}_{\mathrm{w}}^{-3.46}
\]
where:
\(M_{w}=\) estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than \(1 \mathrm{tsf}(2000 \mathrm{psf})(\mathrm{K} \sigma)\) or static shear stresses such as significant slopes (\(K \alpha\)). K \(\sigma\) values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K \(\alpha\) factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)
\[
C S R=0.65 \cdot \frac{a_{\max }}{g} \cdot \frac{\sigma_{v o}}{\sigma_{v o}^{\prime}} \cdot r d
\]
where:
\(a_{\max } / \mathrm{g}=\) peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at
http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).
\(\sigma_{\mathrm{vo}}=\) total vertical overburden stress
\(\mathrm{g}=\) acceleration due to gravity, \(9.81 \mathrm{~m} / \mathrm{s}^{2}\)
\(r_{d}=\) stress reduction factor calculated as follows for depths up to 30 m :
\[
r_{d}=1.0+1.6 * 10^{-6}\left(z^{4}-42 z^{3}+105 z^{2}-4200 z\right)
\]

Step 6: Calculate the Factor of Safety against liquefaction (FS \({ }_{\text {liq }}\))
\[
F S_{l i q}=\frac{C R R}{C S R}
\]

\section*{Coleto Creek Power Plant}
\begin{tabular}{lcl}
Depth to Water \(=\) & 12 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & \(4 "\) to \(50^{\prime}\) bgs \\
& \(3^{\prime \prime}, 50^{\prime}\) ' on end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \[
\begin{array}{lc}
& \text { Soil } \\
\mathrm{N}_{\text {SPT }} & \text { Type }
\end{array}
\] & \[
\begin{gathered}
\sigma_{\text {'vo }}^{\prime} \\
(\mathrm{psf})
\end{gathered}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Kб & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\mathrm{vo}}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 2 & 0.61 & Unsaturated & 40 SC & 250 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 60.0 & 35 & 7.0 & 67.0 & UL & 1.92 & NA & UL & 0.03 & 250 & 1.00 & UL & UL \\
\hline 2 & 4 & 1.22 & Unsaturated & 13 SC & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 35 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.62 & 0.03 & 500 & 0.99 & 0.019 & 32 \\
\hline 3 & 6 & 1.83 & Unsaturated & 14 SC & 750 & 1.68 & 1.0 & 1.00 & 1.0 & 0.75 & 17.6 & 35 & 7.0 & 24.6 & 0.29 & 1.92 & NA & 0.55 & 0.03 & 750 & 0.99 & 0.019 & 28 \\
\hline 4 & 8 & 2.44 & Unsaturated & 15 sc & 1000 & 1.45 & 1.0 & 1.00 & 1.0 & 0.75 & 16.4 & 90.6 & 7.0 & 23.4 & 0.26 & 1.92 & NA & 0.51 & 0.03 & 1000 & 0.98 & 0.019 & 26 \\
\hline 7 & 14 & 4.27 & Saturated & 10 Sc & 1635.4 & 1.14 & 1.0 & 1.00 & 1.0 & 0.80 & 9.1 & 35 & 7.0 & 16.1 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1760 & 0.97 & 0.020 & 16 \\
\hline 8 & 16 & 4.88 & Saturated & 13 SC & 1770.8 & 1.09 & 1.0 & 1.00 & 1.0 & 0.83 & 11.8 & 35 & 7.0 & 18.8 & 0.20 & 1.92 & NA & 0.39 & 0.03 & 2020 & 0.96 & 0.021 & 18 \\
\hline & 18 & 5.49 & Saturated & 9 SC & 1906.2 & 1.05 & 1.0 & 1.00 & 1.0 & 0.85 & 8.1 & 35 & 7.0 & 15.1 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 2280 & 0.96 & 0.022 & 14 \\
\hline 10 & 20 & 6.10 & Saturated & 15 Sc & 2041.6 & 1.02 & 1.0 & 1.00 & 1.0 & 0.88 & 13.4 & 39.5 & 7.0 & 20.4 & 0.22 & 1.92 & 0.93 & 0.40 & 0.03 & 2540 & 0.95 & 0.023 & 17 \\
\hline 12 & 24 & 7.32 & Saturated & 13 SC & 2312.4 & 0.96 & 1.0 & 1.00 & 1.0 & 0.93 & 11.6 & 35 & 7.0 & 18.6 & 0.20 & 1.92 & 0.92 & 0.35 & 0.03 & 3060 & 0.94 & 0.024 & 15 \\
\hline 13 & 26 & 7.92 & Saturated & 21 sc & 2447.8 & 0.93 & 1.0 & 1.00 & 1.0 & 0.96 & 18.7 & 35 & 7.0 & 25.7 & 0.31 & 1.92 & 0.92 & 0.54 & 0.03 & 3320 & 0.93 & 0.025 & 22 \\
\hline 14 & 28 & 8.53 & Saturated & 15 SC & 2583.2 & 0.91 & 1.0 & 1.00 & 1.0 & 0.98 & 13.3 & 35 & 7.0 & 20.3 & 0.22 & 1.92 & 0.91 & 0.39 & 0.03 & 3580 & 0.92 & 0.025 & 16 \\
\hline 15 & 30 & 9.14 & Saturated & 28 SC & 2718.6 & 0.88 & 1.0 & 1.00 & 1.0 & 1.0 & 24.7 & 35 & 7.0 & 31.7 & UL & 1.92 & 0.91 & UL & 0.03 & 3840 & 0.91 & UL & UL \\
\hline 16 & 32 & 9.75 & Saturated & 12 SC & 2854 & 0.86 & 1.0 & 1.00 & 1.0 & 1.0 & 10.3 & 35 & 7.0 & 17.3 & 0.19 & 1.92 & 0.90 & 0.32 & 0.03 & 4100 & 0.90 & 0.025 & 13 \\
\hline 18 & 34.7 & 10.58 & Saturated & 6 SM & 3036.79 & 0.83 & 1.0 & 1.00 & 1.0 & 1.0 & 5.0 & 15 & 2.3 & 7.3 & 0.09 & 1.92 & 0.90 & 0.15 & 0.03 & 4451 & 0.89 & 0.025 & 6 \\
\hline 18A & 36 & 10.97 & Saturated & 15 SM & 3124.8 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 12.3 & 15 & 2.3 & 14.7 & 0.16 & 1.92 & 0.90 & 0.27 & 0.03 & 4620 & 0.88 & 0.025 & 11 \\
\hline 19 & 36.7 & 11.19 & Saturated & 24 SP & 3172.19 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 19.6 & 1 & 0.0 & 19.6 & 0.21 & 1.92 & 0.89 & 0.36 & 0.03 & 4711 & 0.88 & 0.025 & 14 \\
\hline 19A & 38 & 11.58 & Saturated & 26 SP & 3260.2 & 0.81 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.89 & 0.39 & 0.03 & 4880 & 0.87 & 0.025 & 15 \\
\hline 20 & 40 & 12.19 & Saturated & 39 SP & 3395.6 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 30.8 & 1 & 0.0 & 30.8 & UL & 1.92 & 0.89 & UL & 0.03 & 5140 & 0.86 & UL & UL \\
\hline 21 & 42 & 12.80 & Saturated & 27 SP & 3531 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.88 & 0.39 & 0.03 & 5400 & 0.84 & 0.025 & 15 \\
\hline 22 & 44 & 13.41 & Saturated & 35 SM & 3666.4 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 15 & 2.3 & 28.9 & 0.40 & 1.92 & 0.88 & 0.68 & 0.03 & 5660 & 0.83 & UL & UL \\
\hline 23 & 46 & 14.02 & Saturated & 34 SP & 3801.8 & 0.75 & 1.0 & 1.00 & 1.0 & 1.0 & 25.4 & 1 & 0.0 & 25.4 & 0.30 & 1.92 & 0.87 & 0.50 & 0.03 & 5920 & 0.82 & UL & UL \\
\hline 24 & 48 & 14.63 & Saturated & 66 SP & 3937.2 & 0.73 & 1.0 & 1.00 & 1.0 & 1.0 & 48.4 & 1 & 0.0 & 48.4 & UL & 1.92 & 0.87 & UL & 0.03 & 6180 & 0.80 & UL & UL \\
\hline 25 & 50 & 15.24 & Saturated & 56 SP & 4072.6 & 0.72 & 1.0 & 1.00 & 1.0 & 1.0 & 40.4 & 1 & 0.0 & 40.4 & UL & 1.92 & 0.86 & UL & 0.03 & 6440 & 0.79 & ut & UL \\
\hline 26 & 52 & 15.85 & Saturated & 50 SP & 4208 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 35.5 & 1 & 0.0 & 35.5 & UL & 1.92 & 0.86 & UL & 0.03 & 6700 & 0.77 & UL & UL \\
\hline 27 & 57 & 17.37 & Saturated & 50 SP & 4546.5 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.1 & 1 & 0.0 & 34.1 & UL & 1.92 & 0.85 & UL & 0.03 & 7350 & 0.73 & UL & UL \\
\hline 28 & 62 & 18.90 & Saturated & 66 SP & 4885 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 43.4 & 1 & 0.0 & 43.4 & UL & 1.92 & 0.84 & UL & 0.03 & 8000 & 0.68 & UL & UL \\
\hline 29 & 67 & 20.42 & Saturated & 50 SC & 5223.5 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 31.8 & 35 & 7.0 & 38.8 & UL & 1.92 & 0.83 & UL & 0.03 & 8650 & 0.64 & ut & UL \\
\hline 30 & 72 & 21.95 & Saturated & 92 sc & 5562 & 0.62 & 1.0 & 1.00 & 1.0 & 1.0 & 56.7 & 35 & 7.0 & 63.7 & UL & 1.92 & 0.81 & UL & 0.03 & 9300 & 0.59 & UL & UL \\
\hline 31 & 75 & 22.86 & Saturated & 50 Sc & 5765.1 & 0.61 & 1.0 & 1.00 & 1.0 & 1.0 & 30.3 & 35 & 7.0 & 37.3 & UL & 1.92 & 0.81 & UL & 0.03 & 9690 & 0.57 & UL & UL \\
\hline 32 & 81 & 24.69 & Saturated & 50 SP & 6171.3 & 0.59 & 1.0 & 1.00 & 1.0 & 1.0 & 29.3 & 1 & 0.0 & 29.3 & UL & 1.92 & 0.79 & UL & 0.03 & 10470 & 0.52 & UL & UL \\
\hline 33 & 86 & 26.21 & Saturated & 50 SM & 6509.8 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 28.5 & 15 & 2.3 & 30.8 & UL & 1.92 & 0.78 & UL & 0.03 & 11120 & 0.48 & UL & UL \\
\hline 34 & 91 & 27.74 & Saturated & 50 CL & 6848.3 & 0.56 & 1.0 & 1.00 & 1.0 & 1.0 & 27.8 & 77.9 & 7.0 & 34.8 & UL & 1.92 & 0.77 & UL & 0.03 & 11770 & 0.46 & ut & UL \\
\hline 35 & 96 & 29.26 & Saturated & 50 CL & 7186.8 & 0.54 & 1.0 & 1.00 & 1.0 & 1.0 & 27.1 & 90 & 7.0 & 34.1 & UL & 1.92 & 0.76 & UL & 0.03 & 12420 & 0.44 & ut & UL \\
\hline 36 & 100 & 30.48 & Saturated & 50 Sc & 7457.6 & 0.53 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 35 & 7.0 & 33.6 & UL & 1.92 & 0.75 & UL & 0.03 & 12940 & 0.43 & UL & UL \\
\hline 37 & 107 & 32.61 & Saturated & 93 CH & 7931.5 & 0.52 & 1.0 & 1.00 & 1.0 & 1.0 & 48.0 & 90 & 7.0 & 55.0 & UL & 1.92 & 0.74 & UL & 0.03 & 13850 & 0.44 & UL & UL \\
\hline 38 & 112 & 34.14 & Saturated & 51 CH & 9516 & 0.47 & 1.0 & 1.00 & 1.0 & 1.0 & 24.1 & 90 & 7.0 & 31.1 & UL & 1.92 & 0.68 & UL & 0.03 & 14500 & 0.47 & UL & UL \\
\hline 39 & 117 & 35.66 & Saturated & 38 CH & 9854.5 & 0.46 & 1.0 & 1.00 & 1.0 & 1.0 & 17.6 & 90 & 7.0 & 24.6 & 0.29 & 1.92 & 0.67 & 0.37 & 0.03 & 15150 & 0.51 & 0.015 & 24 \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter = & \(4 "\), to \(50^{\prime}\) bgs \\
& \(3^{\prime \prime}, 50^{\prime}\) 'to end of boring
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lcl}
Depth to Water \(=\) & 3.5 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 \\
Borehole Diameter = & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\text {d }}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 5 & ol & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 7.5 & 50 & 7.0 & 14.5 & 0.16 & 1.92 & NA & 0.30 & 0.03 & 125 & 1.00 & 0.019 & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 16 & OL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 24.0 & 50 & 7.0 & 31.0 & 0.55 & 1.92 & NA & 1.05 & 0.03 & 375 & 0.99 & 0.019 & UL \\
\hline 3 & 5 & 1.52 & Saturated & 15 & sc & 510.4 & 2.04 & 1.0 & 1.00 & 1.0 & 0.75 & 22.9 & 35 & 7.0 & 29.9 & 0.46 & 1.92 & NA & 0.88 & 0.03 & 635 & 0.99 & 0.024 & 37 \\
\hline 4 & 7 & 2.13 & Saturated & 16 & SP & 645.8 & 1.81 & 1.0 & 1.00 & 1.0 & 0.75 & 21.7 & 1 & 0.0 & 21.7 & 0.24 & 1.92 & NA & 0.46 & 0.03 & 895 & 0.99 & 0.027 & 17 \\
\hline 5 & 9 & 2.74 & Saturated & 15 & SP & 781.2 & 1.65 & 1.0 & 1.00 & 1.0 & 0.75 & 18.5 & 1 & 0.0 & 18.5 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1155 & 0.98 & 0.028 & 13 \\
\hline 6 & 10 & 3.05 & Saturated & 18 & SP & 848.9 & 1.58 & 1.0 & 1.00 & 1.0 & 0.75 & 21.3 & 1 & 0.0 & 21.3 & 0.23 & 1.92 & NA & 0.45 & 0.03 & 1285 & 0.98 & 0.029 & 16 \\
\hline 6 A & 11 & 3.35 & Saturated & 15 & SP & 916.6 & 1.52 & 1.0 & 1.00 & 1.0 & 0.75 & 17.1 & 1 & 0.0 & 17.1 & 0.18 & 1.92 & NA & 0.35 & 0.03 & 1415 & 0.98 & 0.029 & 12 \\
\hline 7 & 14 & 4.27 & Saturated & 26 & ML & 1119.7 & 1.37 & 1.0 & 1.00 & 1.0 & 0.80 & 28.6 & 50 & 7.0 & 35.6 & UL & 1.92 & NA & UL & 0.03 & 1805 & 0.97 & UL & UL \\
\hline 7 A & 15 & 4.57 & Saturated & 32 & CL & 1187.4 & 1.34 & 1.0 & 1.00 & 1.0 & 0.75 & 32.0 & 50 & 7.0 & 39.0 & UL & 1.92 & NA & UL & 0.03 & 1935 & 0.97 & UL & UL \\
\hline 8 & 20 & 6.10 & Saturated & 21 & ML & 1525.9 & 1.18 & 1.0 & 1.00 & 1.0 & 0.88 & 21.8 & 50 & 7.0 & 28.8 & 0.40 & 1.92 & NA & 0.76 & 0.03 & 2585 & 0.95 & 0.031 & 24 \\
\hline 9 & 25 & 7.62 & Saturated & 35 & SP & 1864.4 & 1.07 & 1.0 & 1.00 & 1.0 & 0.94 & 35.1 & 1 & 0.0 & 35.1 & UL & 1.92 & NA & UL & 0.03 & 3235 & 0.93 & UL & UL \\
\hline 10 & 31 & 9.45 & Saturated & 41 & SP & 2270.6 & 0.97 & 1.0 & 1.00 & 1.0 & 1.02 & 40.4 & 1 & 0.0 & 40.4 & UL & 1.92 & 0.92 & UL & 0.03 & 4015 & 0.91 & UL & UL \\
\hline 11 & 35 & 10.67 & Saturated & 45 & sc & 2541.4 & 0.91 & 1.0 & 1.00 & 1.0 & 1.07 & 43.9 & 35 & 7.0 & 50.9 & UL & 1.92 & 0.92 & UL & 0.03 & 4535 & 0.89 & UL & UL \\
\hline 12 & 39 & 11.89 & Saturated & 50 & Sc & 2812.2 & 0.87 & 1.0 & 1.00 & 1.0 & 1.12 & 48.6 & 35 & 7.0 & 55.6 & UL & 1.92 & 0.91 & UL & 0.03 & 5055 & 0.86 & UL & UL \\
\hline 13 & 45 & 13.72 & Saturated & 42 & SP & 3218.4 & 0.81 & 1.0 & 1.00 & 1.0 & 1.20 & 40.9 & 1 & 0.0 & 40.9 & UL & 1.92 & 0.89 & UL & 0.03 & 5835 & 0.82 & UL & UL \\
\hline 14 & 50 & 15.24 & Saturated & 26 & CL & 3556.9 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.1 & 50 & 7.0 & 27.1 & 0.34 & 1.92 & 0.88 & 0.57 & 0.03 & 6485 & 0.79 & 0.028 & 21 \\
\hline 15 & 54 & 16.46 & Saturated & 56 & SP & 3827.7 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 41.6 & 1 & 0.0 & 41.6 & UL & 1.92 & 0.87 & UL & 0.03 & 7005 & 0.75 & UL & UL \\
\hline 15A & 55 & 16.76 & Saturated & 120 & SP & 3895.4 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 88.4 & 1 & 0.0 & 88.4 & UL & 1.92 & 0.87 & UL & 0.03 & 7135 & 0.74 & UL & UL \\
\hline 16 & 59 & 17.98 & Saturated & 83 & CL & 4166.2 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 59.2 & 50 & 7.0 & 66.2 & UL & 1.92 & 0.86 & UL & 0.03 & 7655 & 0.71 & UL & UL \\
\hline 17 & 65 & 19.81 & Saturated & 50 & SM & 4572.4 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.0 & 35 & 7.0 & 41.0 & UL & 1.92 & 0.85 & UL & 0.03 & 8435 & 0.66 & UL & UL \\
\hline 18 & 70 & 21.34 & Saturated & 56 & CH & 4910.9 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 36.8 & 90 & 7.0 & 43.8 & UL & 1.92 & 0.84 & UL & 0.03 & 9085 & 0.61 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

TEST BORING B-3-1 \({ }^{1}\)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water = & 28 & ft (Only saturated strata was found between 28.0 and 28.5 ft bgs) \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter = & \(4 "\), to \(30^{\prime}\) \\
& \(3^{\prime \prime}\), to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {Spt }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {ilq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 19 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 28.5 & 35 & 7.0 & 35.5 & UL & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 17 & SC & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 35 & 7.0 & 32.5 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 26 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 35.9 & 35 & 7.0 & 42.9 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 26 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 30.3 & 35 & 7.0 & 37.3 & UL & 1.92 & NA & UL & 0.03 & 875 & 0.99 & UL & UL \\
\hline 5 & 9 & 2.74 & Unsaturated & 9 & sc & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 9.3 & 35 & 7.0 & 16.3 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1125 & 0.98 & 0.019 & 17 \\
\hline 6 & 11 & 3.35 & Unsaturated & 15 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 14.0 & 35 & 7.0 & 21.0 & 0.23 & 1.92 & NA & 0.44 & 0.03 & 1375 & 0.98 & 0.019 & 23 \\
\hline 7 & 13 & 3.96 & Unsaturated & 12 & sc & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.79 & 10.8 & 35 & 7.0 & 17.8 & 0.19 & 1.92 & NA & 0.37 & 0.03 & 1625 & 0.97 & 0.019 & 19 \\
\hline 8 & 15 & 4.57 & Unsaturated & 11 & sc & 1875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.8 & 35 & 7.0 & 15.8 & 0.17 & 1.92 & NA & 0.32 & 0.03 & 1875 & 0.97 & 0.019 & 17 \\
\hline 8 A & 16 & 4.88 & Unsaturated & 24 & sc & 2000 & 1.03 & 1.0 & 1.00 & 1.0 & 0.83 & 20.5 & 40 & 7.0 & 27.5 & 0.35 & 1.92 & NA & 0.68 & 0.03 & 2000 & 0.96 & 0.019 & 36 \\
\hline 11 & 21 & 6.40 & Unsaturated & 18 & sc & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 14.4 & 34.8 & 7.0 & 21.4 & 0.23 & 1.92 & 0.91 & 0.41 & 0.03 & 2625 & 0.95 & 0.019 & 22 \\
\hline 12 & 23 & 7.01 & Unsaturated & 21 & CL & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 16.6 & 50 & 7.0 & 23.6 & 0.27 & 1.92 & 0.90 & 0.46 & 0.03 & 2875 & 0.94 & 0.018 & 25 \\
\hline 14 & 27 & 8.23 & Unsaturated & 19 & Sc & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 15.0 & 35 & 7.0 & 22.0 & 0.24 & 1.92 & 0.89 & 0.42 & 0.03 & 3375 & 0.93 & 0.018 & 23 \\
\hline 15 & 28.5 & 8.69 & Saturated & 16 & sc & 3533.85 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 12.4 & 35 & 7.0 & 19.4 & 0.21 & 1.92 & 0.88 & 0.35 & 0.03 & 3565 & 0.92 & 0.018 & 20 \\
\hline 15A & 29 & 8.84 & Unsaturated & 20 & SM & 3627.5 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 15.3 & 35 & 7.0 & 22.3 & 0.25 & 1.92 & 0.88 & 0.42 & 0.03 & 3627.5 & 0.92 & 0.018 & 23 \\
\hline 16 & 31 & 9.45 & Unsaturated & 17 & SM & 3877.5 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 12.6 & 35 & 7.0 & 19.6 & 0.21 & 1.92 & 0.87 & 0.35 & 0.03 & 3877.5 & 0.91 & 0.018 & 20 \\
\hline 17 & 36 & 10.97 & Unsaturated & 65 & SM & 4502.5 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 44.6 & 35 & 7.0 & 51.6 & UL & 1.92 & 0.85 & UL & 0.03 & 4502.5 & 0.88 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices \(A\) and \(B\) for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 14 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{gathered}
\sigma_{\text {vo }}^{\prime} \\
(\mathrm{psf})
\end{gathered}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {IIq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 12 & SM & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 35 & 7.0 & 25.0 & 0.29 & 1.92 & NA & 0.56 & 0.03 & 125 & 1.00 & 0.019 & 29 \\
\hline 2 & 3 & 0.91 & Unsaturated & 14 & CL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 375 & 0.99 & 0.019 & 36 \\
\hline 2A & 4 & 1.22 & Unsaturated & 18 & CL & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 27.0 & 50 & 7.0 & 34.0 & UL & 1.92 & NA & UL & 0.03 & 500 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 18 & CL & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 24.8 & 50 & 7.0 & 31.8 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 18 & CL & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 875 & 0.99 & 0.019 & 37 \\
\hline 5 & 9 & 2.74 & Unsaturated & 19 & CL & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 50 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.63 & 0.03 & 1125 & 0.98 & 0.019 & 33 \\
\hline 6 & 11 & 3.35 & Unsaturated & 47 & SM & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 44.3 & 35 & 7.0 & 51.3 & UL & 1.92 & NA & UL & 0.03 & 1375 & 0.98 & UL & UL \\
\hline 7 & 15 & 4.57 & Saturated & 23 & SP & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 20.3 & 1 & 0.0 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.03 & 1880 & 0.97 & 0.020 & 22 \\
\hline 8 & 20 & 6.10 & Saturated & 42 & SM & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 31.2 & 35 & 7.0 & 38.2 & UL & 1.92 & NA & UL & 0.03 & 2530 & 0.95 & UL & UL \\
\hline 9 & 24 & 7.32 & Saturated & 50 & SP & 2427 & 0.93 & 1.0 & 1.00 & 1.0 & 0.93 & 43.4 & 1 & 0.0 & 43.4 & UL & 1.92 & 0.92 & UL & 0.03 & 3050 & 0.94 & UL & UL \\
\hline 10 & 29 & 8.84 & Saturated & 52 & SP & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 45.0 & 1 & 0.0 & 45.0 & UL & 1.92 & 0.91 & UL & 0.03 & 3700 & 0.92 & UL & \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 35.6 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\text {R }}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Kб & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 17 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 12.8 & 1.8 & 27.3 & 0.35 & 1.92 & NA & 0.67 & 0.03 & 125 & 1.00 & 0.019 & 34 \\
\hline 2 & 3 & 0.91 & Unsaturated & 12 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 12.8 & 1.8 & 19.8 & 0.21 & 1.92 & NA & 0.41 & 0.03 & 375 & 0.99 & 0.019 & 21 \\
\hline 3 & 5 & 1.52 & Unsaturated & 12 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 16.6 & 12.8 & 1.8 & 18.4 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 625 & 0.99 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 14 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 13.2 & 12.8 & 1.8 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1375 & 0.98 & 0.019 & 16 \\
\hline 8 & 14 & 4.27 & Unsaturated & 21 & sc & 1750 & 1.10 & 1.0 & 1.00 & 1.0 & 0.80 & 18.5 & 12.8 & 1.8 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.03 & 1750 & 0.97 & 0.019 & 22 \\
\hline 9 & 17 & 5.18 & Unsaturated & 20 & sc & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.84 & 16.8 & 12.8 & 1.8 & 18.6 & 0.20 & 1.92 & 0.93 & 0.38 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 29 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.87 & 23.8 & 12.8 & 1.8 & 25.6 & 0.31 & 1.92 & 0.92 & 0.59 & 0.03 & 2375 & 0.96 & 0.019 & 31 \\
\hline 11 & 20 & 6.10 & Unsaturated & 16 & CL & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.88 & 13.0 & 50 & 7.0 & 20.0 & 0.22 & 1.92 & 0.92 & 0.41 & 0.03 & 2500 & 0.95 & 0.019 & 22 \\
\hline 11A & 21 & 6.40 & Unsaturated & 23 & CL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 18.4 & 50 & 7.0 & 25.4 & 0.30 & 1.92 & 0.91 & 0.58 & 0.03 & 2625 & 0.95 & 0.019 & 31 \\
\hline 12 & 22 & 6.71 & Unsaturated & 24 & CL & 2750 & 0.88 & 1.0 & 1.00 & 1.0 & 0.90 & 18.9 & 50 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2750 & 0.95 & 0.018 & 33 \\
\hline 12A & 23 & 7.01 & Unsaturated & 22 & CL & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 17.4 & 50 & 7.0 & 24.4 & 0.28 & 1.92 & 0.90 & 0.54 & 0.03 & 2875 & 0.94 & 0.018 & 29 \\
\hline 14 & 27 & 8.23 & Unsaturated & 25 & sc & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 0.97 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.89 & 0.61 & 0.03 & 3375 & 0.93 & 0.018 & 34 \\
\hline 15 & 29 & 8.84 & Unsaturated & 23 & sc & 3625 & 0.76 & 1.0 & 1.00 & 1.0 & 0.99 & 17.4 & 35 & 7.0 & 24.4 & 0.28 & 1.92 & 0.88 & 0.54 & 0.03 & 3625 & 0.92 & 0.018 & 30 \\
\hline 16 & 31 & 9.45 & Unsaturated & 26 & SM & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.87 & 0.61 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 34 & 10.36 & Unsaturated & 22 & CL & 4242 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 15.5 & 50 & 7.0 & 22.5 & 0.25 & 1.92 & 0.86 & 0.48 & 0.03 & 4242 & 0.89 & 0.017 & 28 \\
\hline 17A & 36 & 10.97 & Saturated & 28 & SP & 4477.08 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 19.3 & 1 & 0.0 & 19.3 & 0.21 & 1.92 & 0.85 & 0.40 & 0.03 & 4502 & 0.88 & 0.017 & 23 \\
\hline 18 & 41 & 12.50 & Saturated & 35 & SP & 4815.58 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 23.2 & 1 & 0.0 & 23.2 & 0.26 & 1.92 & 0.84 & 0.50 & 0.03 & 5152 & 0.85 & 0.018 & 28 \\
\hline 19 & 46 & 14.02 & Saturated & 35 & SP & 5154.08 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 22.4 & 1 & 0.0 & 22.4 & 0.25 & 1.92 & 0.83 & 0.48 & 0.03 & 5802 & 0.82 & 0.018 & 27 \\
\hline 20 & 51 & 15.54 & Unsaturated & 60 & SP & 6427 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 34.4 & 1 & 0.0 & 34.4 & UL & 1.92 & 0.79 & UL & 0.03 & 6427 & 0.78 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 14 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{\text {voo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\text {R }}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{v o}\) & \(\mathrm{r}_{\text {d }}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 23 & SM & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 34.5 & 35 & 7.0 & 41.5 & ut & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & U \\
\hline 2 & 3 & 0.91 & Unsaturated & 33 & SM & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 49.5 & 35 & 7.0 & 56.5 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & U \\
\hline 3 & 5 & 1.52 & Unsaturated & 28 & ol & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 38.6 & 50 & 7.0 & 45.6 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & U \\
\hline 4 & 7 & 2.13 & Unsaturated & 22 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 25.7 & 35 & 7.0 & 32.7 & UL & 1.92 & NA & UL & 0.03 & 875 & 0.99 & UL & U \\
\hline 6 & 11 & 3.35 & Unsaturated & 12 & SM & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1375 & 0.98 & 0.019 & \\
\hline 7 & 15 & 4.57 & Saturated & 13 & SP & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 11.5 & 1 & 0.0 & 11.5 & 0.13 & 1.92 & NA & 0.24 & 0.03 & 1880 & 0.97 & 0.020 & 12 \\
\hline 8 & 20 & 6.10 & Saturated & 16 & SP & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 11.9 & 1 & 0.0 & 11.9 & 0.13 & 1.92 & 0.93 & 0.25 & 0.03 & 2530 & 0.95 & 0.022 & 1 \\
\hline 9 & 25 & 7.62 & Saturated & 29 & SP & 2494.7 & 0.92 & 1.0 & 1.00 & 1.0 & 0.94 & 25.1 & 1 & 0.0 & 25.1 & 0.29 & 1.92 & 0.92 & 0.57 & 0.03 & 3180 & 0.93 & 0.023 & \\
\hline 10 & 29 & 8.84 & Saturated & 12 & SM & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 10.4 & 35 & 7.0 & 17.4 & 0.19 & 1.92 & 0.91 & 0.36 & 0.03 & 3700 & 0.92 & 0.024 & \\
\hline 10A & 29.5 & 8.99 & Saturated & 43 & SP & 2799.35 & 0.87 & 1.0 & 1.00 & 1.0 & 1.00 & 37.4 & 1 & 0.0 & 37.4 & UL & 1.92 & 0.91 & UL & 0.03 & 3765 & 0.91 & UL & \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

TEST BORING B-5-1 \({ }^{1}\)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60} \mathrm{CS}\) & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 34 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 51.0 & 35 & 7.0 & 58.0 & UL & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 26 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 39.0 & 35 & 7.0 & 46.0 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 23 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 31.7 & 35 & 7.0 & 38.7 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 17 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 19.8 & 35 & 7.0 & 26.8 & 0.33 & 1.92 & NA & 0.64 & 0.03 & 875 & 0.99 & 0.019 & 33 \\
\hline 5 & 9 & 2.74 & Unsaturated & 11 & SC & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1125 & 0.98 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 17 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 15.8 & 35 & 7.0 & 22.8 & 0.26 & 1.92 & NA & 0.49 & 0.03 & 1375 & 0.98 & 0.019 & 26 \\
\hline 7 & 12 & 3.66 & Unsaturated & 12 & sc & 1500 & 1.19 & 1.0 & 1.00 & 1.0 & 0.75 & 10.7 & 35 & 7.0 & 17.7 & 0.19 & 1.92 & NA & 0.36 & 0.03 & 1500 & 0.97 & 0.019 & 19 \\
\hline 7A & 13 & 3.96 & Unsaturated & 18 & sc & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.75 & 15.4 & 35 & 7.0 & 22.4 & 0.25 & 1.92 & NA & 0.48 & 0.03 & 1625 & 0.97 & 0.019 & 25 \\
\hline 8 & 15 & 4.57 & Unsaturated & 10 & SC & 1875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.0 & 35 & 7.0 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1875 & 0.97 & 0.019 & 16 \\
\hline 9 & 17 & 5.18 & Unsaturated & 15 & sc & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.75 & 11.2 & 35 & 7.0 & 18.2 & 0.20 & 1.92 & 0.93 & 0.37 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 32 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.75 & 22.7 & 35 & 7.0 & 29.7 & 0.44 & 1.92 & 0.92 & 0.85 & 0.03 & 2375 & 0.96 & 0.019 & 45 \\
\hline 11 & 20 & 6.10 & Unsaturated & 20 & sc & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.75 & 13.8 & 35 & 7.0 & 20.8 & 0.23 & 1.92 & 0.92 & 0.44 & 0.03 & 2500 & 0.95 & 0.019 & 23 \\
\hline 11A & 21 & 6.40 & Unsaturated & 28 & CL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.75 & 18.9 & 83.9 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2625 & 0.95 & 0.019 & 32 \\
\hline 16 & 31 & 9.45 & Unsaturated & 35 & CL & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 0.75 & 19.4 & 50 & 7.0 & 26.4 & 0.32 & 1.92 & 0.87 & 0.62 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 33 & 10.06 & Saturated & 33 & SM & 4067.7 & 0.72 & 1.0 & 1.00 & 1.0 & 0.75 & 17.9 & 35 & 7.0 & 24.9 & 0.29 & 1.92 & 0.86 & 0.56 & 0.03 & 4130 & 0.90 & 0.018 & 31 \\
\hline 18 & 36 & 10.97 & Saturated & 80 & SP & 4270.8 & 0.70 & 1.0 & 1.00 & 1.0 & 0.75 & 42.2 & 1 & 0.0 & 42.2 & uL & 1.92 & 0.86 & UL & 0.03 & 4520 & 0.88 & UL & UL \\
\hline 19 & 41 & 12.50 & Saturated & 77 & SP & 4609.3 & 0.68 & 1.0 & 1.00 & 1.0 & 0.75 & 39.1 & 1 & 0.0 & 39.1 & UL & 1.92 & 0.85 & UL & 0.03 & 5170 & 0.85 & UL & UL \\
\hline 20 & 46 & 14.02 & Saturated & 42 & SM & 4947.8 & 0.65 & 1.0 & 1.00 & 1.0 & 0.75 & 20.6 & 35 & 7.0 & 27.6 & 0.36 & 1.92 & 0.84 & 0.68 & 0.03 & 5820 & 0.82 & 0.019 & 36 \\
\hline 21 & 50 & 15.24 & Saturated & 50 & SM & 5218.6 & 0.64 & 1.0 & 1.00 & 1.0 & 0.75 & 23.9 & 35 & 7.0 & 30.9 & UL & 1.92 & 0.83 & UL & 0.03 & 6340 & 0.79 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices \(A\) and \(B\) for boring logs and laboratory testing results)

APPENDIX E: GUADALUPE-BLANCO RIVER AUTHORITY LAKE AREA-CAPACITY CURVES

TABLE 1
COLETO CREEK RESERVOIR
AREAS AND CAPACITIES
INITIAL CONDITIONS*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & \multicolumn{10}{|c|}{AREA IN ACRES} \\
\hline 50 & & & & & & & & & 0 & 9 \\
\hline 60 & 18 & 26 & 34 & 42 & 50 & 60 & 80 & 100 & 120 & 145 \\
\hline 70 & 170 & 200 & 239 & 277 & 314 & 351 & 397 & 442 & 495 & 547 \\
\hline 80 & 599 & 679 & 758 & 835 & 910 & 984 & 1087 & 1189 & 1299 & 1408 \\
\hline 90 & 1504 & 1650 & 1796 & 1940 & 2084 & 2230 & 2369 & 2514 & 2652 & 2787 \\
\hline 100 & 2918 & 3077 & 3255 & 3461 & 3698 & 3954 & 4207 & 4458 & 4706 & 4949 \\
\hline 110 & 5190 & 5531 & 5910 & 6324 & 6763 & 7234 & 7734 & 8229 & 8725 & 9223 \\
\hline 120 & 9723 & & & & & & & & & \\
\hline
\end{tabular}

CAPACITY IN ACRE-FEET '
\begin{tabular}{rrrrrrrrrrr}
50 & & & & & & & & 0 & 4 \\
60 & 18 & 40 & 70 & 108 & 154 & 209 & 279 & 369 & 479 & 611 \\
70 & 769 & 954 & 1174 & 1432 & 1727 & 2060 & 2434 & 2853 & 3322 & 3843 \\
80 & 4416 & 5055 & 5774 & 6570 & 7442 & 8389 & 9425 & 10,563 & 11,807 & 13,160 \\
90 & 14,617 & 16,194 & 17,917 & 19,786 & 21,798 & 23,955 & 26,254 & 28,695 & 31,277 & 33,996 \\
100 & 36,849 & 39,846 & 43,012 & 46,370 & 49,949 & 53,744 & 57,855 & 62,187 & 66,769 & 71,597 \\
110 & 76,667 & 82,027 & 87,747 & 93,863 & 100,406 & 107,409 & 114,807 & 122,878 & 131,354 & 140,328 \\
120 & 149,800 & & & & & & & & & \\
\end{tabular}
*Areas and capacities of impoundments behind Dike Nos. 1 and 2 are not included in this tabulation.

\section*{ATTACHMENT 3-2}

TABLE 2

> COLETO CREEK PROJECT AREAS AND CAPACITIES
> SULPHUR CREEK BEHIND DIKE NO. 1
> INCLUDING FLUME NO. 1
\begin{tabular}{clllllllllll}
Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
70 & & & & & & & 0 & 1 & 2 \\
80 & 3 & 5 & 7 & 10 & 14 & 18 & 22 & 26 & 31 & 36 \\
90 & 49 & 56 & 64 & 73 & 82 & 90 & 101 & 113 & 126 & 138 \\
100 & 151 & 164 & 178 & 193 & 207 & 223 & 240 & 259 & 279 & 303 \\
110 & 329 & 358 & 388 & 419 & 455 & 499 & 540 & 590 & 641 & 699 \\
120 & 770 & & & & & & & & &
\end{tabular}

CAPACITY IN ACRE-FEET
\begin{tabular}{rrrrrrrrrrr}
70 & & & & & & & & 0 & 2 \\
80 & 4 & 8 & 14 & 23 & 35 & 51 & 71 & 95 & 123 & 157 \\
90 & 199 & 251 & 311 & 379 & 456 & 542 & 638 & 745 & 865 & 997 \\
100 & 1141 & 1299 & 1470 & 1656 & 1856 & 2071 & 2303 & 2553 & 2322 & 3113 \\
110 & 3429 & 3773 & 4146 & 4550 & 4987 & 5464 & 5984 & 6549 & 7165 & 7835 \\
120 & 8570 & & & & & & & & &
\end{tabular}

TABLE 3
COLETO CREEK PROJECT
AREAS AND CAPACITIES
TURKEY CREEK BEHIND DIKE NO. 2 INCLUDING FLUME NO. 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elev. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \multicolumn{11}{|c|}{AREA IN ACRES} \\
\hline 70 & & 0 & 1 & 3 & 6 & 9 & 13 & 18 & 24 & 31 \\
\hline 80 & 38 & 46 & 55 & 65 & 76 & 88 & 101 & 115 & 130 & 146 \\
\hline 90 & 167 & 184 & 200 & 217 & 234 & 250 & 270 & 293 & 322 & 355 \\
\hline 100 & 391 & 429 & 467 & 506 & 545 & 583 & 623 & 663 & 705 & 748 \\
\hline 110 & 791 & - 831 & 882 & 947 & 1032 & 1118 & 1206 & 1291 & 1374 & 1458 \\
\hline 120 & 1537 & & & & & & & & & \\
\hline \multicolumn{11}{|c|}{CAPACITY IN ACRE-FEET} \\
\hline 70 & & 0 & 0 & 2 & 7 & 14 & 25 & 41 & 62 & 89 \\
\hline 80 & 124 & 166 & 216 & 276 & 347 & 429 & 523 & 631 & 754 & 892 \\
\hline 90 & 1048 & 1224 & 1416 & 1624 & 1850 & 2092 & 2352 & 2634 & 2942 & 3281 \\
\hline 100 & 3654 & 4064 & 4512 & 4998 & 5524 & 6089 & 6691 & 7334 & 8018 & 8744 \\
\hline 110 & - 9513 & 10,324 & 11,181 & 12,096 & 13,086 & 14,161 & 15,323 & 16,572 & 17,905 & 19,321 \\
\hline 120 & 20,819 & & & & & & & & & \\
\hline
\end{tabular}

\title{
COAL COMBUSTION RESIDUALS PRIMARY ASH POND STRUCTURAL STABILITY ASSESSMENT 5-Year Periodic Update
}

\author{
COLETO CREEK POWER PLANT \\ FANNIN, TEXAS
}

October 11, 2021

Bullock, Bennett \& Associates, LLC Engineering and Geoscience

\title{
Certification Statement 40 CFR § 257.73(d) and 30 T.A.C. § 352.731 - Structural Integrity Criteria for Existing CCR Surface Impoundments, 5-Year Periodic Structural Stability Assessment
}

\section*{CCR Unit: Coleto Creek Power, LLC; Coleto Creek Power Plant; Coleto Creek Primary Ash Pond}

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Structural Stability Assessment, dated October 11, 2021, meets the requirements of \(40 C F R\) §257.73(d) and 30 T.A.C. § 352.731.

Daniel B. Bullock, P.E. (TX 82596)

10-11-2021

TABLE OF CONTENTS
LIST OF FIGURES. ii
1.0 INTRODUCTION 1
2.0 5-YEAR PERIODIC STRUCTURAL STABILITY ASSESSMENT 2
3.0 CONCLUSION 4
4.0 REFERENCES 5

\section*{LIST OF FIGURES}

Figure 1 Site Location Map
Figure 2 Primary Ash Pond Location Map

\subsection*{1.0 INTRODUCTION}

Coleto Creek Power Plant is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power plant consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial reuse or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1 and 2 provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) promulgated rules (40 C.F.R. Part 257, Subpart D) to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. The State of Texas subsequently codified 30 T.A.C. Chapter 352 to address CCR management in surface impoundments and landfills in the state of Texas. This report has been prepared to specifically address the requirements identified in 40 CFR §257.73(d) and 30 T.A.C. § 352.731 regarding periodic Structural Stability Assessments to be performed every 5 years.

\subsection*{2.0 5-YEAR PERIODIC STRUCTURAL STABILITY ASSESSMENT}

According to \(\S 257.73\) (d) and codified in \(\S 352.731\) by reference, the owner or operator of a CCR non-incised surface impoundment "must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein." Requirements for the Structural Stability Assessment are addressed below.
§257.73(d)(1)(i) Stable foundations and abutments. The Primary Ash Pond was constructed on a foundation of in-place cohesive soils whose geotechnical characteristics either met or exceeded Texas Department of Water Resources technical guidelines for the design and construction of wastewater ponds that were in force at the time of construction (S\&L, 1978). The Primary Ash Pond and Secondary Pond dikes are continuous, with no abutments constructed against other structures. A review of the geotechnical data collected at the time of construction confirms that the foundation for the pond should continue to be stable over its operational life.
§257.73(d)(1)(ii) Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown. The Primary Ash Pond dikes were constructed with 2.5 to 3 horizontal to 1 vertical side slopes. Outer slopes were seeded for slope protection, but interior dike surfaces were not. Vegetation does naturally occur on these surfaces thus assisting in the control of erosion. The interior dike sections in areas impounding water are armored with rock riprap. The dikes are regularly inspected in accordance with §257.83(a) and (b) and repaired as necessary to maintain their integrity. An engineering site inspection was performed in November 2020 in accordance with the requirements defined in \(\S 257.83\) (b) which included an evaluation of the surface impoundment dikes. No additional slope protection was deemed to be necessary at that time (BBA, 2021a).

\section*{§257.73(d)(1)(iii) Dikes mechanically compacted to a density sufficient to withstand the} range of loading conditions in the CCR unit. The dike system was engineered by S\&L and constructed in approximately 1978 (S\&L, 1978). Dike fill material was placed in controlled, mechanically compacted lifts, averaging approximately \(98 \%\) maximum dry density as determined by ASTM D698. Full time field inspection was performed during construction, with approximately 420 field density tests performed on the dikes.
§257.73(d)(1)(iv) Vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection. The slopes of the dikes and surrounding areas are vegetated as required. The slopes are reportedly mowed as necessary to comply with height of grass requirements.
\(\$ 257.73(d)(1)(v)\) A single spillway or a combination of spillways configured as specified in paragraph \((d)(1)(v)(A)\) of the section of the rule. As is common with surface impoundments of this type, the Primary Ash Pond was not constructed with a spillway. The results of the hydraulic analysis completed in support of the Periodic Inflow Design Flood Control System evaluation (BBA, 2021b) showed that the Primary Ash Pond, as configured without a spillway and when operated at a maximum storage operating elevation of 136.1 feet NAVD88, has sufficient capacity to manage the design flood. The design flood is designated by rule for a Low Hazard Potential surface impoundment to equal the 100-year rainfall event. It is therefore not necessary for the surface impoundment to have a spillway.
\$257.73(d)(1)(vi) Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure. The weir system and pipe penetrations were visually inspected by a professional engineer in November of 2020 (BBA, 2021a). There were no observations of conditions that would negatively impact operation of the structures
\$257.73(d)(1)(vii) For CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body. The dike that separates the Primary Ash Pond from the Secondary Pond was evaluated for stability in the event of rapid drawdown of the Secondary Pond, as further discussed in the periodic Safety Factor Assessment report (BBA, 2021c). The modeled slope stability results indicate this divider dike exceeds the required safety factors under the max surcharge pool/rapid drawdown scenario.

\subsection*{3.0 CONCLUSION}

No structural stability deficiencies were identified in this 5 -year periodic Structural Stability Assessment that would require corrective measures.

\subsection*{4.0 REFERENCES}

BBA. (2021a). 2020 Annual CCR Unit Inspection Report Coleto Creek Power, LLC Primary Ash Pond. Bullock, Bennett \& Associates, LLC.

BBA. (2021b). Coal Combustion Residuals CCR Primary Ash Pond Inflow Design Flood Control System Plan 5-Year Periodic Update. Bullock, Bennett \& Associates, LLC.

BBA. (2021c). Coal Combustion Residuals CCR Primary Ash Pond Hazard Potential Classification 5-Year Periodic Update. Bullock, Bennett \& Associates, LLC.

S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

\section*{FIGURES}

\title{
COAL COMBUSTION RESIDUALS PRIMARY ASH POND SAFETY FACTOR ASSESSMENT 5-Year Periodic Update
}

\author{
COLETO CREEK POWER PLANT \\ FANNIN, TEXAS
}

October 11, 2021

Bullock, Bennett \& Associates, LLC Engineering and Geoscience

Certification Statement 40 C.F.R § \(257.73(\mathrm{e})\) and 30 T.A.C. § 352.731 -
Structural Integrity Criteria for Existing CCR Surface Impoundments, Periodic
Safety Factor Assessment
CCR Unit: Coleto Creek Power, LLC; Coleto Creek Power Plant; Coleto Creek Primary Ash Pond

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this assessment report has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the Safety Factor Assessment, dated October 11, 2021, meets the requirements of 40 C.F.R. § 257.73 (e) and 30 T.A.C. § 352.731 .

Daniel B. Bullock, P.E. (TX 82596)

10-11-2021

\section*{TABLE OF CONTENTS}
LIST OF TABLES.. ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
1.0 INTRODUCTION 1
2.0 PERIODIC SAFETY FACTOR ASSESSMENT 2
2.1 Liquefaction Assessment 7
2.2 Periodic Safety Factor Assessment Summary 9
3.0 REFERENCES 10

\section*{LIST OF TABLES}

Table 2-1 Soil Strength Parameters used in Geotechnical Stability Analysis
Table 2-2 Required Factors of Safety
Table 2-3 Slope Stability Analysis Summary

\section*{LIST OF FIGURES}

Figure 1 Site Location Map
Figure 2 Primary Ash Pond Location Map
Figure 3 Ash Pond Plan and Cross Sections

\section*{LIST OF APPENDICES}

Appendix A Geotechnical Borelogs
Appendix B Geotechnical Laboratory Data
Appendix C Slide 7.0 Stability Analysis Models
Appendix D Liquefaction Assessment Calculations

\subsection*{1.0 INTRODUCTION}

Coleto Creek Power Plant is located at 45 FM 2987 just outside the city of Fannin in Goliad County, Texas. The power plant consists of one coal-fired boiler. Bottom ash and fly ash, or coal combustion residuals (CCR), generated in the boiler are either shipped off-site for beneficial reuse or managed in an on-site CCR surface impoundment (Coleto Creek Primary Ash Pond). Figures 1 and 2 provide site location maps showing the Primary Ash Pond configuration.

In April 2015, the Environmental Protection Agency (EPA) enacted rules codified in 40 C.F.R. Part 257, Subpart D to address potential risks associated with operating CCR surface impoundments at coal-fired power plants. The State of Texas subsequently codified 30 T.A.C. Chapter 352, which incorporated 40 C.F.R. Chapter 257 by reference, to address CCR management in surface impoundments and landfills. This report summarizes the results of the periodic Safety Factor Assessment (§ 257.73(e)(1)).

\subsection*{2.0 PERIODIC SAFETY FACTOR ASSESSMENTS}

Section 257.63(e) requires that owners of existing and newly constructed CCR surface impoundments conduct initial and periodic safety factor assessments. The purpose of the safety factor assessment is to document that the as-constructed CCR surface impoundment configuration either meets or exceeds regulatory safety factor criteria under long-term, maximum storage pool loading conditions, and maximum surcharge pool loading conditions. In addition, the liquefaction and seismic factor of safety must be estimated.

The rule requires that the safety factor evaluation be performed across the critical cross section of the impoundment dikes. For the purposes of this initial assessment, previous data collected as part of historical site assessments were evaluated to determine whether it represented the critical cross section of the pond dikes that would be most susceptible to failure. The critical cross sections for the Primary Ash Pond, as shown in Figure 3, are in the areas of the pond that still contain water and generally have the tallest sections of dikes with representative side slopes.

Geotechnical sampling and analysis of as-constructed dike materials has been conducted during three different events. The first was performed by Sargent \& Lundy (S\&L) during and after construction of the pond in 1978 (S\&L, December 1978). Subsequent studies were performed in 1981 by Underground Resource Management, Inc. (URM) (URM, July 29, 1981) and in 2012 by AECOM Technical Services, Inc. (AECOM, March 2012).

BBA reviewed the previous site geotechnical investigation data gathered by S\&L, URM, and AECOM used in previously conducted stability analyses of the dikes and the data appears sufficient to provide a reliable estimation of current conditions; therefore, no further geotechnical testing was required for the current analysis. Coleto Creek Power provided all previous investigation data to BBA for use in evaluation and preparation of an updated structural stability analysis. The most recent stability analysis, conducted by AECOM in 2012, summarizes previous evaluations by others. A brief summary of previous geotechnical investigations was provided in the Initial Safety Factor Assessment.

BBA reviewed the data available from the S\&L, URM, and the supplemental data gathered by AECOM including geotechnical data, cross sections, and methodology used by AECOM for modeling slope stability. The data and methods are suitable for evaluation of slope stability of
the critical cross section locations. The geotechnical investigation data from the AECOM study, including soil bore logs and geotechnical laboratory data is included in Appendices A and B, respectively, of this report.

BBA contracted T. Baker Smith (TBS) (formerly Naismith Marine Services) in August 2021 to complete an existing conditions topographic survey of Primary Ash Pond including the critical cross section areas. Using the 2021 existing conditions survey data and geotechnical data obtained from the previous studies (including similar lithology as indicated in the AECOM study for the critical cross sections), BBA graphically reconstructed the cross-section locations A and B for completion of further analysis. BBA compared the existing 2021 topographic survey cross sections at cross section locations A and B to the original design sections and topographic data collected in 2016. The 2021 and 2016 topographic data is very similar, but both sets of survey data differ from the original design cross section which could be due to as-build construction geometry vs. design geometry, erosion, or accumulation of ash material on the interior dike sideslope. For example, the interior dike sideslopes are consistent with design grades closer to the dike crest but appear to have a gentler slope toward the toe of slope. This difference may be ash accumulation along the slope, but since this area is below the water surface, it could not be verified and is unknown.

For modeling purposes, portions of the perimeter dike above the water line, on the crest, and the exterior dike sideslopes were modeled using the 2021 topographic data, but the interior slope was modeled using a combination of topographic data and design slopes. The 2021 topographic data was used for the portion of the interior dike sideslope closer to the crest (above the water line) and the design slope (generally \(4(\mathrm{H}): 1(\mathrm{~V})\)) was used for potions of the slope closer to the toe. Material identified from the survey results that may have accumulated on the interior dike slope was considered to be water with no structural strength or stabilizing forces.

Based on review of bore logs and geotechnical laboratory test data, the lithology and soil engineering strength properties used in previous stability analyses were conservative and representative of the field and laboratory data gathered.

Similar to the previous stability evaluations, BBA evaluated the dikes using two sets of time-dependent strength parameters, effective stress and total stress. Effective stress analysis was used to model drained, long-term, steady-state loading conditions where excess pore pressures
have had time to dissipate. This would be the normal steady state operating conditions (maximum storage pool) of the pond. Total stress analysis was used to model undrained, shortterm loading conditions such as maximum surcharge pool, rapid drawdown, and seismic events, where excess pore water pressure could develop in fine grained silts and clays and not have had time to dissipate. The rapid drawdown case is representative of the conditions that would occur immediately after a significant flood event, or if the Secondary Pond was rapidly drained.

The seismic conditions analyze the effect an earthquake would have on the stability of the dike. BBA selected a maximum probable earthquake for the Coleto Creek Power Plant based on the 2014 United States Geological Survey National Seismic Hazard Maps found at (http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf). The maximum probable earthquake has a peak ground acceleration of 0.03 g with a 2 percent Probability of Exceedance in 50 years.

Table 2-1 summarizes the effective and total stress soil strength parameters used for each soil layer in the analysis:

TABLE 2-1
Soil Strength Parameters used in Geotechnical Stability Analysis (color shading as shown in cross sections)
Cross Section A-A'
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Soil Description } & \multirow{2}{*}{\begin{tabular}{c}
Unit \\
Weight \\
(pcf)
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Effective Stress \\
Strength Parameters
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
Total Stress \\
Strength Parameters
\end{tabular}} \\
\cline { 3 - 6 } & c' \(^{\prime}\) psf) & \(\varnothing \prime\) & c (psf) & \(\varnothing\) \\
\hline \hline Clayey Sand Fill Material (SC) & 130 & 150 & 29 & 3,000 & 0 \\
\hline \begin{tabular}{c}
Natural Silty Clay or Clayey Sand \\
(CL, SC, CL-Caliche)
\end{tabular} & 130 & 150 & 27 & 4,000 & 0 \\
\hline Natural Sands (SM, SP, SC) & 130 & 0 & 36 & 0 & 36 \\
\hline
\end{tabular}

Cross Section B-B'
\begin{tabular}{|c|c|c|c|c|c|}
\hline \hline Soil Description & \multirow{2}{|c|}{\begin{tabular}{c}
Unit \\
Weight \\
(pcf)
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Effective Stress \\
Strength Parameters
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
Total Stress \\
Strength Parameters
\end{tabular}} \\
\cline { 3 - 6 } c' (psf) & \(\varnothing\) & c (psf) & \(\emptyset\) \\
\hline Clayey Sand Fill Material (SC) & 130 & 150 & 29 & 3,000 & 0 \\
\hline Caliche (SC) & 135 & 250 & 34 & 250 & 0 \\
\hline \begin{tabular}{c}
Medium Dense to Dense Sands \\
(SP)
\end{tabular} & 130 & 0 & 36 & 0 & 36 \\
\hline \begin{tabular}{c}
Dense to Extremely Dense Sands \\
(SP, SC, SM, SP-SM)
\end{tabular} & 133 & 0 & 38 & 0 & 38 \\
\hline \begin{tabular}{c}
Very Stiff to Hard Silty Clay \\
(CL, CL-ML, CH)
\end{tabular} & 128 & 0 & 29 & 3,250 & 0 \\
\hline
\end{tabular}

Based on field observations, the ash located within the Primary Ash Pond tends to set up, much like cement, into a hard, blocky mass of material. However, as was assumed in the previous evaluations, for conservative modeling purposes the interior material was considered to be water, with no structural strength that would add a stabilizing force.

Four model conditions were evaluated at each cross-section location, as deemed applicable, including: maximum storage pool (the highest normal operating level) and maximum surcharge pool (level reached during inundation from design storm) conditions, rapid drawdown, and the seismic condition. The normal operating water level, based on the Hydrologic and Hydraulic Capacity Requirements evaluation completed by BBA (BBA, January 2018) is 136.1 (NAVD88).

The water level projected in event of a design storm (the 100 year, 24-hour storm) is 138.0 (NAVD88). The lowest top of dike elevation observed in the 2021 survey was 139.7 (NAVD88).

Cross section A, located in the observed historical seep location near the southeast corner of the Primary Ash Pond, was assumed to have a water table elevation at the ground surface along the exterior toe of slope, as observed in the field and as documented in previous inspections and reports. Cross section B, located along the separator dike between the Primary Ash Pond and Secondary Pond, was modeled with the maximum storage and maximum surcharge pool elevations. Cross section B was also evaluated for the rapid draw down (RDD) condition. Based on historical field observations of wet soil, it is assumed the phreatic surface at cross section A exits the exterior dike surface at the toe of the dike. The phreatic surface for cross section B is at the same elevation as the assumed pond water levels.

Dikes should be designed with appropriate safety factors. Required safety factors per § 257.73(e)(1)(i) through (e)(1)(iv) for critical embankment sections are as follows:

Table 2-2
Required Factors of Safety
\begin{tabular}{|c|c||}
\hline Condition & \begin{tabular}{c}
Required Factor \\
of Safety
\end{tabular} \\
\hline Long-Term, Maximum Storage Pool Loading Static Factor of Safety & 1.50 \\
\hline Maximum Surcharge Pool Loading Static Factor of Safety & 1.40 \\
\hline Seismic Factor of Safety & 1.00 \\
\hline Liquefaction Factor of Safety & 1.20 \\
\hline
\end{tabular}

BBA used the 2D limit equilibrium computer program SLIDE2 9.018 by Rocscience to complete the slope stability analysis for the critical cross sections. The Morgenstern-Price method of slices, for both circular and non-circular type failures, was used to analyze the stability of the slopes. Eighteen stability cases were evaluated for the critical cross sections as summarized in Table 2-3. Both upstream and downstream slopes were evaluated, and the lowest factor of safety generated for each case is reported.

Table 2-3
Slope Stability Analysis Summary
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cross Section} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|l|}{Effective Stress Analysis Safety Factor} & \multicolumn{2}{|l|}{Total Stress Analysis Safety Factor} \\
\hline & & Noncircular & Circular & Noncircular & Circular \\
\hline A-A \({ }^{\text {, }}\) & Max Storage Pool/Static & 1.9 (1) & 1.9 (2) & 4.8 (3) & 6.0 (4) \\
\hline A-A & Max Surcharge Pool/Static & 1.9 (5) & 1.9 (6) & 5.1 (7) & 6.0 (8) \\
\hline A-A \({ }^{\text {, }}\) & Max Storage Pool/Seismic & NA & NA & 4.8 (9) & 5.2 (10) \\
\hline B-B' & Max Storage Pool /Static & 2.6 (11) & 2.7 (12) & 4.0 (13) & 5.1 (14) \\
\hline B-B' & Max Surcharge Pool, Rapid Drawdown & NA & NA & 2.7 (15) & 3.1 (16) \\
\hline B-B' & Max Storage Pool/Seismic & NA & NA & 1.8 (17) & 4.4 (18) \\
\hline
\end{tabular}

Note: \((\#)=\) Case Number (referenced on model output data in Appendix C).
Cross sections, bore logs, laboratory data, and SLIDE2 9.018 stability model output data are included in Figure 3 and Appendices A, B, and C, respectively of this report.

As shown in Table 2-3, eighteen stability cases were modeled, and all cases meet or exceed required factors of safety.

\subsection*{2.1 Liquefaction Assessment}

BBA utilized the liquefaction assessment process outlined in the U.S. EPA guidance document titled RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities, EPA/600/R-95/051, April 1995, published by the Office of Research and Development and other relevant source documents to perform this liquefaction factor of safety evaluation. As identified in those documents, the liquefaction assessment process begins by screening the subject site for its liquefaction potential using the following criteria.
- Geologic age and origin. If a soil layer is a fluvial, lacustrine or aeolian deposit of Holocene age, a greater potential for liquefaction exists than for till, residual deposits, or older deposits.
- Fines content and plasticity index. Liquefaction potential in a soil layer increases with decreasing fines content and plasticity of the soil. Cohesionless soils having less than 15 percent (by weight) of particles smaller than 0.005 mm , a liquid limit less than 35
percent, and an in-situ water content greater than 0.9 times the liquid limit may be susceptible to liquefaction.
- Saturation. Although low water content soils have been reported to liquefy, at least 80 to 85 percent saturation is generally deemed to be a necessary condition for soil liquefaction.
- Depth below ground surface. If a soil layer is within 50 feet of the ground surface, it is more likely to liquefy than deeper layers.
- Soil Penetration Resistance. Soil layers with a normalized SPT blowcount \(\left[\left(\mathrm{N}_{1}\right)_{60}\right]\) less than 22 have been known to liquefy. Other sources suggest an SPT value of \(\left[\left(\mathrm{N}_{1}\right)_{60}\right]\) less than 30 as the threshold to use for suspecting liquefaction potential.

If three or more of the above criteria indicate that liquefaction is not likely, the potential for liquefaction is considered to be negligible. Otherwise, further evaluation of the liquefaction potential at a facility is required. The soils at the Coleto Creek Power facility generally meet at least three of the specified screening criteria and their liquefaction potential is unlikely.

However, there are exceptions such as certain layers that are described in the soil borings logs as SP, or sandy soils, which would by definition have a low fines content. In addition, some liquid limits are below 35 percent. Therefore, further evaluation of the soil data has been completed, and factors of safety against liquefaction calculated for each critical layer, as further described below.

A review of existing data regarding site conditions, soil stratigraphy, soil properties, and potential critical layers as well as the methods used to develop that data indicate that the findings presented in the AECOM report (AECOM, 2012) are sufficient for use in this assessment. As noted in previous sections of this report, AECOM drilled eight borings through critical areas of the site to depths ranging from approximately 30 to 120 feet bgs. Standard penetrometer (SPT) blows per foot, plastic limit, water content, and liquid limit data were collected at two to five foot intervals. In addition, samples were collected and sent to an off-site laboratory for analyses of general geotechnical properties. Copies of the boring logs and laboratory data used in this assessment are provided in Appendices A and B.

When available, site-specific information such as SPT blow count and percent fines content (soils passing the \#200 sieve) was used in the evaluation of liquefaction potential. For strata with no site-specific data, conservative estimates were used based on industry accepted references and engineering judgement. For example, earthquake potential maps and tables presented in the

USEPA guidance document were used to estimate the worst-case earthquake magnitude and associated maximum ground acceleration. USGS references for low to mid-ranges of fines content for the reported soil types were used when no laboratory data existed.

A complete discussion of the methodology used and the calculation spreadsheets for each stratum identified in the eight boring logs are presented in Appendix D. The findings of the liquefaction assessment indicate that the factor of safety is well above the 1.2 required. This finding is expected given the generally high fines content of most soil strata, the low water content, and low ground acceleration that would be observed in the unlikely event that an earthquake was to occur in this area.

\subsection*{2.2 Periodic Safety Factor Assessment Summary}

In accordance with 30 T.A.C § 352.731 and, by reference, 40 C.F.R. § 257.73, Structural Integrity Criteria for Existing CCR Surface Impoundments, the critical cross sections of the Primary Ash Pond at the Coleto Creek facility have been evaluated for slope stability under appropriate loading conditions, including steady-state seepage, maximum surcharge pool, rapid drawdown, and seismic. In addition, a liquefaction assessment has been completed. Based on review of historic studies, geotechnical data that has been previously gathered, and on the updated stability analysis evaluation, the Primary Ash Pond has an adequate factor of safety for all evaluated loading conditions.

\subsection*{3.0 REFERENCES}

AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds. Green Bay, Wisconsin: AECOM Technical Services, Inc.

BBA. (January 2018). Coal Combustion Residuals Surface Impoundment History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment (Rev. 1) (Original Submittal Date September 2016). Bullock, Bennett \& Associates.

CDM. (March 2011). Assessment of Dam Safety of Coal Combustion Surface Impoundments Coleto LP, LLC Coleto Creek Power, LP.

S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

URM. (1982). Evaluation and Recommendations Regarding Subsurface Drainage System at Coleto Creek Power Station for Central Power \& Light Company. Underground Resource Management, Inc.

URM. (July 29, 1981). Investigation of Seepage from Primary and Secondary Settling Ponds at the Coleto Creek Power Station. Underground Resource Managment, Inc.

FIGURES

\section*{APPENDIX A}

\section*{Geotechnical Borelogs}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 6 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date Signed } \\
& 11 / 6 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} \\
\hline City, State, Zip Code Green Bay, Wisconsin & & & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 4 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date Signed } \\
& 11 / 4 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
City, State, Zip Code \\
Green Bay, Wisconsin 54311
\end{tabular}} \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 2 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date Signed } \\
& 11 / 2 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} & \\
\hline City, State, Zip Code Green Bay, Wisconsin & & & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 8 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { Date Signed } \\
& 11 / 8 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} & \\
\hline City, State, Zip Code Green Bay, Wisconsin & & & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 2 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date Signed } \\
& 11 / 2 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} & \\
\hline City, State, Zip Code Green Bay, Wisconsin & & & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|}
\hline (7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc. & \begin{tabular}{l|l}
Work & \begin{tabular}{l}
Date of Abandonment \\
\(11 / 7 / 11\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline Signature of Person Doing Work & \[
\begin{aligned}
& \hline \text { Date Signed } \\
& 11 / 7 / 11
\end{aligned}
\] \\
\hline Street or Route
1035 Kepler Drive & \[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978 \\
& \hline
\end{aligned}
\] \\
\hline City, State, Zip Code
Green Bay, Wisconsin 54311 & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc.} & & Date of Abandonment
\[
11 / 2 / 11
\] \\
\hline \multicolumn{2}{|l|}{Signature of Person Doing Work} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date Signed } \\
& 11 / 2 / 11
\end{aligned}
\]} \\
\hline Street or Route 1035 Kepler Drive & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978
\end{aligned}
\]} & \\
\hline City, State, Zip Code Green Bay, Wisconsin & & & \\
\hline
\end{tabular}

(6) Comments
\begin{tabular}{|c|c|}
\hline (7) Name of Person or Firm Doing Sealing Work AECOM Technical Services, Inc. & \begin{tabular}{l|l}
Work & \begin{tabular}{l}
Date of Abandonment \\
\(11 / 7 / 11\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline Signature of Person Doing Work & \[
\begin{aligned}
& \hline \text { Date Signed } \\
& 11 / 7 / 11
\end{aligned}
\] \\
\hline Street or Route
1035 Kepler Drive & \[
\begin{aligned}
& \text { Telephone Number } \\
& 920-468-1978 \\
& \hline
\end{aligned}
\] \\
\hline City, State, Zip Code
Green Bay, Wisconsin 54311 & \\
\hline
\end{tabular}

\section*{AECOM General Notes}

Drilling and Sampling Symbols:
\begin{tabular}{|l|l|}
\hline SS : Split Spoon-1-3/8" I.D. 2" O.D. (Unless otherwise noted) & HS : Hollow Stem Auger \\
\hline ST : Shelby Tube-2" O.D. (Unless otherwise noted) & WS : Wash Sample \\
\hline PA : Power Auger & FT : Fish Tail \\
\hline DB : Diamond Bit-NX, BX, AX & RB : Rock Bit \\
\hline AS : Auger Sample & BS : Bulk Sample \\
\hline JS : Jar Sample & PM : Pressuremeter Test \\
\hline VS : Vane Shear & GS : Giddings Sampler \\
\hline OS : Osterberg Sampler & \\
\hline
\end{tabular}

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

\section*{Water Level Measurement Symbols:}
\begin{tabular}{|l|l|}
\hline WL : Water Level & WCI : Wet Cave In \\
\hline WS : While Sampling & DCI : Dry Cave In \\
\hline WD : While Drilling & BCR: Before Casing Removal \\
\hline AB : After Boring & ACR : After Casing Removal \\
\hline
\end{tabular}

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

\section*{Gradation Description and Terminology:}

Coarse grained or granular soils have more than \(50 \%\) of their dry weight retained on a \#200 sieve; they are described as boulders, cobbles, gravel or sand. Fine grained soils have less than \(50 \%\) of their dry weight retained on a \#200 sieve; they are described as clay or clayey silt if they are cohesive and silt if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Major Component of \\
Sample
\end{tabular} & Size Range & \begin{tabular}{c}
Description of Other \\
Components Present in \\
Sample \\
Trace
\end{tabular} & Percent Dry Weight \\
\hline Boulders & Over 8 in. (200 mm) & Little & \(1-9\) \\
\hline Cobbles & \begin{tabular}{c}
8 inches to 3 inches \\
\((200 \mathrm{~mm}\) to 75 mm\()\)
\end{tabular} & Some & \(10-19\) \\
\hline Gravel & \begin{tabular}{c}
3 inches to \#4 sieve \\
\((75 \mathrm{~mm}\) to 4.76 mm\()\)
\end{tabular} & And & \(20-34\) \\
\hline Sand & \begin{tabular}{c}
\(\# 4\) to \(\# 200\) sieve \\
\((4.76 \mathrm{~mm}\) to 0.074 mm\()\)
\end{tabular} & \begin{tabular}{c}
Passing \#200 sieve \\
\((0.074 \mathrm{~mm}\) to 0.005 mm\()\)
\end{tabular} & \\
\hline Silt & Smaller than 0.005 mm & & \\
\hline Clay & & \\
\hline
\end{tabular}

Consistency of Cohesive Soils:
Relative Density of Granular Soils:
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Unconfined Compressive \\
Strength, Qu, tsf
\end{tabular} & Consistency & N-Blows per foot & Relative Density \\
\hline\(<0.25\) & Very Soft & \(0-3\) & Very Loose \\
\hline \(0.25-0.49\) & Soft & \(4-9\) & Loose \\
\hline \(0.50-0.99\) & Medium (firm) & \(10-29\) & Medium Dense \\
\hline \(1.00-1.99\) & Stiff & \(30-49\) & Dense \\
\hline \(2.00-3.99\) & Very Stiff & \(50-80\) & Very Dense \\
\hline \(4.00-8.00\) & Hard & \(>80\) & Extremely Dense \\
\hline\(>8.00\) & Very Hard & & \\
\hline \multicolumn{5}{|l|}{} \\
\hline
\end{tabular}

\section*{AECOM Field and Laboratory Procedures}

Field Sampling Procedures

\section*{Auger Sampling (AS)}

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

\section*{Split-Barrel Sampling (SS) - (ASTM Standard D-1586-99)}

In the split-barrel sampling procedure, a 2-inch O.D. split barrel sampler is driven into the soil a distance of 18 inches by means of a 140 -pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

\section*{Shelby Tube Sampling Procedure (ST) - ASTM Standard D-1587-94}

In the Shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are identified, sealed and carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

\section*{Giddings Sampler (GS)}

This type of sampling device consists of 5 -foot sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5 -foot maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5 -foot interval.

\section*{AECOM Field and Laboratory Procedures}

Subsurface Exploration Procedures

\section*{Hand-Auger Drilling (HA)}

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer or a drop hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the borehole in preparation for obtaining the next sample.

\section*{Power Auger Drilling (PA)}

In this type of drilling procedure, continuous flight augers are used to advance the boreholes. They are turned and hydraulically advanced by a truck, trailer or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open boreholes.

\section*{Hollow Stem Auger Drilling (HS)}

In this drilling procedure, continuous flight augers having open stems are used to advance the boreholes. The open stem allows the sampling tool to be used without removing the augers from the borehole. Hollow stem augers thus provide support to the sides of the borehole during the sampling operations.

\section*{Rotary Drilling (RB)}

In employing rotary drilling methods, various cutting bits are used to advance the boreholes. In this process, surface casing and/or drilling fluids are used to maintain open boreholes.

\section*{Diamond Core Drilling (DB)}

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (or triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

\section*{AECOM Laboratory Procedures}

\section*{Water Content (Wc)}

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

\section*{Hand Penetrometer (Qp)}

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf) or 7.0 tsf depending on the testing device utilized, by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

\section*{Unconfined Compression Tests (Qu)}

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until \(20 \%\) strain has been reached, whichever occurs first.

\section*{Dry Density (yd)}

The dry density is a measure of the amount of solids in a unit volume of soil. Use of this value is often made when measuring the degree of compaction of a soil.

\section*{Classification of Samples}

In conjunction with the sample testing program, all soil samples are examined in our laboratory and visually classified on the basis of their texture and plasticity in accordance with the AECOM Soil Classification System which is described on a separate sheet. The soil descriptions on the boring logs are derived from this system as well as the component gradation terminology, consistency of cohesive soils and relative density of granular soils as described on a separate sheet entitled "AECOM General Notes". The estimated group symbols included in parentheses following the soil descriptions on the boring logs are in general conformance with the Unified Soil Classification System (USCS) which serves as the basis of the AECOM Soil Classification System.

\section*{AECOM Standard Boring Log Procedures}

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by experienced geotechnical engineers, and as such, differences between the field logs and the final logs may exist. The engineer preparing the report reviews the field logs, laboratory test data and classifications, and using judgment and experience in interpreting this data, may make further changes. It is common practice in the geotechnical engineering profession not to include field logs and laboratory data sheets in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then discarded unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, observers of these samples should recognize this factor.

AECOM Soil Classification System

1. See AECOM General Notes for component gradation terminology, consistency of cohesive soils and relative density of granular soils.
2. Reference: Unified Soil Classification Systems
3. Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC, well-graded gravel-sand mixture with clay binder.

\section*{APPENDIX B}

\section*{Geotechnical Laboratory Data}

\section*{Particle Size Distribution Report}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SIEVE \\
SIZE
\end{tabular} & \begin{tabular}{l}
PERCENT \\
FINER
\end{tabular} & \begin{tabular}{l}
SPEC. * \\
PERCENT
\end{tabular} & PASS?
\[
(\mathrm{X}=\mathrm{NO})
\] \\
\hline \[
\begin{gathered}
\# 10 \\
\# 40 \\
\# 100 \\
\# 200
\end{gathered}
\] & \[
\begin{array}{r}
100.0 \\
89.0 \\
55.5 \\
39.5
\end{array}
\] & & \\
\hline
\end{tabular}

Material Description
CLAYEY FINE TO MEDIUM SAND, BROWNISH GRAY

Atterberg Limits

\section*{LL= 38 \\ \(\mathrm{Pl}=24\)}

Coefficients
\(\mathrm{D}_{85}=0.3732\)
\(\mathrm{D}_{30}=0.0564\)
\(\mathrm{C}_{\mathrm{u}}=\)
Classification
AASHTO \(=\mathrm{A}-6(4)\)
Remarks

Source of Sample: B-1-1
Sample Number: B-1-1 S-11
Depth: \(20^{\prime}-22^{\prime}\)
Date: 12/9/11
Client: IPR-GDF SUEZ
Project: COLETO CREEK
\begin{tabular}{|c|c|c|c|}
\hline SIEVE SIZE & PERCENT FINER & \begin{tabular}{l}
SPEC. * \\
PERCENT
\end{tabular} & PASS?
\[
(X=N O)
\] \\
\hline \[
\begin{gathered}
\# 10 \\
\# 40 \\
\# 100 \\
\# 200
\end{gathered}
\] & \[
\begin{array}{r}
100.0 \\
99.6 \\
94.1 \\
77.9
\end{array}
\] & & \\
\hline
\end{tabular}

\section*{Material Description}
SILTY CLAY, SOME SAND, LIGHT GRAY
Atterberg Limits
(no specification provided)
Date: 12/15/11
Particle Size Distribution Report

(no specification provided)

\section*{Material Description}

SILTY CLAY, TRACE SAND, BROWN

\section*{Atterberg Limits}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{PL}=28\) & \(\mathrm{LL}=79\) & \(\mathrm{PI}=51\) \\
\hline & Coefficients & \\
\hline \(\mathrm{D}_{90}=0.0724\) & \(\mathrm{D}_{85}=0.0576\) & \(\mathrm{D}_{60}=0.0030\) \\
\hline \(\mathrm{D}_{50}=0.0020\) & \(\mathrm{D}_{30}=\) & \(\mathrm{D}_{15}=\) \\
\hline \(\mathrm{D}_{10}=\) & \(\mathrm{C}_{\mathrm{u}}=\) & \(\mathrm{C}_{\mathrm{C}}=\) \\
\hline & Classification & \\
\hline USCS \(=\mathrm{CH}\) & AASHTO= & A-7-6(53) \\
\hline & Remarks & \\
\hline
\end{tabular}

Depth: \(120^{\prime}-121^{\prime}\)

Client: IPR-GDF SUEZ
A=COM
Project: COLETO CREEK

Client: IPR-GDF SUEZ
Particle Size Distribution Report

\begin{tabular}{|c|c|c|c|}
\hline SIEVE
SIZE & \begin{tabular}{l}
PERCENT \\
FINER
\end{tabular} & \begin{tabular}{l}
SPEC. \({ }^{*}\) \\
PERCENT
\end{tabular} & PASS?
\[
(\mathrm{X}=\mathrm{NO})
\] \\
\hline \#4 & 100.0 & & \\
\hline \#10 & 100.0 & & \\
\hline \#40 & 88.9 & & \\
\hline \#100 & 57.7 & & \\
\hline \#200 & 42.3 & & \\
\hline & & & \\
\hline
\end{tabular}
(no specification provided)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Material Description} \\
\hline \multicolumn{3}{|l|}{CLAYEY FINE TO MEDIUM SAND, GRAYISH BROWN} \\
\hline \(P L=13\) & Atterberg Limits
\[
\mathrm{LL}=41
\] & \(\mathrm{PI}=28\) \\
\hline \[
\begin{aligned}
& \mathrm{D}_{90}=0.4679 \\
& \mathrm{D}_{50}=0.0893 \\
& \mathrm{D}_{10}=
\end{aligned}
\] & Coefficients
\[
\begin{aligned}
& \mathrm{D}_{85}=0.3722 \\
& \mathrm{D}_{30}=0.0293 \\
& \mathrm{C}_{\mathrm{U}}=
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{D}_{60}=0.1697 \\
& \mathrm{D}_{15}= \\
& \mathrm{C}_{\mathrm{C}}=
\end{aligned}
\] \\
\hline USCS \(=\) SC & \begin{tabular}{l}
Classification AASHTO= \\
Remarks
\end{tabular} & \[
A-7-6(6)
\] \\
\hline
\end{tabular}

LL

\section*{Coefficients}
\(\mathrm{D}_{85}=0.3722\)
\(\mathrm{D}_{30}=0.0293\)
\(\mathrm{D}_{60}=0.1697\)
\(\mathrm{D}_{15}=\)
\(\mathrm{C}_{\mathrm{C}}=\)

\section*{Classification}
\(\mathrm{AASHTO}=\mathrm{A}-7-6(6)\)
Remarks

Client: IPR-GDF SUEZ
AECOM

Tested By: BCM \(\qquad\) Checked By: WPQ

\section*{Particle Size Distribution Report}

(no specification provided)

\section*{Particle Size Distribution Report}

(no specification provided)
Source of Sample: B-2-1 Sample Number: B-2-1 S-33

Client: IPR-GDF SUEZ
Project: COLETO CREEK

\section*{Particle Size Distribution Report}

(no specification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-9

Depth: 16.0'-17.8'

\section*{Material Description}

CLAYEY FINE TO MEDIUM SAND, GRAY

\section*{Atterberg Limits}
\(\mathrm{PL}=15\)
\(\mathrm{D}_{90}=0.5011\)
\(\mathrm{D}_{50}=0.1152\)
\(\mathrm{D}_{10}=\)

USCS= SC
LL= 44
\(\mathrm{PI}=29\)

\section*{Coefficients}
\(\mathrm{D}_{85}=0.4085\)
\(\mathrm{D}_{60}=0.1882\)
\(\mathrm{D}_{\mathrm{C}}^{\mathrm{C}}=0=0.0416\)
Classification
AASHTO \(=\) A-7-6(6)
Remarks

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK
Particle Size Distribution Report

\begin{tabular}{|c|c|c|c|}
\hline SIEVE
SIZE & PERCENT FINER & \begin{tabular}{l}
SPEC.* \\
PERCENT
\end{tabular} & PASS?
\[
(X=N O)
\] \\
\hline \[
\begin{gathered}
\# 4 \\
\# 10 \\
\# 40 \\
\# 100 \\
\# 200
\end{gathered}
\] & \[
\begin{array}{r}
100.0 \\
99.6 \\
79.5 \\
46.5 \\
34.8
\end{array}
\] & & \\
\hline
\end{tabular}
(no specification provided)
Source of Sample: B-3-1
Sample Number: B-3-1 S-10
Depth: \(18^{\prime}-20^{\prime}\)

\section*{Material Description}
CLAYEY FINE TO MEDIUM SAND, DARK BROWN
\(P L=13\)
\(\mathrm{D}_{90}=0.6299\)
\(\mathrm{D}_{50}=0.1856\)
\(\mathrm{D}_{10}=\)
USCS \(=\mathrm{SC}\)

\section*{Atterberg Limits}

LL= 35
\(\mathrm{PI}=22\)
Coefficients
\(\mathrm{D}_{85}=0.5094\)
\(\mathrm{D}_{30}=0.0701\)
\(\mathrm{C}_{\mathrm{u}}=\)
\(\mathrm{D}_{60}=0.2547\)
\(\mathrm{D}_{15}=\)
\(\mathrm{C}_{\mathrm{C}}=\)
Classification
AASHTO \(=\) A-2-6(2)
Remarks
Date: 12/9/11

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

Tested By: BCM \(\qquad\) Checked By: WPQ

(no specification provided)
Source of Sample: Boring 4-1
Depth: 24.0-26.0
Sample Number: S-13

Clayey F-M Sand Little Silt - Brownish Gray

Atterberg Limits

\(\mathrm{D}_{85}=0.4206\)

Classification
AASHTO \(=\mathrm{A}-6(7)\)
Remarks

Client: IPR-GDP Suez
Project: Coleto Creek Facility

Project No: 60225561
Particle Size Distribution Report

(no specification provided)

\section*{Material Description}
SILTY CLAY, LITTLE FINE TO MEDIUM SAND, WHITE AND GRAY
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{PL}=18\) & Atterberg Limits
\(\mathrm{LL}=30\) & \(\mathrm{PI}=12\) \\
\hline & Coefficients & \\
\hline \(\mathrm{D}_{90}=0.1803\) & \(\mathrm{D}_{85}=0.0826\) & \(\mathrm{D}_{60}=0.0138\) \\
\hline \(\mathrm{D}_{50}=0.0108\) & \(\mathrm{D}_{30}=0.0064\) & \(\mathrm{D}_{15}=\) \\
\hline \(\mathrm{D}_{10}=\) & \(\mathrm{C}_{\mathrm{u}}=\) & \(\mathrm{C}_{\mathrm{C}}=\) \\
\hline USCS= CL & Classification AASHTO= & A-6(9) \\
\hline & Remarks & \\
\hline
\end{tabular}
\(\mathrm{D}_{90}=0.1803\)
\(\mathrm{D}_{50}=0.0108\)
\(\mathrm{D}_{10}=\)

USCS= CL
Classification
AASHTO \(=\mathrm{A}-6(9)\)
Remarks

LIQUID AND PLASTIC LIMITS TEST REPORT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
(\%)
\end{tabular} \\
\hline & B-1-1 & B-1-1 S-5 & \(8^{\prime}-10^{\prime}\) & & 14 & 22 & 8 & USCS \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Client: IPR-GDF SUEZ
AㅡCOM
Project: COLETO CREEK

LIQUID AND PLASTIC LIMITS TEST REPORT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SOIL DATA} \\
\hline SYMBOL & SOURCE & SAMPLE NO. & DEPTH & NATURAL WATER CONTENT (\%) & PLASTIC LIMIT (\%) & LIQUID LIMIT (\%) & PLASTICITY
INDEX
(\%) & uscs \\
\hline - & B-1-1 & B-1-1 S-11 & 20'-22' & & 14 & 38 & 24 & SC \\
\hline
\end{tabular}

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

Client: IPR-GDF SUEZ

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SOIL DATA} \\
\hline SYMBOL & SOURCE & SAMPLE NO. & DEPTH & NATURAL WATER CONTENT (\%) & PLASTIC LIMIT (\%) & LIQUID LIMIT (\%) & \begin{tabular}{l}
PLASTICITY \\
INDEX \\
\((\%)\) \\
\hline
\end{tabular} & USCS \\
\hline - & B-1-1 & B-1-1 S-40 & 120'-121' & & 28 & 79 & 51 & CH \\
\hline
\end{tabular}

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} \\
\hline- & B-2-1 & B-2-1 S-6 & \(10^{\prime}-12\) & & & USCS \\
\hline & & & & & 14 & 38 & 24 & SC \\
\hline
\end{tabular}

LIQUID AND PLASTIC LIMITS TEST REPORT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} \\
\hline & B-2-1 & B-2-1 S-10 & \(18^{\prime}-20^{\prime}\) & & 13 & 41 & 28 & USCS \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
SIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} \\
\hline & B-2-1 & B-2-1 S-17 & \(32^{\prime}-34\) & & & USCS \\
\hline & & & & & 14 & 29 & 15 & SC \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
(\%)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} \\
\hline\(\bullet\) & B-2-1 & B-2-1 S-33 & \(85.0^{\prime}-86.5^{\prime}\) & & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} & USCS \\
\hline & & & & & 25 & 59 & 34 & CH \\
& & & & & & & & \\
\hline
\end{tabular}

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{} & SOML DATA \\
\hline SYMBOL & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} & USCS \\
\hline & B-2-2 & B-2-2 S-16 & \(59.0^{\prime}-60.5^{\prime}\) & & 18 & 41 & 23 & CL \\
& & & & & & & & \\
\hline
\end{tabular}

Client: IPR-GDF SUEZ
AECOM
Project: COLETO CREEK

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
\((\%)\)
\end{tabular} \\
\hline & B-2-2 & B-2-2 S-18 & \(69.0^{\prime}-70.5^{\prime}\) & & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
\((\%)\)
\end{tabular} & USCS \\
\hline & & & & & 26 & 63 & 37 & CH \\
\hline & & & & & & & \\
\hline
\end{tabular}

Client: IPR-GDF SUEZ
Project: COLETO CREEK

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOIL DATA \\
\hline SYMBOL & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATVRAL \\
WATER \\
CONTENT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
LMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDE \\
(\%)
\end{tabular} & USCS \\
\hline & B-3-1 & B-3-1 S-9 & \(16.0^{\prime}-17.8^{\prime}\) & & 15 & 44 & 29 & SC \\
& & & & & & & & \\
\hline
\end{tabular}
LIQUID AND PLASTIC LIMITS TEST REPORT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & SOURCE & \begin{tabular}{c}
SAMPLE \\
NO.
\end{tabular} & DEPTH & \begin{tabular}{c}
NATURAL \\
WATER \\
CONTENT \\
(\%)
\end{tabular} & \begin{tabular}{c}
PLASTIC \\
SIMIT \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
LIQUID \\
LIMIT \\
(\%)
\end{tabular} & \begin{tabular}{c}
PLASTICITY \\
INDEX \\
(\%)
\end{tabular} \\
\hline- & B-3-1 & B-3-1 S-10 & \(188^{\prime}-20^{\prime}\) & & 13 & 35 & 22 & USCS \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Client: IPR-GDF SUEZ
A=COM
Project: COLETO CREEK

\section*{LIQUID AND PLASTIC LIMITS TEST ASTM D4318}

\section*{LIQUID AND PLASTIC LIMITS TEST REPORT}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SOIL DATA} \\
\hline SYMBOL & SOURCE & SAMPLE NO. & DEPTH & \begin{tabular}{l}
NATURAL WATER CONTENT \\
(\%)
\end{tabular} & PLASTIC LIMIT (\%) & LIQUID LIMIT (\%) & PLASTICITY
INDEX
(\%) & USCS \\
\hline - & B-5-1 & B-5-1 S-14 & 26'-27' & & 18 & 30 & 12 & CL \\
\hline
\end{tabular}

AECOM

AECOM Project No.: 60225561

\begin{tabular}{|c|c|c|}
\hline Boring/Source: & 4-1 & \\
\hline Sample No.: & 13 & \\
\hline Depth (ft.): & 24.0-26. & \\
\hline Description: & Clayey F-M & le Silt \\
\hline & - Brownish G & \\
\hline & & Test 3 \\
\hline Flask No. & & SG-1 \\
\hline Wt. Flask + Soil + & Water (W2) & 726.62 \\
\hline Wt. Flask + Wa & er (W3) & 675.32 \\
\hline Temperature (C & & 21.5 \\
\hline Density of Wate & @ test Tem. & 0.99789 \\
\hline Tare No. & & ED-6 \\
\hline Wt. Tare & & 602.23 \\
\hline Wt. Tare + Soil & & 684.30 \\
\hline Wt. Soil (W2-W & & 82.07 \\
\hline (k) Temp. Corre & ction & 0.99680 \\
\hline Specific Gravity & (Gs) & 2.659 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\begin{tabular}{l}
Boring/Source: \\
Sample No.: \\
Depth (ft.): \\
Description:
\end{tabular} & \(\frac{2-1}{14}\) \\
& \(\frac{\text { Clayey F-M Sand Little Silt }}{}\) \\
&
\end{tabular}
\begin{tabular}{|l|c|}
\hline & Test 4 \\
\hline Flask No. & SG-2 \\
\hline Wt. Flask + Soil + Water (W2) & 738.44 \\
\hline Wt. Flask + Water (W3) & 668.48 \\
\hline Temperature (C) & 21.5 \\
\hline Density of Water @ test Tem. & 0.99789 \\
\hline Tare No. & ED-10 \\
\hline Wt. Tare & 619.18 \\
\hline Wt. Tare + Soil & 730.96 \\
\hline Wt. Soil (W2-W3) & 111.78 \\
\hline (k) Temp. Correction & 0.99968 \\
\hline Specific Gravity (Gs) & \(\mathbf{2 . 6 7 2}\) \\
\hline
\end{tabular}
\begin{tabular}{rc}
Technician & BCM \\
Date \\
\hline \(12 / 2 / \mathbf{1 1}\)
\end{tabular}

Calculated \(\qquad\)
Checked \(\qquad\)

ORGANIC CONTENT TEST
ASTM D-2974
Method C
\begin{tabular}{ll}
AECOM Project No.: & 60225561 \\
Project Name: & Coleto Creek Facility - IPR-GDP Suez \\
Date Tested: & \(12 / 6 / 2011\)
\end{tabular}

\section*{Sample Information}

Boring / Source:
Sample No.:
Depth (ft.):

B-4-1
13
24.0-26.0

\section*{Organic Content Test Data}

Tare No.:
Tare Wt. (gm): T
Wet Wt. + Tare (gm): A+T
Dry Wt. + Tare (gm): B+T
Moisture Content (\%):

Wt. of Ash + Tare (gm): D+T 44.65
Percent Ash: \((\mathrm{D}-\mathrm{T} / \mathrm{B}-\mathrm{T}) \times 100=\mathrm{E}\)
Organic Content (\%):

N
17.71
48.27
44.70
13.23 99.81
0.19

\footnotetext{
** Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.
}

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: \(B-2-1 S-14\)
Sample Type: 3" ST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Symbol} & (1) & \(\triangle\) & \(\square\) & \\
\hline \multicolumn{2}{|l|}{Test No.} & 10.4 PSI & 17.4 PSI & 24.3 PSI & \\
\hline \multirow{6}{*}{\[
\frac{\overline{0}}{\underline{\underline{I}}}
\]} & Diameter, in & 2.8362 & 2.8441 & 2.8457 & \\
\hline & Height, in & 5.9134 & 6.0831 & 6.0173 & \\
\hline & Water Content, \% & 21.81 & 14.93 & 13.70 & \\
\hline & Dry Density, pcf & 105.5 & 115.9 & 120.2 & \\
\hline & Saturation, \% & 100.17 & 90.88 & 94.34 & \\
\hline & Void Ratio & 0.58172 & 0.4389 & 0.38805 & \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\frac{1}{0} \\
\frac{1}{\alpha} \\
\frac{1}{\omega} \\
0 \\
\frac{1}{O} \\
0 \\
0
\end{gathered}
\]} & Water Content, \% & 21.39 & 15.80 & 14.06 & \\
\hline & Dry Density, pcf & 106.1 & 117.3 & 121.3 & \\
\hline & Saturation, \% & 100.00 & 100.00 & 100.00 & \\
\hline & Void Ratio & 0.57165 & 0.42209 & 0.37567 & \\
\hline & Back Press., tsf & 5.0449 & 5.0454 & 5.0404 & \\
\hline \multicolumn{2}{|l|}{Minor Prin. Stress, tsf} & 0.74395 & 1.2474 & 1.7924 & \\
\hline \multicolumn{2}{|l|}{Max. Dev. Stress, tsf} & 1.7444 & 3.0288 & 4.2889 & \\
\hline \multicolumn{2}{|l|}{Time to Failure, min} & 1612.1 & 1613.1 & 1614.3 & \\
\hline \multicolumn{2}{|l|}{Strain Rate, \%/min} & 0.02 & 0.02 & 0.03 & \\
\hline \multicolumn{2}{|l|}{B-Value} & . 98 & . 97 & . 95 & \\
\hline \multicolumn{2}{|l|}{Measured Specific Gravity} & 2.67 & 2.67 & 2.67 & \\
\hline \multicolumn{2}{|l|}{Liquid Limit} & 42 & 42 & 42 & \\
\hline \multicolumn{2}{|l|}{Plastic Limit} & 24 & 24 & 24 & \\
\hline \multicolumn{2}{|l|}{Plasticity Index} & 18 & 18 & 18 & \\
\hline \multicolumn{2}{|l|}{Failure Sketch} & & & & \\
\hline
\end{tabular}
Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

\begin{tabular}{|l|l|l|}
\hline Project: COLETO CREEK FACILITY & Location: IPR-GDF SUEZ & Project No.: 60225561 \\
\hline Boring No.: B-2-1 S-14 & Tested By: BCM & Checked By: WPQ \\
\hline Sample No.: S-14 & Test Date: \(12 / 5 / 11\) & Depth: 26.0'-28.0' \\
\hline Test No.: B-2-1 S-14 & Sample Type: \(3^{\prime \prime}\) ST & Elevation: ---- \\
\hline Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC \\
\hline Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 5.91 in
Specimen Area: 6.32 in^2 Specimen Volume: 37.36 in^3

Liquid Limit: 42
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & \[
\begin{array}{r}
\text { Vertical } \\
\text { Strain } \\
\%
\end{array}
\] & \[
\begin{aligned}
& \text { Corrected } \\
& \text { Area } \\
& \text { in^2 }
\end{aligned}
\] & Deviator Load 1b & \begin{tabular}{l}
Deviator \\
Stress tsf
\end{tabular} & Pore Pressure tsf & Horizontal Stress tsf & \[
\begin{array}{r}
\text { Vertical } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] \\
\hline 1 & 0 & 0 & 6.3179 & 0 & 0 & 5.0449 & 5.7888 & 5.7888 \\
\hline 2 & 5.0001 & 0.045204 & 6.3207 & 31.887 & 0.36323 & 5.1097 & 5.7888 & 6.152 \\
\hline 3 & 10 & 0.094782 & 6.3239 & 40.44 & 0.46042 & 5.1704 & 5.7888 & 6.2492 \\
\hline 4 & 15 & 0.14144 & 6.3268 & 44.344 & 0.50464 & 5.2061 & 5.7888 & 6.2934 \\
\hline 5 & 20 & 0.18956 & 6.3299 & 46.761 & 0.53189 & 5.2306 & 5.7888 & 6.3207 \\
\hline 6 & 25 & 0.23768 & 6.3329 & 48.992 & 0.557 & 5.2487 & 5.7888 & 6.3458 \\
\hline 7 & 30.001 & 0.28726 & 6.3361 & 51.038 & 0.57997 & 5.2633 & 5.7888 & 6.3688 \\
\hline 8 & 35.001 & 0.33538 & 6.3391 & 52.618 & 0.59764 & 5.275 & 5.7888 & 6.3864 \\
\hline 9 & 40.001 & 0.3835 & 6.3422 & 54.012 & 0.61318 & 5.2849 & 5.7888 & 6.402 \\
\hline 10 & 45.001 & 0.43308 & 6.3453 & 55.5 & 0.62975 & 5.2931 & 5.7888 & 6.4186 \\
\hline 11 & 50.001 & 0.4812 & 6.3484 & 57.08 & 0.64737 & 5.3001 & 5.7888 & 6.4362 \\
\hline 12 & 55.001 & 0.53078 & 6.3516 & 58.289 & 0.66075 & 5.3066 & 5.7888 & 6.4495 \\
\hline 13 & 60.001 & 0.5789 & 6.3546 & 59.311 & 0.67202 & 5.3112 & 5.7888 & 6.4608 \\
\hline 14 & 70.001 & 0.6766 & 6.3609 & 61.636 & 0.69766 & 5.3194 & 5.7888 & 6.4865 \\
\hline 15 & 80.001 & 0.77576 & 6.3673 & 63.588 & 0.71904 & 5.3258 & 5.7888 & 6.5078 \\
\hline 16 & 90.002 & 0.87346 & 6.3735 & 65.633 & 0.74144 & 5.3311 & 5.7888 & 6.5302 \\
\hline 17 & 100 & 0.97115 & 6.3798 & 67.213 & 0.75854 & 5.3346 & 5.7888 & 6.5473 \\
\hline 18 & 110 & 1.0703 & 6.3862 & 68.794 & 0.7756 & 5.3369 & 5.7888 & 6.5644 \\
\hline 19 & 120 & 1.1695 & 6.3926 & 70.281 & 0.79158 & 5.3387 & 5.7888 & 6.5804 \\
\hline 20 & 130 & 1.2701 & 6.3991 & 71.676 & 0.80646 & 5.3404 & 5.7888 & 6.5953 \\
\hline 21 & 140 & 1.3707 & 6.4057 & 72.605 & 0.81609 & 5.341 & 5.7888 & 6.6049 \\
\hline 22 & 150 & 1.4699 & 6.4121 & 74.093 & 0.83197 & 5.3428 & 5.7888 & 6.6208 \\
\hline 23 & 160 & 1.5676 & 6.4185 & 75.023 & 0.84157 & 5.3428 & 5.7888 & 6.6304 \\
\hline 24 & 170 & 1.6682 & 6.425 & 76.231 & 0.85426 & 5.3428 & 5.7888 & 6.6431 \\
\hline 25 & 180 & 1.7688 & 6.4316 & 77.254 & 0.86483 & 5.3422 & 5.7888 & 6.6536 \\
\hline 26 & 190 & 1.8694 & 6.4382 & 78.462 & 0.87746 & 5.3416 & 5.7888 & 6.6663 \\
\hline 27 & 200 & 1.9715 & 6.4449 & 79.95 & 0.89316 & 5.3399 & 5.7888 & 6.682 \\
\hline 28 & 210 & 2.0706 & 6.4514 & 81.065 & 0.90471 & 5.3381 & 5.7888 & 6.6935 \\
\hline 29 & 220 & 2.1712 & 6.4581 & 81.809 & 0.91207 & 5.3369 & 5.7888 & 6.7009 \\
\hline 30 & 230 & 2.2719 & 6.4647 & 82.553 & 0.91942 & 5.334 & 5.7888 & 6.7082 \\
\hline 31 & 240 & 2.3725 & 6.4714 & 83.575 & 0.92985 & 5.3317 & 5.7888 & 6.7186 \\
\hline 32 & 270 & 2.6699 & 6.4912 & 86.457 & 0.95898 & 5.3235 & 5.7888 & 6.7478 \\
\hline 33 & 300 & 2.9674 & 6.5111 & 88.688 & 0.98072 & 5.3142 & 5.7888 & 6.7695 \\
\hline 34 & 330 & 3.2678 & 6.5313 & 91.198 & 1.0054 & 5.3036 & 5.7888 & 6.7942 \\
\hline 35 & 360 & 3.5609 & 6.5511 & 93.244 & 1.0248 & 5.2943 & 5.7888 & 6.8136 \\
\hline 36 & 390 & 3.8584 & 6.5714 & 95.103 & 1.042 & 5.2849 & 5.7888 & 6.8308 \\
\hline 37 & 420 & 4.1602 & 6.5921 & 97.892 & 1.0692 & 5.2756 & 5.7888 & 6.858 \\
\hline 38 & 450 & 4.4621 & 6.6129 & 99.658 & 1.0851 & 5.2668 & 5.7888 & 6.8739 \\
\hline 39 & 480 & 4.761 & 6.6337 & 101.8 & 1.1049 & 5.2569 & 5.7888 & 6.8937 \\
\hline 40 & 510 & 5.0585 & 6.6545 & 104.03 & 1.1256 & 5.2476 & 5.7888 & 6.9144 \\
\hline 41 & 540 & 5.3574 & 6.6755 & 106.07 & 1.1441 & 5.2376 & 5.7888 & 6.9329 \\
\hline 42 & 570 & 5.6505 & 6.6962 & 108.95 & 1.1715 & 5.2289 & 5.7888 & 6.9603 \\
\hline 43 & 600 & 5.9465 & 6.7173 & 111.93 & 1.1997 & 5.2184 & 5.7888 & 6.9885 \\
\hline 44 & 630 & 6.244 & 6.7386 & 114.07 & 1.2188 & 5.2096 & 5.7888 & 7.0076 \\
\hline 45 & 660 & 6.5458 & 6.7604 & 115.28 & 1.2277 & 5.2008 & 5.7888 & 7.0165 \\
\hline 46 & 690 & 6.8477 & 6.7823 & 117.32 & 1.2455 & 5.1915 & 5.7888 & 7.0343 \\
\hline 47 & 720 & 7.1466 & 6.8041 & 119.46 & 1.2641 & 5.1821 & 5.7888 & 7.0529 \\
\hline 48 & 750 & 7.4441 & 6.826 & 122.62 & 1.2934 & 5.1734 & 5.7888 & 7.0822 \\
\hline 49 & 780 & 7.7386 & 6.8478 & 124.67 & 1.3108 & 5.164 & 5.7888 & 7.0996 \\
\hline 50 & 810 & 8.0332 & 6.8697 & 127.73 & 1.3387 & 5.1547 & 5.7888 & 7.1275 \\
\hline 51 & 840 & 8.3306 & 6.892 & 128.57 & 1.3432 & 5.1453 & 5.7888 & 7.132 \\
\hline 52 & 870 & 8.6296 & 6.9146 & 131.08 & 1.3649 & 5.1372 & 5.7888 & 7.1537 \\
\hline 53 & 900 & 8.9329 & 6.9376 & 133.59 & 1.3864 & 5.1284 & 5.7888 & 7.1752 \\
\hline 54 & 930 & 9.2333 & 6.9605 & 136.57 & 1.4126 & 5.1196 & 5.7888 & 7.2014 \\
\hline 55 & 960 & 9.5336 & 6.9837 & 138.42 & 1.4271 & 5.1109 & 5.7888 & 7.2159 \\
\hline 56 & 990 & 9.8282 & 7.0065 & 139.35 & 1.432 & 5.1033 & 5.7888 & 7.2208 \\
\hline 57 & 1020 & 10.121 & 7.0293 & 141.59 & 1.4502 & 5.0951 & 5.7888 & 7.239 \\
\hline 58 & 1050 & 10.419 & 7.0527 & 143.72 & 1.4673 & 5.0869 & 5.7888 & 7.2561 \\
\hline 59 & 1080 & 10.718 & 7.0763 & 145.68 & 1.4822 & 5.0787 & 5.7888 & 7.271 \\
\hline 60 & 1110 & 11.017 & 7.1 & 147.72 & 1.498 & 5.0706 & 5.7888 & 7.2868 \\
\hline 61 & 1140 & 11.317 & 7.1241 & 150.23 & 1.5183 & 5.063 & 5.7888 & 7.3071 \\
\hline 62 & 1170 & 11.613 & 7.148 & 151.9 & 1.5301 & 5.0548 & 5.7888 & 7.3189 \\
\hline 63 & 1200 & 11.91 & 7.1721 & 155.16 & 1.5576 & 5.0472 & 5.7888 & 7.3464 \\
\hline 64 & 1230 & 12.205 & 7.1962 & 156.37 & 1.5645 & 5.0402 & 5.7888 & 7.3533 \\
\hline 65 & 1260 & 12.5 & 7.2204 & 159.71 & 1.5926 & 5.0314 & 5.7888 & 7.3814 \\
\hline 66 & 1290 & 12.794 & 7.2448 & 160.74 & 1.5974 & 5.0238 & 5.7888 & 7.3862 \\
\hline 67 & 1320 & 13.092 & 7.2696 & 163.06 & 1.615 & 5.0168 & 5.7888 & 7.4038 \\
\hline 68 & 1350 & 13.395 & 7.295 & 164.18 & 1.6204 & 5.0098 & 5.7888 & 7.4092 \\
\hline 69 & 1380 & 13.697 & 7.3205 & 166.87 & 1.6412 & 5.0022 & 5.7888 & 7.43 \\
\hline 70 & 1410 & 13.996 & 7.346 & 168.08 & 1.6474 & 4.9958 & 5.7888 & 7.4362 \\
\hline 71 & 1440 & 14.293 & 7.3715 & 169.66 & 1.6571 & 4.9894 & 5.7888 & 7.4459 \\
\hline 72 & 1470 & 14.589 & 7.397 & 172.36 & 1.6777 & 4.9829 & 5.7888 & 7.4665 \\
\hline 73 & 1500 & 14.881 & 7.4224 & 173.75 & 1.6855 & 4.9759 & 5.7888 & 7.4743 \\
\hline 74 & 1530 & 15.174 & 7.448 & 176.63 & 1.7075 & 4.9689 & 5.7888 & 7.4963 \\
\hline 75 & 1560 & 15.473 & 7.4744 & 178.03 & 1.7149 & 4.9625 & 5.7888 & 7.5037 \\
\hline 76 & 1590 & 15.773 & 7.501 & 181 & 1.7374 & 4.9549 & 5.7888 & 7.5262 \\
\hline 77 & 1612.1 & 15.995 & 7.5208 & 182.21 & 1.7444 & 4.9502 & 5.7888 & 7.5332 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY Boring No.: B-2-1 S-14
Sample No.: S-14
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 5 / 11\)
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

\section*{Specimen Height: 5.91 in Specimen Area: 6.32 in^2 Specimen volume: 37.36 in^3}

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b Piston Weight: 0.00 7b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & \begin{tabular}{l}
Total \\
Horizontal
\end{tabular} & \[
\begin{array}{r}
\text { Excess } \\
\text { Pore }
\end{array}
\] & A & Effective Vertical & \begin{tabular}{l}
Effective \\
Horizontal
\end{tabular} & Stress & Effective & \\
\hline \begin{tabular}{l}
Strain \\
\%
\end{tabular} & Stress tsf & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
{\underset{\mathrm{tsf}}{\mathrm{f}}}^{\mathrm{p}}
\] & ¢ \({ }_{\text {q }}\) \\
\hline 0.00 & 5.7888 & 5.7888 & 0 & 0.000 & 0.74395 & 0.74395 & 1.000 & 0.74395 & 0 \\
\hline 0.05 & 6.152 & 5.7888 & 0.064842 & 0.179 & 1.0423 & 0.6791 & 1.535 & 0.86072 & 0.18161 \\
\hline 0.09 & 6.2492 & 5.7888 & 0.1256 & 0.273 & 1.0788 & 0.61835 & 1.745 & 0.84856 & 0.23021 \\
\hline 0.14 & 6.2934 & 5.7888 & 0.16123 & 0.319 & 1.0874 & 0.58272 & 1.866 & 0.83504 & 0.25232 \\
\hline 0.19 & 6.3207 & 5.7888 & 0.18576 & 0.349 & 1.0901 & 0.55818 & 1.953 & 0.82413 & 0.26595 \\
\hline 0.24 & 6.3458 & 5.7888 & 0.20387 & 0.366 & 1.0971 & 0.54007 & 2.031 & 0.81857 & 0.2785 \\
\hline 0.29 & 6.3688 & 5.7888 & 0.21848 & 0.377 & 1.1054 & 0.52547 & 2.104 & 0.81545 & 0.28998 \\
\hline 0.34 & 6.3864 & 5.7888 & 0.23016 & 0.385 & 1.1114 & 0.51379 & 2.163 & 0.8126 & 0.29882 \\
\hline 0.38 & 6.402 & 5.7888 & 0.24009 & 0.392 & 1.117 & 0.50385 & 2.217 & 0.81044 & 0.30659 \\
\hline 0.43 & 6.4186 & 5.7888 & 0.24827 & 0.394 & 1.1254 & 0.49568 & 2.270 & 0.81055 & 0.31488 \\
\hline 0.48 & 6.4362 & 5.7888 & 0.25528 & 0.394 & 1.136 & 0.48867 & 2.325 & 0.81235 & 0.32369 \\
\hline 0.53 & 6.4495 & 5.7888 & 0.26171 & 0.396 & 1.143 & 0.48224 & 2.370 & 0.81262 & 0.33037 \\
\hline 0.58 & 6.4608 & 5.7888 & 0.26638 & 0.396 & 1.1496 & 0.47757 & 2.407 & 0.81358 & 0.33601 \\
\hline 0.68 & 6.4865 & 5.7888 & 0.27456 & 0.394 & 1.1671 & 0.46939 & 2.486 & 0.81822 & 0.34883 \\
\hline 0.78 & 6.5078 & 5.7888 & 0.28098 & 0.391 & 1.182 & 0.46296 & 2.553 & 0.82248 & 0.35952 \\
\hline 0.87 & 6.5302 & 5.7888 & 0.28624 & 0.386 & 1.1991 & 0.45771 & 2.620 & 0.82842 & 0.37072 \\
\hline 0.97 & 6.5473 & 5.7888 & 0.28975 & 0.382 & 1.2127 & 0.4542 & 2.670 & 0.83347 & 0.37927 \\
\hline 1.07 & 6.5644 & 5.7888 & 0.29208 & 0.377 & 1.2275 & 0.45186 & 2.716 & 0.83966 & 0.3878 \\
\hline 1.17 & 6.5804 & 5.7888 & 0.29384 & 0.371 & 1.2417 & 0.45011 & 2.759 & 0.8459 & 0.39579 \\
\hline 1.27 & 6.5953 & 5.7888 & 0.29559 & 0.367 & 1.2548 & 0.44836 & 2.799 & 0.85159 & 0.40323 \\
\hline 1.37 & 6.6049 & 5.7888 & 0.29617 & 0.363 & 1.2639 & 0.44777 & 2.823 & 0.85582 & 0.40804 \\
\hline 1.47 & 6.6208 & 5.7888 & 0.29792 & 0.358 & 1.278 & 0.44602 & 2.865 & 0.86201 & 0.41599 \\
\hline 1.57 & 6.6304 & 5.7888 & 0.29792 & 0.354 & 1.2876 & 0.44602 & 2.887 & 0.86681 & 0.42079 \\
\hline 1.67 & 6.6431 & 5.7888 & 0.29792 & 0.349 & 1.3003 & 0.44602 & 2.915 & 0.87315 & 0.42713 \\
\hline 1.77 & 6.6536 & 5.7888 & 0.29734 & 0.344 & 1.3114 & 0.44661 & 2.936 & 0.87902 & 0.43242 \\
\hline 1.87 & 6.6663 & 5.7888 & 0.29676 & 0.338 & 1.3247 & 0.44719 & 2.962 & 0.88592 & 0.43873 \\
\hline 1.97 & 6.682 & 5.7888 & 0.295 & 0.330 & 1.3421 & 0.44894 & 2.989 & 0.89553 & 0.44658 \\
\hline 2.07 & 6.6935 & 5.7888 & 0.29325 & 0.324 & 1.3554 & 0.4507 & 3.007 & 0.90305 & 0.45236 \\
\hline 2.17 & 6.7009 & 5.7888 & 0.29208 & 0.320 & 1.3639 & 0.45186 & 3.018 & 0.9079 & 0.45604 \\
\hline 2.27 & 6.7082 & 5.7888 & 0.28916 & 0.315 & 1.3742 & 0.45478 & 3.022 & 0.91449 & 0.45971 \\
\hline 2.37 & 6.7186 & 5.7888 & 0.28683 & 0.308 & 1.387 & 0.45712 & 3.034 & 0.92205 & 0.46492 \\
\hline 2.67 & 6.7478 & 5.7888 & 0.27865 & 0.291 & 1.4243 & 0.4653 & 3.061 & 0.94479 & 0.47949 \\
\hline 2.97 & 6.7695 & 5.7888 & 0.2693 & 0.275 & 1.4554 & 0.47465 & 3.066 & 0.96501 & 0.49036 \\
\hline 3.27 & 6.7942 & 5.7888 & 0.25879 & 0.257 & 1.4905 & 0.48516 & 3.072 & 0.98784 & 0.50268 \\
\hline 3.56 & 6.8136 & 5.7888 & 0.24944 & 0.243 & 1.5193 & 0.49451 & 3.072 & 1.0069 & 0.51239 \\
\hline 3.86 & 6.8308 & 5.7888 & 0.24009 & 0.230 & 1.5459 & 0.50385 & 3.068 & 1.0249 & 0.521 \\
\hline 4.16 & 6.858 & 5.7888 & 0.23075 & 0.216 & 1.5824 & 0.5132 & 3.083 & 1.0478 & 0.5346 \\
\hline 4.46 & 6.8739 & 5.7888 & 0.22198 & 0.205 & 1.607 & 0.52196 & 3.079 & 1.0645 & 0.54253 \\
\hline 4.76 & 6.8937 & 5.7888 & 0.21205 & 0.192 & 1.6368 & 0.53189 & 3.077 & 1.0843 & 0.55243 \\
\hline 5.06 & 6.9144 & 5.7888 & 0.20271 & 0.180 & 1.6668 & 0.54124 & 3.080 & 1.104 & 0.56278 \\
\hline 5.36 & 6.9329 & 5.7888 & 0.19277 & 0.168 & 1.6952 & 0.55117 & 3.076 & 1.1232 & 0.57204 \\
\hline 5.65 & 6.9603 & 5.7888 & 0.18401 & 0.157 & 1.7314 & 0.55993 & 3.092 & 1.1457 & 0.58576 \\
\hline 5.95 & 6.9885 & 5.7888 & 0.1735 & 0.145 & 1.7702 & 0.57045 & 3.103 & 1.1703 & 0.59986 \\
\hline 6.24 & 7.0076 & 5.7888 & 0.16473 & 0.135 & 1.798 & 0.57921 & 3.104 & 1.1886 & 0.60939 \\
\hline 6.55 & 7.0165 & 5.7888 & 0.15597 & 0.127 & 1.8157 & 0.58797 & 3.088 & 1.2018 & 0.61386 \\
\hline 6.85 & 7.0343 & 5.7888 & 0.14663 & 0.118 & 1.8428 & 0.59732 & 3.085 & 1.2201 & 0.62274 \\
\hline 7.15 & 7.0529 & 5.7888 & 0.13728 & 0.109 & 1.8708 & 0.60667 & 3.084 & 1.2387 & 0.63205 \\
\hline 7.44 & 7.0822 & 5.7888 & 0.12852 & 0.099 & 1.9088 & 0.61543 & 3.102 & 1.2621 & 0.6467 \\
\hline 7.74 & 7.0996 & 5.7888 & 0.11917 & 0.091 & 1.9356 & 0.62478 & 3.098 & 1.2802 & 0.65539 \\
\hline 8.03 & 7.1275 & 5.7888 & 0.10982 & 0.082 & 1.9729 & 0.63412 & 3.111 & 1.3035 & 0.66937 \\
\hline 8.33 & 7.132 & 5.7888 & 0.10048 & 0.075 & 1.9866 & 0.64347 & 3.087 & 1.315 & 0.67158 \\
\hline 8.63 & 7.1537 & 5.7888 & 0.092298 & 0.068 & 2.0166 & 0.65165 & 3.095 & 1.3341 & 0.68246 \\
\hline 8.93 & 7.1752 & 5.7888 & 0.083536 & 0.060 & 2.0468 & 0.66041 & 3.099 & 1.3536 & 0.69322 \\
\hline 9.23 & 7.2014 & 5.7888 & 0.074773 & 0.053 & 2.0818 & 0.66917 & 3.111 & 1.3755 & 0.70632 \\
\hline 9.53 & 7.2159 & 5.7888 & 0.066011 & 0.046 & 2.1051 & 0.67794 & 3.105 & 1.3915 & 0.71356 \\
\hline 9.83 & 7.2208 & 5.7888 & 0.058417 & 0.041 & 2.1176 & 0.68553 & 3.089 & 1.4015 & 0.71602 \\
\hline 10.12 & 7.239 & 5.7888 & 0.050238 & 0.035 & 2.1439 & 0.69371 & 3.091 & 1.4188 & 0.72512 \\
\hline 10.42 & 7.2561 & 5.7888 & 0.04206 & 0.029 & 2.1691 & 0.70189 & 3.090 & 1.4355 & 0.73363 \\
\hline 10.72 & 7.271 & 5.7888 & 0.033882 & 0.023 & 2.1923 & 0.71006 & 3.087 & 1.4512 & 0.74111 \\
\hline 11.02 & 7.2868 & 5.7888 & 0.025703 & 0.017 & 2.2162 & 0.71824 & 3.086 & 1.4672 & 0.749 \\
\hline 11.32 & 7.3071 & 5.7888 & 0.018109 & 0.012 & 2.2442 & 0.72584 & 3.092 & 1.485 & 0.75916 \\
\hline 11.61 & 7.3189 & 5.7888 & 0.0099308 & 0.006 & 2.2641 & 0.73402 & 3.085 & 1.4991 & 0.76505 \\
\hline 11.91 & 7.3464 & 5.7888 & 0.0023367 & 0.002 & 2.2992 & 0.74161 & 3.100 & 1.5204 & 0.77881 \\
\hline 12.21 & 7.3533 & 5.7888 & -0.0046733 & -0.003 & 2.3131 & 0.74862 & 3.090 & 1.5309 & 0.78225 \\
\hline 12.50 & 7.3814 & 5.7888 & -0.013436 & -0.008 & 2.35 & 0.75738 & 3.103 & 1.5537 & 0.79631 \\
\hline 12.79 & 7.3862 & 5.7888 & -0.02103 & -0.013 & 2.3624 & 0.76498 & 3.088 & 1.5637 & 0.79871 \\
\hline 13.09 & 7.4038 & 5.7888 & -0.02804 & -0.017 & 2.387 & 0.77199 & 3.092 & 1.5795 & 0.8075 \\
\hline 13.39 & 7.4092 & 5.7888 & -0.03505 & -0.022 & 2.3994 & . 0.779 & 3.080 & 1.5892 & 0.81019 \\
\hline 13.70 & 7.43 & 5.7888 & -0.042644 & -0.026 & 2.4278 & 0.78659 & 3.087 & 1.6072 & 0.82062 \\
\hline 14.00 & 7.4362 & 5.7888 & -0.04907 & -0.030 & 2.4404 & 0.79302 & 3.077 & 1.6167 & 0.8237 \\
\hline 14.29 & 7.4459 & 5.7888 & -0.055496 & -0.033 & 2.4566 & 0.79944 & 3.073 & 1.628 & 0.82857 \\
\hline 14.59 & 7.4665 & 5.7888 & -0.061922 & -0.037 & 2.4835 & 0.80587 & 3.082 & 1.6447 & 0.83883 \\
\hline 14.88 & 7.4743 & 5.7888 & -0.068932 & -0.041 & 2.4983 & 0.81288 & 3.073 & 1.6556 & 0.84273 \\
\hline 15.17 & 7.4963 & 5.7888 & -0.075942 & -0.044 & 2.5274 & 0.81989 & 3.083 & 1.6736 & 0.85376 \\
\hline 15.47 & 7.5037 & 5.7888 & -0.082367 & -0.048 & 2.5412 & 0.82631 & 3.075 & 1.6838 & 0.85746 \\
\hline 15.77 & 7.5262 & 5.7888 & -0.089961 & -0.052 & 2.5713 & 0.83391 & 3.083 & 1.7026 & 0.86869 \\
\hline 15.99 & 7.5332 & 5.7888 & -0.094635 & -0.054 & 2.583 & 0.83858 & 3.080 & 1.7108 & 0.87219 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soi 1 Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.08 in Specimen Area: 6.35 in^2 Specimen Volume: 38.65 in^3

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.67
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore Pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 6.353 & 0 & 0 & 5.0454 & 6.2928 & 6.2928 \\
\hline 2 & 5.0038 & 0.0388 & 6.3555 & 29.35 & 0.3325 & 5.1985 & 6.2928 & 6.6253 \\
\hline 3 & 10.004 & 0.085062 & 6.3584 & 39.31 & 0.44513 & 5.2806 & 6.2928 & 6.7379 \\
\hline 4 & 15.004 & 0.13132 & 6.3613 & 45.38 & 0.51363 & 5.3339 & 6.2928 & 6.8064 \\
\hline 5 & 20.004 & 0.17908 & 6.3644 & 50.036 & 0.56606 & 5.3744 & 6.2928 & 6.8589 \\
\hline 6 & 25 & 0.22683 & 6.3674 & 53.985 & 0.61044 & 5.4054 & 6.2928 & 6.9032 \\
\hline 7 & 30 & 0.27459 & 6.3705 & 57.344 & 0.64811 & 5.4298 & 6.2928 & 6.9409 \\
\hline 8 & 35 & 0.32234 & 6.3735 & 60.35 & 0.68176 & 5.4504 & 6.2928 & 6.9746 \\
\hline 9 & 40 & 0.37159 & 6.3767 & 62.884 & 0.71004 & 5.4676 & 6.2928 & 7.0028 \\
\hline 10 & 45 & 0.42083 & 6.3798 & 65.477 & 0.73895 & 5.482 & 6.2928 & 7.0317 \\
\hline 11 & 50 & 0.46859 & 6.3829 & 67.658 & 0.76319 & 5.4936 & 6.2928 & 7.056 \\
\hline 12 & 55.001 & 0.51634 & 6.386 & 70.074 & 0.79007 & 5.5042 & 6.2928 & 7.0829 \\
\hline 13 & 60.001 & 0.5641 & 6.389 & 72.196 & 0.8136 & 5.513 & 6.2928 & 7.1064 \\
\hline 14 & 70.001 & 0.65961 & 6.3952 & 76.204 & 0.85794 & 5.5269 & 6.2928 & 7.1507 \\
\hline 15 & 80.001 & 0.75512 & 6.4013 & 80.27 & 0.90285 & 5.5375 & 6.2928 & 7.1957 \\
\hline 16 & 90.001 & 0.85361 & 6.4077 & 84.573 & 0.9503 & 5.5436 & 6.2928 & 7.2431 \\
\hline 17 & 100 & 0.95061 & 6.414 & 88.698 & 0.99568 & 5.5474 & 6.2928 & 7.2885 \\
\hline 18 & 110 & 1.0491 & 6.4203 & 92.706 & 1.0396 & 5.5497 & 6.2928 & 7.3324 \\
\hline 19 & 120 & 1.1446 & 6.4265 & 96.124 & 1.0769 & 5.5502 & 6.2928 & 7.3697 \\
\hline 20 & 130 & 1.2401 & 6.4328 & 99.719 & 1.1161 & 5.5497 & 6.2928 & 7.4089 \\
\hline 21 & 140 & 1.3356 & 6.439 & 104.26 & 1.1658 & 5.5474 & 6.2928 & 7.4586 \\
\hline 22 & 150 & 1.4326 & 6.4453 & 108.32 & 1.2101 & 5.5452 & 6.2928 & 7.5029 \\
\hline 23 & 160 & 1.5266 & 6.4515 & 111.57 & 1.2451 & 5.5408 & 6.2928 & 7.5379 \\
\hline 24 & 170 & 1.6251 & 6.4579 & 115.28 & 1.2852 & 5.5369 & 6.2928 & 7.578 \\
\hline 25 & 180 & 1.7206 & 6.4642 & 118.28 & 1.3175 & 5.5314 & 6.2928 & 7.6103 \\
\hline 26 & 190 & 1.8162 & 6.4705 & 121.41 & 1.351 & 5.5258 & 6.2928 & 7.6438 \\
\hline 27 & 200 & 1.9102 & 6.4767 & 124.71 & 1.3863 & 5.5197 & 6.2928 & 7.6791 \\
\hline 28 & 210 & 2.0057 & 6.483 & 127.83 & 1.4197 & 5.5125 & 6.2928 & 7.7125 \\
\hline 29 & 220 & 2.1012 & 6.4893 & 131.01 & 1.4536 & 5.5053 & 6.2928 & 7.7464 \\
\hline 30 & 230 & 2.1967 & 6.4957 & 134.2 & 1.4875 & 5.4975 & 6.2928 & 7.7803 \\
\hline 31 & 240 & 2.2907 & 6.5019 & 137.2 & 1.5193 & 5.4892 & 6.2928 & 7.8121 \\
\hline 32 & 270 & 2.5817 & 6.5213 & 146.28 & 1.615 & 5.4637 & 6.2928 & 7.9078 \\
\hline 33 & 300 & 2.8757 & 6.5411 & 152.23 & 1.6757 & 5.4365 & 6.2928 & 7.9685 \\
\hline 34 & 330 & 3.1682 & 6.5608 & 158.3 & 1.7372 & 5.4082 & 6.2928 & 8.03 \\
\hline 35 & 360 & 3.4592 & 6.5806 & 164.61 & 1.801 & 5.3805 & 6.2928 & 8.0938 \\
\hline 36 & 390 & 3.7502 & 6.6005 & 169.79 & 1.8521 & 5.3527 & 6.2928 & 8.1449 \\
\hline 37 & 420 & 4.0397 & 6.6204 & 175.22 & 1.9055 & 5.325 & 6.2928 & 8.1983 \\
\hline 38 & 450 & 4.3292 & 6.6405 & 180.28 & 1.9547 & 5.2989 & 6.2928 & 8.2475 \\
\hline 39 & 480 & 4.6202 & 6.6607 & 185.23 & 2.0023 & 5.2712 & 6.2928 & 8.2951 \\
\hline 40 & 510 & 4.9127 & 6.6812 & 189.48 & 2.0419 & 5.2451 & 6.2928 & 8.3347 \\
\hline 41 & 540 & 5.2082 & 6.702 & 194.43 & 2.0887 & 5.2201 & 6.2928 & 8.3815 \\
\hline 42 & 570 & 5.5007 & 6.7228 & 199.32 & 2.1347 & 5.1957 & 6.2928 & 8.4275 \\
\hline 43 & 600 & 5.7902 & 6.7434 & 204.39 & 2.1823 & 5.1702 & 6.2928 & 8.4751 \\
\hline 44 & 630 & 6.0782 & 6.7641 & 209.28 & 2.2277 & 5.1469 & 6.2928 & 8.5205 \\
\hline 45 & 660 & 6.3692 & 6.7851 & 213.41 & 2.2645 & 5.1242 & 6.2928 & 8.5573 \\
\hline 46 & 690 & 6.6587 & 6.8062 & 217.65 & 2.3024 & 5.1014 & 6.2928 & 8.5952 \\
\hline 47 & 720 & 6.9497 & 6.8275 & 222.13 & 2.3425 & 5.0798 & 6.2928 & 8.6353 \\
\hline 48 & 750 & 7.2407 & 6.8489 & 226.9 & 2.3853 & 5.0582 & 6.2928 & 8.6781 \\
\hline 49 & 780 & 7.5362 & 6.8708 & 231.56 & 2.4265 & 5.0382 & 6.2928 & 8.7193 \\
\hline 50 & 810 & 7.8302 & 6.8927 & 234.5 & 2.4496 & 5.0188 & 6.2928 & 8.7424 \\
\hline 51 & 840 & 8.1197 & 6.9144 & 238.39 & 2.4824 & 4.9982 & 6.2928 & 8.7752 \\
\hline 52 & 870 & 8.4107 & 6.9364 & 243.17 & 2.5241 & 4.9805 & 6.2928 & 8.8169 \\
\hline 53 & 900 & 8.6987 & 6.9583 & 247.82 & 2.5643 & 4.9622 & 6.2928 & 8.8571 \\
\hline 54 & 930 & 8.9883 & 6.9804 & 250.54 & 2.5842 & 4.9444 & 6.2928 & 8.877 \\
\hline 55 & 960 & 9.2793 & 7.0028 & 253.72 & 2.6086 & 4.9267 & 6.2928 & 8.9014 \\
\hline 56 & 990 & 9.5718 & 7.0254 & 257.61 & 2.6401 & 4.9106 & 6.2928 & 8.9329 \\
\hline 57 & 1020 & 9.8643 & 7.0482 & 261.97 & 2.6761 & 4.8945 & 6.2928 & 8.9689 \\
\hline 58 & 1050 & 10.157 & 7.0712 & 265.5 & 2.7034 & 4.8806 & 6.2928 & 8.9962 \\
\hline 59 & 1080 & 10.446 & 7.094 & 268.63 & 2.7264 & 4.8646 & 6.2928 & 9.0192 \\
\hline 60 & 1110 & 10.736 & 7.1171 & 271.69 & 2.7486 & 4.8507 & 6.2928 & 9.0414 \\
\hline 61 & 1140 & 11.024 & 7.1401 & 273.58 & 2.7587 & 4.8363 & 6.2928 & 9.0515 \\
\hline 62 & 1170 & 11.31 & 7.1632 & 277 & 2.7842 & 4.8224 & 6.2928 & 9.077 \\
\hline 63 & 1200 & 11.6 & 7.1866 & 280.18 & 2.807 & 4.8096 & 6.2928 & 9.0998 \\
\hline 64 & 1230 & 11.889 & 7.2102 & 282.3 & 2.819 & 4.7969 & 6.2928 & 9.1118 \\
\hline 65 & 1260 & 12.183 & 7.2344 & 285.01 & 2.8366 & 4.7836 & 6.2928 & 9.1294 \\
\hline 66 & 1290 & 12.477 & 7.2587 & 287.49 & 2.8516 & 4.7714 & 6.2928 & 9.1444 \\
\hline 67 & 1320 & 12.771 & 7.2831 & 291.2 & 2.8788 & 4.7608 & 6.2928 & 9.1716 \\
\hline 68 & 1350 & 13.064 & 7.3076 & 293.85 & 2.8952 & 4.7492 & 6.2928 & 9.188 \\
\hline 69 & 1380 & 13.355 & 7.3322 & 297.62 & 2.9226 & 4.7392 & 6.2928 & 9.2154 \\
\hline 70 & 1410 & 13.643 & 7.3566 & 299.45 & 2.9308 & 4.7292 & 6.2928 & 9.2236 \\
\hline 71 & 1440 & 13.932 & 7.3814 & 302.28 & 2.9485 & 4.7198 & 6.2928 & 9.2413 \\
\hline 72 & 1470 & 14.226 & 7.4067 & 305.4 & 2.9688 & 4.7109 & 6.2928 & 9.2616 \\
\hline 73 & 1500 & 14.519 & 7.432 & 307.76 & 2.9815 & 4.7015 & 6.2928 & 9.2743 \\
\hline 74 & 1530 & 14.814 & 7.4578 & 309.29 & 2.986 & 4.6926 & 6.2928 & 9.2788 \\
\hline 75 & 1560 & 15.107 & 7.4835 & 312.12 & 3.003 & 4.6837 & 6.2928 & 9.2958 \\
\hline 76 & 1590 & 15.398 & 7.5092 & 314.54 & 3.0159 & 4.6743 & 6.2928 & 9.3087 \\
\hline 77 & 1613.1 & 15.62 & 7.529 & 316.72 & 3.0288 & 4.6682 & 6.2928 & 9.3216 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Sample No.: S-14
Test No.: 17.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: \(12 / 5 / 11\)
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
SOi De
Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{|c|c|c|}
\hline Specimen Height: 6.08 in & Piston Area: 0.00 in^2 & Filter Strip Correction: 0.00 tsf \\
\hline Specimen Area: 6.35 in^2 & Piston Friction: 0.00 1b & Membrane Correction: 0.00 1b/in \\
\hline Specimen Volume: 38.65 in^3 & Piston Weight: 0.00 1b & Correction Type: Uniform \\
\hline
\end{tabular}

Membrane Correction: 0.00 1b/in Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & \[
\begin{array}{r}
\text { Excess } \\
\text { Pore }
\end{array}
\] & A & \begin{tabular}{l}
Effective \\
Vertical
\end{tabular} & Effective Horizontal & Stress & Effective & \\
\hline & Strain \% & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
\underset{\text { tsf }}{p}
\] & tsf \\
\hline 1 & 0.00 & 6.2928 & 6.2928 & 0 & 0.000 & 1.2474 & 1.2474 & 1.000 & 1.2474 & 0 \\
\hline 2 & 0.04 & 6.6253 & 6.2928 & 0.15311 & 0.460 & 1.4268 & 1.0943 & 1.304 & 1.2605 & 0.16625 \\
\hline 3 & 0.09 & 6.7379 & 6.2928 & 0.23521 & 0.528 & 1.4573 & 1.0122 & 1.440 & 1.2348 & 0.22257 \\
\hline 4 & 0.13 & 6.8064 & 6.2928 & 0.28847 & 0.562 & 1.4726 & 0.95893 & 1.536 & 1.2158 & 0.25682 \\
\hline 5 & 0.18 & 6.8589 & 6.2928 & 0.32896 & 0.581 & 1.4845 & 0.91844 & 1.616 & 1.2015 & 0.28303 \\
\hline 6 & 0.23 & 6.9032 & 6.2928 & 0.36003 & 0.590 & 1.4978 & 0.88737 & 1.688 & 1.1926 & 0.30522 \\
\hline 7 & 0.27 & 6.9409 & 6.2928 & 0.38444 & 0.593 & 1.5111 & 0.86296 & 1.751 & 1.187 & 0.32406 \\
\hline 8 & 0.32 & 6.9746 & 6.2928 & 0.40496 & 0.594 & 1.5242 & 0.84244 & 1.809 & 1.1833 & 0.34088 \\
\hline 9 & 0.37 & 7.0028 & 6.2928 & 0.42216 & 0.595 & 1.5353 & 0.82524 & 1.860 & 1.1803 & 0.35502 \\
\hline 10 & 0.42 & 7.0317 & 6.2928 & 0.43658 & 0.591 & 1.5498 & 0.81082 & 1.911 & 1.1803 & 0.36947 \\
\hline 11 & 0.47 & 7.056 & 6.2928 & 0.44823 & 0.587 & 1.5624 & 0.79917 & 1.955 & 1.1808 & 0.3816 \\
\hline 12 & 0.52 & 7.0829 & 6.2928 & 0.45877 & 0.581 & 1.5787 & 0.78863 & 2.002 & 1.1837 & 0.39504 \\
\hline 13 & 0.56 & 7.1064 & 6.2928 & 0.46765 & 0.575 & 1.5934 & 0.77975 & 2.043 & 1.1866 & 0.4068 \\
\hline 14 & 0.66 & 7.1507 & 6.2928 & 0.48152 & 0.561 & 1.6238 & 0.76588 & 2.120 & 1.1949 & 0.42897 \\
\hline 15 & 0.76 & 7.1957 & 6.2928 & 0.49206 & 0.545 & 1.6582 & 0.75534 & 2.195 & 1.2068 & 0.45143 \\
\hline 16 & 0.85 & 7.2431 & 6.2928 & 0.49816 & 0.524 & 1.6995 & 0.74924 & 2.268 & 1.2244 & 0.47515 \\
\hline 17 & 0.95 & 7.2885 & 6.2928 & 0.50204 & 0.504 & 1.741 & 0.74536 & 2.336 & 1.2432 & 0.49784 \\
\hline 18 & 1.05 & 7.3324 & 6.2928 & 0.50426 & 0.485 & 1.7828 & 0.74314 & 2.399 & 1.263 & 0.51982 \\
\hline 19 & 1.14 & 7.3697 & 6.2928 & 0.50482 & 0.469 & 1.8195 & 0.74258 & 2.450 & 1.281 & 0.53846 \\
\hline 20 & 1.24 & 7.4089 & 6.2928 & 0.50426 & 0.452 & 1.8593 & 0.74314 & 2.502 & 1.3012 & 0.55806 \\
\hline 21 & 1.34 & 7.4586 & 6.2928 & 0.50204 & 0.431 & 1.9111 & 0.74536 & 2.564 & 1.3283 & 0.5829 \\
\hline 22 & 1.43 & 7.5029 & 6.2928 & 0.49982 & 0.413 & 1.9576 & 0.74758 & 2.619 & 1.3526 & 0.60504 \\
\hline 23 & 1.53 & 7.5379 & 6.2928 & 0.49539 & 0.398 & 1.9971 & 0.75202 & 2.656 & 1.3746 & 0.62255 \\
\hline 24 & 1.63 & 7.578 & 6.2928 & 0.4915 & 0.382 & 2.0411 & 0.7559 & 2.700 & 1.3985 & 0.64262 \\
\hline 25 & 1.72 & 7.6103 & 6.2928 & 0.48596 & 0.369 & 2.0789 & 0.76145 & 2.730 & 1.4202 & 0.65874 \\
\hline 26 & 1.82 & 7.6438 & 6.2928 & 0.48041 & 0.356 & 2.1179 & 0.76699 & 2.761 & 1.4425 & 0.67548 \\
\hline 27 & 1.91 & 7.6791 & 6.2928 & 0.47431 & 0.342 & 2.1594 & 0.7731 & 2.793 & 1.4663 & 0.69317 \\
\hline 28 & 2.01 & 7.7125 & 6.2928 & 0.46709 & 0.329 & 2.2 & 0.78031 & 2.819 & 1.4902 & 0.70984 \\
\hline 29 & 2.10 & 7.7464 & 6.2928 & 0.45988 & 0.316 & 2.2411 & 0.78752 & 2.846 & 1.5143 & 0.72681 \\
\hline 30 & 2.20 & 7.7803 & 6.2928 & 0.45212 & 0.304 & 2.2828 & 0.79529 & 2.870 & 1.539 & 0.74374 \\
\hline 31 & 2.29 & 7.8121 & 6.2928 & 0.4438 & 0.292 & 2.3229 & 0.80361 & 2.891 & 1.5633 & 0.75966 \\
\hline 32 & 2.58 & 7.9078 & 6.2928 & 0.41828 & 0.259 & 2.4441 & 0.82912 & 2.948 & 1.6366 & 0.8075 \\
\hline 33 & 2.88 & 7.9685 & 6.2928 & 0.39109 & 0.233 & 2.532 & 0.85631 & 2.957 & 1.6941 & 0.83783 \\
\hline 34 & 3.17 & . 8.03 & 6.2928 & 0.3628 & 0.209 & 2.6218 & 0.8846 & 2.964 & 1.7532 & 0.86861 \\
\hline 35 & 3.46 & 8.0938 & 6.2928 & 0.33507 & 0.186 & 2.7133 & 0.91234 & 2.974 & 1.8128 & 0.9005 \\
\hline 36 & 3.75 & 8.1449 & 6.2928 & 0.30733 & 0.166 & 2.7922 & 0.94007 & 2.970 & 1.8661 & 0.92607 \\
\hline 37 & 4.04 & 8.1983 & 6.2928 & 0.27959 & 0.147 & 2.8734 & 0.96781 & 2.969 & 1.9206 & 0.95277 \\
\hline 38 & 4.33 & 8.2475 & 6.2928 & 0.25352 & 0.130 & 2.9486 & 0.99388 & 2.967 & 1.9713 & 0.97737 \\
\hline 39 & 4.62 & 8.2951 & 6.2928 & 0.22578 & 0.113 & 3.0239 & 1.0216 & 2.960 & 2.0228 & 1.0012 \\
\hline 40 & 4.91 & 8.3347 & 6.2928 & 0.19971 & 0.098 & 3.0896 & 1.0477 & 2.949 & 2.0686 & 1.021 \\
\hline 41 & 5.21 & 8.3815 & 6.2928 & 0.17474 & 0.084 & 3.1614 & 1.0727 & 2.947 & 2.117 & 1.0444 \\
\hline 42 & 5.50 & 8.4275 & 6.2928 & 0.15034 & 0.070 & 3.2318 & 1.0971 & 2.946 & 2.1644 & 1.0673 \\
\hline 43 & 5.79 & 8.4751 & 6.2928 & 0.12482 & 0.057 & 3.3048 & 1.1226 & 2.944 & 2.2137 & 1.0911 \\
\hline 44 & 6.08 & 8.5205 & 6.2928 & 0.10152 & 0.046 & 3.3735 & 1.1459 & 2.944 & 2.2597 & 1.1138 \\
\hline 45 & 6.37 & 8.5573 & 6.2928 & 0.078774 & 0.035 & 3.4332 & 1.1686 & 2.938 & 2.3009 & 1.1323 \\
\hline 46 & 6.66 & 8.5952 & 6.2928 & 0.056029 & 0.024 & 3.4938 & 1.1914 & 2.933 & 2.3426 & 1.1512 \\
\hline 47 & 6.95 & 8.6353 & 6.2928 & 0.034394 & 0.015 & 3.5555 & 1.213 & 2.931 & 2.3842 & 1.1712 \\
\hline 48 & 7.24 & 8.6781 & 6.2928 & 0.012759 & 0.005 & 3.62 & 1.2346 & 2.932 & 2.4273 & 1.1927 \\
\hline 49 & 7.54 & 8.7193 & 6.2928 & -0.0072117 & -0.003 & 3.6811 & 1.2546 & 2.934 & 2.4679 & 1.2133 \\
\hline 50 & 7.83 & 8.7424 & 6.2928 & -0.026628 & -0.011 & 3.7236 & 1.274 & 2.923 & 2.4988 & 1.2248 \\
\hline 51 & 8.12 & 8.7752 & 6.2928 & -0.047153 & -0.019 & 3.777 & 1.2946 & 2.918 & 2.5358 & 1.2412 \\
\hline 52 & 8.41 & 8.8169 & 6.2928 & -0.064905 & -0.026 & 3.8364 & 1.3123 & 2.923 & 2.5744 & 1.262 \\
\hline 53 & 8.70 & 8.8571 & 6.2928 & -0.083212 & -0.032 & 3.895 & 1.3306 & 2.927 & 2.6128 & 1.2822 \\
\hline 54 & 8.99 & 8.877 & 6.2928 & -0.10096 & -0.039 & 3.9325 & 1.3484 & 2.917 & 2.6404 & 1.2921 \\
\hline 55 & 9.28 & 8.9014 & 6.2928 & -0.11872 & -0.046 & 3.9747 & 1.3661 & 2.910 & 2.6704 & 1.3043 \\
\hline 56 & 9.57 & 8.9329 & 6.2928 & -0.1348 & -0.051 & 4.0223 & 1.3822 & 2.910 & 2.7022 & 1.32 \\
\hline 57 & 9.86 & 8.9689 & 6.2928 & -0.15089 & -0.056 & 4.0744 & 1.3983 & 2.914 & 2.7363 & 1.338 \\
\hline 58 & 10.16 & 8.9962 & 6.2928 & -0.16476 & -0.061 & 4.1156 & 1.4122 & 2.914 & 2.7639 & 1.3517 \\
\hline 59 & 10.45 & 9.0192 & 6.2928 & -0.18085 & -0.066 & 4.1547 & 1.4282 & 2.909 & 2.7915 & 1.3632 \\
\hline 60 & 10.74 & 9.0414 & 6.2928 & -0.19472 & -0.071 & 4.1907 & 1.4421 & 2.906 & 2.8164 & 1.3743 \\
\hline 61 & 11.02 & 9.0515 & 6.2928 & -0.20914 & -0.076 & 4.2153 & 1.4565 & 2.894 & 2.8359 & 1.3794 \\
\hline 62 & 11.31 & 9.077 & 6.2928 & -0.22301 & -0.080 & 4.2546 & 1.4704 & 2.893 & 2.8625 & 1.3921 \\
\hline 63 & 11.60 & 9.0998 & 6.2928 & -0.23577 & -0.084 & 4.2902 & 1.4832 & 2.893 & 2.8867 & 1.4035 \\
\hline 64 & 11.89 & 9.1118 & 6.2928 & -0.24853 & -0.088 & 4.3149 & 1.4959 & 2.884 & 2.9054 & 1.4095 \\
\hline 65 & 12.18 & 9.1294 & 6.2928 & -0.26184 & -0.092 & 4.3458 & 1.5092 & 2.879 & 2.9275 & 1.4183 \\
\hline 66 & 12.48 & 9.1444 & 6.2928 & -0.27404 & -0.096 & 4.3731 & 1.5214 & 2.874 & 2.9473 & 1.4258 \\
\hline 67 & 12.77 & 9.1716 & 6.2928 & -0.28458 & -0.099 & 4.4108 & 1.532 & 2.879 & 2.9714 & 1.4394 \\
\hline 68 & 13.06 & 9.188 & 6.2928 & -0.29623 & -0.102 & 4.4389 & 1.5436 & 2.876 & 2.9913 & 1.4476 \\
\hline 69 & 13.35 & 9.2154 & 6.2928 & -0.30622 & -0.105 & 4.4762 & 1.5536 & 2.881 & 3.0149 & 1.4613 \\
\hline 70 & 13.64 & 9.2236 & 6.2928 & -0.3162 & -0.108 & 4.4944 & 1.5636 & 2.874 & 3.029 & 1.4654 \\
\hline 71 & 13.93 & 9.2413 & 6.2928 & -0.32563 & -0.110 & 4.5216 & 1.573 & 2.874 & 3.0473 & 1.4743 \\
\hline 72 & 14.23 & 9.2616 & 6.2928 & -0.33451 & -0.113 & 4.5507 & 1.5819 & 2.877 & 3.0663 & 1.4844 \\
\hline 73 & 14.52 & 9.2743 & 6.2928 & -0.34394 & -0.115 & 4.5729 & 1.5913 & 2.874 & 3.0821 & 1.4908 \\
\hline 74 & 14.81 & 9.2788 & 6.2928 & -0.35282 & -0.118 & 4.5862 & 1.6002 & 2.866 & 3.0932 & 1.493 \\
\hline 75 & 15.11 & 9.2958 & 6.2928 & -0.36169 & -0.120 & 4.6121 & 1.6091 & 2.866 & 3.1106 & 1.5015 \\
\hline 76 & 15.40 & 9.3087 & 6.2928 & -0.37112 & -0.123 & 4.6344 & 1.6185 & 2.863 & 3.1265 & 1.5079 \\
\hline 77 & 15.62 & 9.3216 & 6.2928 & -0.37723 & -0.125 & 4.6534 & 1.6246 & 2.864 & 3.139 & 1.5144 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ---

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Specimen Height: 6.02 in
Specimen Area: 6.36 in^2 Specimen Volume: \(38.27 \mathrm{in} \mathrm{\wedge} 3\)

Liquid Limit: 42

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & \[
\begin{array}{r}
\text { Vertical } \\
\text { Strain } \\
\%
\end{array}
\] & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore Pressure & Horizontal Stress tsf & \[
\begin{array}{r}
\text { Vertical } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] \\
\hline 1 & 0 & 0 & 6.36 & 0 & 0 & 5.0404 & 6.8328 & 6.8328 \\
\hline 2 & 5.0037 & 0.032682 & 6.3621 & 36.347 & 0.41134 & 5.2561 & 6.8328 & 7.2441 \\
\hline 3 & 10.004 & 0.078153 & 6.365 & 49.512 & 0.56007 & 5.3969 & 6.8328 & 7.3929 \\
\hline 4 & 15.004 & 0.12504 & 6.368 & 56.855 & 0.64283 & 5.4904 & 6.8328 & 7.4756 \\
\hline 5 & 20.004 & 0.17194 & 6.371 & 61.995 & 0.70062 & 5.5581 & 6.8328 & 7.5334 \\
\hline 6 & 25.004 & 0.22025 & 6.3741 & 66.401 & 0.75005 & 5.6109 & 6.8328 & 7.5828 \\
\hline 7 & 30 & 0.26714 & 6.3771 & 70.072 & 0.79115 & 5.6527 & 6.8328 & 7.6239 \\
\hline 8 & 35 & 0.31261 & 6.38 & 73.376 & 0.82808 & 5.6874 & 6.8328 & 7.6609 \\
\hline 9 & 40 & 0.3595 & 6.383 & 76.366 & 0.86141 & 5.716 & 6.8328 & 7.6942 \\
\hline 10 & 45 & 0.40924 & 6.3862 & 79.355 & 0.89468 & 5.7402 & 6.8328 & 7.7275 \\
\hline 11 & 50 & 0.45755 & 6.3893 & 81.978 & 0.9238 & 5.7605 & 6.8328 & 7.7566 \\
\hline 12 & 55 & 0.50444 & 6.3923 & 84.443 & 0.95113 & 5.7781 & 6.8328 & 7.7839 \\
\hline 13 & 60.001 & 0.55133 & 6.3953 & 86.961 & 0.97903 & 5.793 & 6.8328 & 7.8118 \\
\hline 14 & 70.001 & 0.64512 & 6.4013 & 92.153 & 1.0365 & 5.8172 & 6.8328 & 7.8693 \\
\hline 15 & 80.001 & 0.74458 & 6.4077 & 97.083 & 1.0909 & 5.8354 & 6.8328 & 7.9237 \\
\hline 16 & 90.001 & 0.83695 & 6.4137 & 101.44 & 1.1387 & 5.7374 & 6.8328 & 7.9715 \\
\hline 17 & 100 & 0.92789 & 6.4196 & 106.63 & 1.1959 & 5.8392 & 6.8328 & 8.0287 \\
\hline 18 & 110 & 1.0217 & 6.4257 & 111.51 & 1.2494 & 5.8392 & 6.8328 & 8.0822 \\
\hline 19 & 120 & 1.1169 & 6.4319 & 116.07 & 1.2993 & 5.8414 & 6.8328 & 8.1321 \\
\hline 20 & 130 & 1.2107 & 6.438 & 120.95 & 1.3526 & 5.842 & 6.8328 & 8.1854 \\
\hline 21 & 140 & 1.3059 & 6.4442 & 125.67 & 1.4041 & 5.8398 & 6.8328 & 8.2369 \\
\hline 22 & 150 & 1.4039 & 6.4506 & 130.28 & 1.4542 & 5.8381 & 6.8328 & 8.287 \\
\hline 23 & 160 & 1.4949 & 6.4565 & 134.85 & 1.5037 & 5.8337 & 6.8328 & 8.3365 \\
\hline 24 & 170 & 1.5943 & 6.4631 & 139.57 & 1.5548 & 5.8282 & 6.8328 & 8.3876 \\
\hline 25 & 180 & 1.6924 & 6.4695 & 144.34 & 1.6064 & 5.8194 & 6.8328 & 8.4392 \\
\hline 26 & 190 & 1.7862 & 6.4757 & 148.8 & 1.6544 & 5.8101 & 6.8328 & 8.4872 \\
\hline 27 & 200 & 1.8814 & 6.482 & 153.15 & 1.7012 & 5.8002 & 6.8328 & 8.534 \\
\hline 28 & 210 & 1.9794 & 6.4885 & 157.5 & 1.7478 & 5.7892 & 6.8328 & 8.5806 \\
\hline 29 & 220 & 2.076 & 6.4949 & 161.7 & 1.7926 & 5.777 & 6.8328 & 8.6254 \\
\hline 30 & 230 & 2.1727 & 6.5013 & 165.74 & 1.8355 & 5.766 & 6.8328 & 8.6683 \\
\hline 31 & 240 & 2.2707 & 6.5078 & 169.99 & 1.8807 & 5.7523 & 6.8328 & 8.7135 \\
\hline 32 & 270 & 2.5577 & 6.527 & 181.26 & 1.9996 & 5.7083 & 6.8328 & 8.8324 \\
\hline 33 & 300 & 2.8433 & 6.5462 & 192.44 & 2.1166 & 5.6637 & 6.8328 & 8.9494 \\
\hline 34 & 330 & 3.1219 & 6.565 & 202.56 & 2.2215 & 5.6214 & 6.8328 & 9.0543 \\
\hline 35 & 360 & 3.406 & 6.5843 & 212.47 & 2.3234 & 5.6076 & 6.8328 & 9.1562 \\
\hline 36 & 390 & 3.6945 & 6.604 & 222.12 & 2.4217 & 5.5625 & 6.8328 & 9.2545 \\
\hline 37 & 420 & 3.9815 & 6.6238 & 231.46 & 2.5159 & 5.519 & 6.8328 & 9.3487 \\
\hline 38 & 450 & 4.2714 & 6.6438 & 240.43 & 2.6055 & 5.4761 & 6.8328 & 9.4383 \\
\hline 39 & 480 & 4.557 & 6.6637 & 248.71 & 2.6873 & 5.4343 & 6.8328 & 9.5201 \\
\hline 40 & 510 & 4.8398 & 6.6835 & 256.9 & 2.7675 & 5.3947 & 6.8328 & 9.6003 \\
\hline 41 & 540 & 5.1254 & 6.7036 & 264.34 & 2.8392 & 5.354 & 6.8328 & 9.672 \\
\hline 42 & 570 & 5.411 & 6.7239 & 272.37 & 2.9166 & 5.316 & 6.8328 & 9.7494 \\
\hline 43 & 600 & 5.6995 & 6.7444 & 280.03 & 2.9894 & 5.2759 & 6.8328 & 9.8222 \\
\hline 44 & 630 & 5.9894 & 6.7652 & 287.37 & 3.0584 & 5.2401 & 6.8328 & 9.8912 \\
\hline 45 & 660 & 6.2778 & 6.786 & 294.03 & 3.1197 & 5.2054 & 6.8328 & 9.9525 \\
\hline 46 & 690 & 6.5705 & 6.8073 & 301.01 & 3.1837 & 5.1713 & 6.8328 & 10.016 \\
\hline 47 & 720 & 6.8604 & 6.8285 & 307.77 & 3.2452 & 5.1389 & 6.8328 & 10.078 \\
\hline 48 & 750 & 7.1432 & 6.8493 & 314.07 & 3.3015 & 5.1086 & 6.8328 & 10.134 \\
\hline 49 & 780 & 7.426 & 6.8702 & 320.31 & 3.3568 & 5.0784 & 6.8328 & 10.19 \\
\hline 50 & 810 & 7.7101 & 6.8914 & 324.19 & 3.3871 & 5.0492 & 6.8328 & 10.22 \\
\hline 51 & 840 & 7.9943 & 6.9126 & 331.48 & 3.4526 & 5.0212 & 6.8328 & 10.285 \\
\hline 52 & 870 & 8.2828 & 6.9344 & 336.93 & 3.4984 & 4.9942 & 6.8328 & 10.331 \\
\hline 53 & 900 & 8.5741 & 6.9565 & 342.91 & 3.5492 & 4.9705 & 6.8328 & 10.382 \\
\hline 54 & 930 & 8.8668 & 6.9788 & 348.21 & 3.5925 & 4.9458 & 6.8328 & 10.425 \\
\hline 55 & 960 & 9.1609 & 7.0014 & 353.93 & 3.6396 & 4.9216 & 6.8328 & 10.472 \\
\hline 56 & 990 & 9.448 & 7.0236 & 357.76 & 3.6674 & 4.9012 & 6.8328 & 10.5 \\
\hline 57 & 1020 & 9.7336 & 7.0458 & 363.58 & 3.7153 & 4.8809 & 6.8328 & 10.548 \\
\hline 8 & 1050 & 10.022 & 7.0684 & 368.98 & 3.7585 & 4.8589 & 6.8328 & 10.591 \\
\hline 59 & 1080 & 10.301 & 7.0904 & 373.02 & 3.7879 & 4.8391 & 6.8328 & 10.621 \\
\hline 60 & 1110 & 10.585 & 7.1129 & 377.95 & 3.8258 & 4.8192 & 6.8328 & 10.659 \\
\hline 61 & 1140 & 10.877 & 7.1363 & 382.93 & 3.8635 & 4.8005 & 6.8328 & 10.696 \\
\hline 62 & 1170 & 11.167 & 7.1596 & 387.34 & 3.8952 & 4.7813 & 6.8328 & 10.728 \\
\hline 63 & 1200 & 11.457 & 7.183 & 392.06 & 3.9299 & 4.7626 & 6.8328 & 10.763 \\
\hline 4 & 1230 & 11.743 & 7.2062 & 396.36 & 3.9601 & 4.7472 & 6.8328 & 10.793 \\
\hline 65 & 1260 & 12.027 & 7.2295 & 401.76 & 4.0012 & 4.7279 & 6.8328 & 10.834 \\
\hline 66 & 1290 & 12.308 & 7.2527 & 404.59 & 4.0165 & 4.7098 & 6.8328 & 10.849 \\
\hline 7 & 1320 & 12.591 & 7.2762 & 409.47 & 4.0518 & 4.6944 & 6.8328 & 10.885 \\
\hline 68 & 1350 & 12.88 & 7.3003 & 413.98 & 4.0829 & 4.6795 & 6.8328 & 10.916 \\
\hline 69 & 1380 & 13.172 & 7.3249 & 417.76 & 4.1063 & 4.6652 & 6.8328 & 10.939 \\
\hline 70 & 1410 & 13.464 & 7.3495 & 422.16 & 4.1357 & 4.6526 & 6.8328 & 10.969 \\
\hline 71 & 1440 & 13.758 & 7.3746 & 425.99 & 4.1591 & 4.6388 & 6.8328 & 10.992 \\
\hline 72 & 1470 & 14.042 & 7.399 & 429.93 & 4.1836 & 4.625 & 6.8328 & 11.016 \\
\hline 73 & 1500 & 14.323 & 7.4233 & 434.02 & 4.2096 & 4.6096 & 6.8328 & 11.042 \\
\hline 74 & 1530 & 14.609 & 7.4481 & 436.53 & 4.2199 & 4.5953 & 6.8328 & 11.053 \\
\hline 75 & 1560 & 14.897 & 7.4734 & 441.31 & 4.2516 & 4.5816 & 6.8328 & 11.084 \\
\hline 6 & 1590 & 15.19 & 7.4992 & 445.29 & 4.2753 & 4.5662 & 6.8328 & 11.108 \\
\hline 77 & 1614.3 & 15.429 & 7.5203 & 447.97 & 4.2889 & 4.5552 & 6.8328 & 11.122 \\
\hline
\end{tabular}

Projeject: COLETO CREEK FACILITY
Sample No.: S-14
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/5/11
Test Date: \(12 / 5 / 11\)
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 26.0'-28.0'
Elevation: ----

Soil Description: CLAYEY F-M SAND LITTLE SILT- BROWNISH GRAY SC
Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 6.02 in
Specimen Area: 6.36 in^2
Specimen Area: 6.36 in^2

```

Piston Area: 0.00 in^2 Piston Friction: 0.00 1b Piston Weight: 0.007 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: \(0.00 \mathrm{bb} / \mathrm{in}\) Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Total & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & & & Effective & Effective Horizontal & & & \\
\hline \[
\begin{array}{r}
\text { Strain } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Vertical } \\
& \text { Stress } \\
& \text { tsf }
\end{aligned}
\] & Horizontal
Stress
tsf & \[
\begin{aligned}
& \text { Pressure } \\
& \text { tsf }
\end{aligned}
\] & Parameter \({ }^{\text {A }}\) & \[
\begin{aligned}
& \text { Stress } \\
& \text { tsf }
\end{aligned}
\] & Horizonta
Stress
tsf & Stress & & \({ }_{\text {tsf }}^{\text {q }}\) \\
\hline 0.00 & 6.8328 & 6.8328 & 0 & 0.000 & 1.7924 & 1.7924 & 1.000 & 1.7924 & \\
\hline 0.03 & 7.2441 & 6.8328 & 0.21566 & 0.524 & 1.9881 & 1.5767 & 1.261 & 1.7824 & 0.20567 \\
\hline 0.08 & 7.3929 & 6.8328 & 0.35649 & 0.637 & 1.996 & 1.4359 & 1.390 & 1.7159 & 0.28004 \\
\hline 0.13 & 7.4756 & 6.8328 & 0.45002 & 0.700 & 1.9852 & 1.3424 & 1.479 & 1.6638 & 0.32142 \\
\hline 0.17 & 7.5334 & 6.8328 & 0.51768 & 0.739 & 1.9753 & 1.2747 & 1.550 & 1.625 & 0.35031 \\
\hline 0.22 & 7.5828 & 6.8328 & 0.5705 & 0.761 & 1.9719 & 1.2219 & 1.614 & 1.5969 & 0.37502 \\
\hline 0.27 & 7.6239 & 6.8328 & 0.61231 & 0.774 & 1.9712 & 1.1801 & 1.670 & 1.5757 & 0.39557 \\
\hline 0.31
0.36 & 7.6609 & 6.8328
6.8328 & 0.64697
0.67558 & 0.781
0.784 & 1.9735 & 1.1454
1.1168 & \({ }_{1}^{1.723}\) & 1.5595
1.5475 & 0.41404
0.4307 \\
\hline \({ }_{0.41}\) & 7.7275 & 6.8328
6.8328 & \({ }_{0} .699978\) & 0.782 & 1.9873 & 1.0926 & 1.819 & 1.5475
1.54 & 0.44734
0.4 \\
\hline 0.46 & 7.7566 & 6.8328 & 0.72014 & 0.780 & 1.9961 & 1.0723 & 1.862 & 1.5342 & 0.4619 \\
\hline 0.50 & 7.7839 & 6.8328 & 0.73774 & 0.776 & 2.0058 & 1.0547 & 1.902 & 1.5302 & 0.47557 \\
\hline 0.55
0.65 & 7.8118
7.8693 & 6. 63328
6.8328 & 0.7526
0.7768 & 0.769
0.749 & 2.0188 & 1.0398 & \({ }^{1} .942\) & 1.5323
1.5338 & 0.48951
0.51825 \\
\hline 0.65
0.74 & 7.8693 & 6.8328 & 0.7768
0.79496 & 0.749
0.729 & 2.0521 & 1.0156 & \({ }_{2} 2.021\) & 1.5338 & 0.51825 \\
\hline \({ }_{0.84}\) & 7.9715 & 6.8328
6.8328 & \({ }_{0.69703}\) & 0.612 & 2.2831 & 1.0954 & 2.040 & 1.6647 & 0.54543
0.56936 \\
\hline 0.93 & 8.0287 & 6.8328 & 0.79881 & 0.668 & 2.1895 & 0.99359 & 2.204 & 1.5915 & 0.59796 \\
\hline 1.02 & 8.0822 & 6.8328 & 0.79881 & 0.639 & 2.243 & 0.99359 & 2.258 & 1.6183 & 0.62472 \\
\hline 1.12 & 8.1321 & 6.8328 & 0.80101 & 0.616 & 2.2907 & 0.99139 & 2.311 & 1.641 & 0.64966 \\
\hline 1.21 & 8.1854 & 6.8328 & 0.80156 & 0.593 & 2.3435 & 0.99084 & 2.365 & 1.6672 & 0.67632 \\
\hline 1.31 & 8.2369 & 6.8328 & 0.79936 & 0.569 & 2.3971 & 0.99304 & 2.414 & 1.6951 & 0.70204 \\
\hline 1.40 & 8.287 & 6.8328 & 0.79771 & 0.549 & 2.4489 & 0.99469 & 2.462 & 1.7218 & 0.7271 \\
\hline 1.49 & 8.3365 & 6.8328 & 0.79331 & 0.528 & 2.5028 & 0.99909 & 2.505 & 1.751 & 0.75187 \\
\hline 1.59 & 8.3876 & 6.8328 & 0.7878 & 0.507 & 2.5594 & 1.0046 & 2.548 & 1.782 & 0.7774 \\
\hline 1.69 & 8.4392 & 6.8328 & 0.779 & 0.485 & 2.6198 & 1.0134 & 2.585 & 1.8166 & 0.80319 \\
\hline 1.79 & 8.4872 & 6.8328 & 0.76965 & 0.465 & 2.6772 & 1.0227 & 2.618 & 1.8499 & 0.82721 \\
\hline 1.88
1.98 & 8.534 & 6.8328
6.8328 & 0.75975
0.74874 & 0.447 & 2.7338 & 1.0326 & 2.647 & 1.8832 & 0.85058 \\
\hline 1.98
2.08 & 8.5806
8.6254 & 6.8328
6.8328 & 0.74874
0.73664 & 0.428
0.411 & 2.7914
2.8483 & 1.0436 & 2.675
2.698 & 1.9175 & 0.87389
0.89628 \\
\hline 2.17 & 8.6683 & 6.8328 & 0.72564 & 0.395 & 2.8483
2.923 & 1.0668 & 2.721 & 1.9845 & 0.91776 \\
\hline 2.27 & 8.7135 & 6.8328 & 0.71188 & 0.379 & 2.9612 & 1.0805 & 2.741 & 2.0209 & 0.94034 \\
\hline 2.56 & 8.8324 & 6.8328 & 0.66787 & 0.334 & 3.1241 & 1.1245 & 2.778 & 2.1243 & 0.99978 \\
\hline 2.84 & 8.9494 & 6.8328 & 0.62331 & 0.294 & 3.2856 & 1.1691 & 2.810 & 2.2274 & 1.0583 \\
\hline 3.12 & 9.0543 & 6.8328 & 0.58095 & 0.262 & 3.433 & 1.2114 & 2.834 & 2.3222 & 1.1108 \\
\hline 3.41
3.69 & 9.1562
9.2545 & 6.8328
6.8328 & 0.5672
0.52209 & 0.244 & 3.5486 & & & & \\
\hline \(\begin{array}{r}3.69 \\ 3.98 \\ \hline\end{array}\) & 9.2545
9.3487 & 6.8328
6.8328 & 0.52209
0.47862 & 0.216
0.190 & 3.692
3.8297 & 1.2703
1.3138 & 2.906
2.915 & 2.4811
2.5717 & 1.2108 \\
\hline 4.27 & 9.4383 & 6.8328 & 0.43571 & 0.167 & 3.9622 & 1.3567 & 2.921 & 2.6595 & 1.3028 \\
\hline 4.56 & 9.5201 & 6.8328 & 0.3939 & 0.147 & 4.0858 & 1.3985 & 2.922 & 2.7421 & 1.3437 \\
\hline 4.84 & 9.6003 & 6.8328 & 0.35429 & 0.128 & 4.2056 & 1.4381 & 2.924 & 2.8218 & 1.3837 \\
\hline 5.13 & 9.672 & 6.8328 & 0.31358 & 0.110 & 4.318 & 1.4788 & 2.920 & 2.8984 & 1.4196 \\
\hline 5.41
5.70 & 9.7494
9.8222 & 6.8328
6.8328 & 0.27562
0.23546 & 0.095
0.079 & 4.4333
4.5463 & 1.5168 & 2.923
2.920 & 2.9751 & 1.4583 \\
\hline 5.99 & 9.8912 & 6.8328 & 0.1997 & 0.065 & 4.6511 & 1.5927 & 2.920 & 3.1219 & 1.5292 \\
\hline 6.28 & 9.9525 & 6.8328 & 0.16504 & 0.053 & 4.747 & 1.6274 & 2.917 & 3.1872 & 1.5598 \\
\hline 6.57 & 10.016 & 6.8328 & 0.13093 & 0.041 & 4.8452 & 1.6615 & 2.916 & 3.2533 & 1.5918 \\
\hline 6.86 & 10.078 & 6.8328 & 0.098476 & 0.030 & 4.9391 & 1.6939 & 2.916 & 3.3165 & 1.6226 \\
\hline 7.14 & 10.134 & 6.8328 & 0.068218 & 0.021 & 5.0256 & 1.7242 & 2.915 & 3.3749 & 1.6507 \\
\hline 7.43
7.71 & 10.19 & 6. 63328
6.8328 & 0.03796
0.0088023 & & 5.1173
5.1707 & 1.7544 & 2. 913 & 3.4328 & 1. 6784 \\
\hline 7.71 & 10.22
10.235 & 6.8328
6.8328 & 0.0088023
-0.019255 & 0.003
-0.006 & 5.1707
5.2642 & 1.7836
1.8116 & 2.899

2.906 & 3.4771
3.5379 & 1.6935
1.7263 \\
\hline 8.28 & 10.331 & 6.8328 & -0.046212 & -0.013 & 5.337 & 1.8386 & \({ }_{2}^{2.903}\) & 3.5878 & 1.7492 \\
\hline 8.57 & 10.382 & 6.8328 & -0.069868 & -0.020 & 5.4114 & 1.8623 & 2.906 & 3.6368 & 1.7746 \\
\hline 8.87 & 10.425 & 6.8328 & -0.094625 & -0.026 & 5.4795 & 1.887 & 2.904 & 3.6832 & 1.7962 \\
\hline 9.16 & 10.472 & 6.83328 & -0.11883 & -0.033 & 5.5509 & 1.9112 & 2.904 & 3.731 & 1.8198 \\
\hline 9.45
9.73 & 10.5
10.548 & 6.83288
6.8328 & -0.13919 & -0.038 & 5.599
5.6673 & 1.9316 & \(\begin{array}{r}2.899 \\ \\ \\ \text { 2 } \\ \hline\end{array}\) & 3.7653
3.8096 & 1.8337 \\
\hline 10.02 & 10.591 & 6.8328 & \({ }_{-}-0.18155\) & -0.048 & 5.7324 & 1.9739 & 2.904 & 3.8096
3.8532 & 1.8792 \\
\hline 10.30 & 10.621 & 6.8328 & -0.20135 & -0.053 & 5.7816 & 1.9937 & 2.900 & 3.8877 & 1.8939 \\
\hline 10.58 & 10.659 & 6.8328 & -0.22116 & -0.058 & 5.8393 & 2.0136 & 2.900 & 3.9264 & 1.9129 \\
\hline 10.88 & 10.696 & 6.8328 & -0.23986 & -0.062 & 5.8958 & 2.0323 & 2.901 & & \\
\hline 11.17 & 10.728 & 6.8328 & -0.25912 & -0.067 & 5.9468 & 2.0515 & 2.899 & 3.9991 & 1.9476 \\
\hline 11.46 & 10.763 & 6.8328 & -0.27782 & -0.071 & 6.0001 & 2.0702 & 2.898 & 4.0351 & 1.9649 \\
\hline 11.74 & 10.793 & 6.8328 & -0.29323 & -0.074 & 6.0458 & 2.0856 & 2.899 & 4.0657 & 1.9801 \\
\hline 12.03 & 10.834 & 6.8328 & -0.31248 & -0.078 & 6.1061 & 2.1049 & 2.901 & 4.1055 & 2.0006 \\
\hline 12.31 & 10.849 & 6.8328 & -0.33064 & -0.082 & 6.1395 & 2.123 & 2.892 & 4.1313 & 2.0083 \\
\hline 12.59 & 10.885 & 6.8328 & -0.34604 & -0.085 & 6.1903 & 2.1384 & 2.895 & 4.1643 & 2.0259 \\
\hline 12.88 & 10.916 & 6.8328 & -0.36089 & -0.088 & 6.2362 & 2.1533 & 2.896 & 4.1948 & 2.0415 \\
\hline 13.17 & 10.939 & 6.8328 & -0.3752 & -0.091 & 6.2739 & 2.1676 & 2.894 & 4.2208 & 2.0532 \\
\hline 13.46 & 10.969 & 6.8328 & -0.38785 & -0.094 & 6.316 & 2.1802 & 2.897 & 4.2481 & 2.0679 \\
\hline 13.76 & 10.992 & 6.8328 & -0.4016 & -0.097 & 6.3531 & 2.194 & 2.896 & 4.2735 & 2.0795 \\
\hline 14.04
14.32 & 11.016
11.042 & 6.8328
6.8328 & -0.41536 & -0.099 & \begin{tabular}{l}
6. \\
6.43914 \\
\hline
\end{tabular} & 2.2078
2.2232 & 2.895
2.894 & 4.2996
4.328
4. & 2.0918
2.1048 \\
\hline 14.61 & 11.053 & 6.8328 & -0.44507 & -0.105 & 6.4574 & 2.2375 & 2.886 & 4.3474 & 2.11 \\
\hline 14.90 & 11.084 & 6.8328 & -0.45882 & -0.108 & 6.5029 & 2.2512 & 2.889 & 4.377 & 2.1258 \\
\hline 15.19 & 11.108 & 6.8328 & -0.47422 & -0.111 & 6.5419 & 2.2666 & 2.886 & 4.4043 & 2.1376 \\
\hline 15.43 & 11.122 & 6.8328 & -0.48523 & -0.113 & 6.5665 & 2.2776 & 2.883 & 4.4221 & 2.1444 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: \(B-4-1 S-7\)
Sample Type: 3" ST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Symbol} & (1) & \(\triangle\) & \(\square\) & \\
\hline \multicolumn{2}{|l|}{Test No.} & 7 PSI & 13.9 PSI & 20.8 PSI & \\
\hline \multirow{6}{*}{\[
\frac{\overline{\bar{a}}}{\underline{\bar{E}}}
\]} & Diameter, in & 2.8457 & 2.8382 & 2.837 & \\
\hline & Height, in & 5.9839 & 5.9646 & 5.7075 & \\
\hline & Water Content, \% & 13.01 & 13.76 & 17.65 & \\
\hline & Dry Density, pcf & 117.3 & 118. & 109.8 & \\
\hline & Saturation, \% & 83.50 & 90.24 & 92.02 & \\
\hline & Void Ratio & 0.41352 & 0.40495 & 0.50912 & \\
\hline \multirow[b]{5}{*}{\[
\begin{array}{|c}
\frac{1}{0} \\
\frac{0}{\omega} \\
\frac{1}{\omega} \\
\frac{0}{0} \\
\frac{0}{0} \\
0
\end{array}
\]} & Water Content, \% & 15.40 & 14.54 & 18.60 & \\
\hline & Dry Density, pcf & 117.7 & 119.6 & 111. & \\
\hline & Saturation, \% & 100.00 & 100.00 & 100.00 & \\
\hline & Void Ratio & 0.40877 & 0.3861 & 0.49381 & \\
\hline & Back Press., tsf & 5.046 & 5.0443 & 5.0958 & \\
\hline \multicolumn{2}{|l|}{Minor Prin. Stress, tsf} & 0.49798 & 0.99651 & 1.4418 & \\
\hline \multicolumn{2}{|l|}{Max. Dev. Stress, tsf} & 3.6849 & 7.0909 & 7.9769 & \\
\hline \multicolumn{2}{|l|}{Time to Failure, min} & 770.98 & 772.22 & 773.86 & \\
\hline \multicolumn{2}{|l|}{Strain Rate, \%/min} & 0.02 & 0.02 & 0.02 & \\
\hline \multicolumn{2}{|l|}{B-Value} & . 97 & . 95 & . 99 & \\
\hline \multicolumn{2}{|l|}{Measured Specific Gravity} & 2.65 & 2.65 & 2.65 & \\
\hline \multicolumn{2}{|l|}{Liquid Limit} & 27 & 27 & 27 & \\
\hline \multicolumn{2}{|l|}{Plastic Limit} & 11 & 11 & 11 & \\
\hline \multicolumn{2}{|l|}{Plasticity Index} & 16 & 16 & 16 & \\
\hline \multicolumn{2}{|l|}{Failure Sketch} & & & & \\
\hline
\end{tabular}

Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

\begin{tabular}{|l|l|l|}
\hline Project: COLETO CREEK FACILITY & Location: IPR-GDF SUEZ & Project No.: 60225561 \\
\hline Boring No.: B-4-1 S-7 & Tested By: BCM & Checked By: WPQ \\
\hline Sample No.: S-7 & Test Date: \(12 / 1 / 11\) & Depth: \(12.0^{\prime}-14.0^{\prime}\) \\
\hline Test No.: B-4-1 S-7 & Sample Type: \(3^{\prime \prime}\) ST & Elevation: ---- \\
\hline Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC \\
\hline Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: B-4-1 S-7
Sample No.: S-7
Test No.: 7 PSI

Soi Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore Pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 6.36 & 0 & 0 & 5.046 & 5.544 & 5.544 \\
\hline 2 & 5 & 0.086461 & 6.3655 & 19.795 & 0.2239 & 5.1593 & 5.544 & 5.7679 \\
\hline 3 & 10 & 0.18589 & 6.3719 & 24.744 & 0.2796 & 5.1856 & 5.544 & 5.8236 \\
\hline 4 & 15 & 0.28388 & 6.3781 & 28.64 & 0.3233 & 5.2008 & 5.544 & 5.8673 \\
\hline 5 & 20 & 0.38187 & 6.3844 & 31.851 & 0.3592 & 5.209 & 5.544 & 5.9032 \\
\hline 6 & 25 & 0.47842 & 6.3906 & 34.536 & 0.38911 & 5.2137 & 5.544 & 5.9331 \\
\hline 7 & 30.001 & 0.57785 & 6.397 & 37.116 & 0.41775 & 5.216 & 5.544 & 5.9618 \\
\hline 8 & 35.001 & 0.6744 & 6.4032 & 40.064 & 0.4505 & 5.2166 & 5.544 & 5.9945 \\
\hline 9 & 40.001 & 0.77094 & 6.4094 & 42.433 & 0.47667 & 5.216 & 5.544 & 6.0207 \\
\hline 10 & 45.001 & 0.86893 & 6.4158 & 44.961 & 0.50456 & 5.2148 & 5.544 & 6.0486 \\
\hline 11 & 50.001 & 0.96692 & 6.4221 & 47.488 & 0.5324 & 5.2125 & 5.544 & 6.0764 \\
\hline 12 & 55.001 & 1.0649 & 6.4285 & 50.015 & 0.56017 & 5.2102 & 5.544 & 6.1042 \\
\hline 13 & 60.001 & 1.1629 & 6.4349 & 52.436 & 0.58671 & 5.2078 & 5.544 & 6.1307 \\
\hline 14 & 70.001 & 1.3589 & 6.4476 & 57.701 & 0.64434 & 5.2014 & 5.544 & 6.1883 \\
\hline 15 & 80.001 & 1.5549 & 6.4605 & 63.545 & 0.70819 & 5.1932 & 5.544 & 6.2522 \\
\hline 16 & 90.002 & 1.7494 & 6.4733 & 69.652 & 0.77472 & 5.1851 & 5.544 & 6.3187 \\
\hline 17 & 100 & 1.9454 & 6.4862 & 75.812 & 0.84155 & 5.1751 & 5.544 & 6.3855 \\
\hline 18 & 110 & 2.1399 & 6.4991 & 82.287 & 0.91162 & 5.1652 & 5.544 & 6.4556 \\
\hline 19 & 120 & 2.333 & 6.5119 & 89.026 & 0.98433 & 5.1535 & 5.544 & 6.5283 \\
\hline 20 & 130 & 2.5261 & 6.5248 & 95.87 & 1.0579 & 5.1407 & 5.544 & 6.6019 \\
\hline 21 & 140 & 2.7178 & 6.5377 & 102.5 & 1.1289 & 5.1278 & 5.544 & 6.6729 \\
\hline 22 & 150 & 2.9109 & 6.5507 & 109.3 & 1.2013 & 5.1126 & 5.544 & 6.7453 \\
\hline 23 & 160 & 3.1054 & 6.5639 & 115.93 & 1.2716 & 5.0963 & 5.544 & 6.8156 \\
\hline 24 & 170 & 3.2999 & 6.5771 & 122.56 & 1.3417 & 5.0793 & 5.544 & 6.8857 \\
\hline 25 & 180 & 3.4959 & 6.5904 & 129.2 & 1.4115 & 5.0618 & 5.544 & 6.9555 \\
\hline 26 & 190 & 3.6904 & 6.6037 & 135.46 & 1.4769 & 5.0443 & 5.544 & 7.0209 \\
\hline 27 & 200 & 3.8879 & 6.6173 & 141.83 & 1.5432 & 5.0262 & 5.544 & 7.0872 \\
\hline 28 & 210 & 4.0838 & 6.6308 & 148.15 & 1.6087 & 5.0081 & 5.544 & 7.1527 \\
\hline 29 & 220 & 4.2798 & 6.6444 & 154.31 & 1.6721 & 4.9905 & 5.544 & 7.2161 \\
\hline 30 & 230 & 4.4744 & 6.6579 & 160.52 & 1.7359 & 4.973 & 5.544 & 7.2799 \\
\hline 31 & 240 & 4.6675 & 6.6714 & 166.1 & 1.7926 & 4.9555 & 5.544 & 7.3366 \\
\hline 32 & 270 & 5.2482 & 6.7123 & 182.69 & 1.9596 & 4.9052 & 5.544 & 7.5036 \\
\hline 33 & 300 & 5.839 & 6.7544 & 198.8 & 2.1191 & 4.8568 & 5.544 & 7.6631 \\
\hline 34 & 330 & 6.4298 & 6.7971 & 214.22 & 2.2692 & 4.8118 & 5.544 & 7.8132 \\
\hline 35 & 360 & 7.012 & 6.8396 & 228.12 & 2.4014 & 4.7674 & 5.544 & 7.9454 \\
\hline 36 & 390 & 7.597 & 6.8829 & 242.18 & 2.5333 & 4.723 & 5.544 & 8.0773 \\
\hline 37 & 420 & 8.1879 & 6.9272 & 255.97 & 2.6605 & 4.6786 & 5.544 & 8.2045 \\
\hline 38 & 450 & 8.7758 & 6.9719 & 269.13 & 2.7794 & 4.6354 & 5.544 & 8.3234 \\
\hline 39 & 480 & 9.3565 & 7.0165 & 281.45 & 2.8881 & 4.5921 & 5.544 & 8.4321 \\
\hline 40 & 510 & 9.943 & 7.0622 & 293.66 & 2.9939 & 4.5506 & 5.544 & 8.5379 \\
\hline 41 & 540 & 10.532 & 7.1087 & 305.19 & 3.0911 & 4.5098 & 5.544 & 8.6351 \\
\hline 42 & 570 & 11.116 & 7.1554 & 316.25 & 3.1822 & 4.47 & 5.544 & 8.7262 \\
\hline 43 & 600 & 11.698 & 7.2026 & 326.89 & 3.2677 & 4.428 & 5.544 & 8.8117 \\
\hline 44 & 630 & 12.285 & 7.2508 & 337.63 & 3.3526 & 4.3812 & 5.544 & 8.8966 \\
\hline 45 & 660 & 12.874 & 7.2998 & 347.58 & 3.4282 & 4.3368 & 5.544 & 8.9722 \\
\hline 46 & 690 & 13.463 & 7.3495 & 357.84 & 3.5056 & 4.2901 & 5.544 & 9.0496 \\
\hline 47 & 720 & 14.047 & 7.3994 & 367.48 & 3.5757 & 4.2381 & 5.544 & 9.1197 \\
\hline 48 & 750 & 14.632 & 7.4501 & 376.32 & 3.6369 & 4.2264 & 5.544 & 9.1809 \\
\hline 49 & 770.98 & 15.049 & 7.4867 & 383.16 & 3.6849 & 4.1663 & 5.544 & 9.2289 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.98 in Specimen Area: 6.36 in^2 Specimen Volume: 38.06 in^3

Liquid Limit: 27

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
```

Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

```

Specimen Height: 5.96 in
Specimen Area: 6.33 in^2
Specimen Volume: 37.74 in^3

Liquid Limit: 27
Time

0
5.0001
10
15
20
25
30.001 35.001
40.001 45.001 50.001
55.001
60.001 70.001
80.002
90.002

100
110

\section*{120
130}

140
140
150
160
170
180
180
190
200
200
210
\[
0
\]
Vertica1
Strain
\(\%\)
0
0.088226
Corrected
Area
in^2
\begin{tabular}{rr}
Deviator & Deviator \\
Load & Stress \\
1 b & tsf
\end{tabular}
\(0.08822^{0}\)
0.18929
0.29035
0.39301
0.49407
0.59834
6.3266
6.3322
6.3386

Piston Area: 0.00 in^2
Piston Friction: 0.001 b
Piston Weight: 0.001 b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65
\begin{tabular}{rrr}
Pore & Horizontal & Vertical \\
Pressure & Stress & Stress \\
tsf & tsf & tsf \\
5.0443 & 6.0408 & 6.0408 \\
5.1902 & 6.0408 & 6.5251 \\
5.2828 & 6.0408 & 6.6978 \\
5.3416 & 6.0408 & 6.8014 \\
5.381 & 6.0408 & 6.88 \\
5.4104 & 6.0408 & 6.9452 \\
5.4304 & 6.0408 & 7.0061 \\
5.4431 & 6.0408 & 7.0628 \\
5.4526 & 6.0408 & 7.1227 \\
5.4565 & 6.0408 & 7.1799 \\
5.4587 & 6.0408 & 7.2395 \\
5.4581 & 6.0408 & 7.299 \\
5.4554 & 6.0408 & 7.3608 \\
5.4448 & 6.0408 & 7.4766 \\
5.4271 & 6.0408 & 7.6041 \\
5.406 & 6.0408 & 7.7328 \\
5.3805 & 6.0408 & 7.8633 \\
5.3527 & 6.0408 & 7.9933 \\
5.3222 & 6.0408 & 8.1251 \\
5.2895 & 6.0408 & 8.258 \\
5.2534 & 6.0408 & 8.3871 \\
5.219 & 6.0408 & 8.5155 \\
5.1813 & 6.0408 & 8.6426 \\
5.1441 & 6.0408 & 8.7675 \\
5.107 & 6.0408 & 8.8869 \\
5.0693 & 6.0408 & 9.0019 \\
5.0321 & 6.0408 & 9.114 \\
4.9949 & 6.0408 & 9.2232 \\
4.9583 & 6.0408 & 9.3264 \\
4.9222 & 6.0408 & 9.4276 \\
4.8873 & 6.0408 & 9.5259 \\
4.7863 & 6.0408 & 9.7987 \\
4.6926 & 6.0408 & 10.052 \\
4.6066 & 6.0408 & 10.279 \\
4.5289 & 6.0408 & 10.496 \\
4.454 & 6.0408 & 10.702 \\
4.3803 & 6.0408 & 10.914 \\
4.3087 & 6.0408 & 11.12 \\
4.2377 & 6.0408 & 11.333 \\
4.1678 & 6.0408 & 11.545 \\
4.1007 & 6.0408 & 11.733 \\
4.0319 & 6.0408 & 11.935 \\
3.9659 & 6.0408 & 12.117 \\
3.9004 & 6.0408 & 12.312 \\
3.8366 & 6.0408 & 12.503 \\
3.7706 & 6.0408 & 12.666 \\
3.7068 & 6.0408 & 12.839 \\
3.543 & 6.0408 & 13.006 \\
3.5959 & 6.0408 & 13.132 \\
& &
\end{tabular}

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767
Specimen Height: 5.96 in

Specimen Area: 6.33 in^2 Specimen Volume: 37.74 in^3

Liquid Limit: 27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
\begin{tabular}{|c|c|c|c|c|}
\hline Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & \begin{tabular}{l}
Total \\
Horizontal
\end{tabular} & Excess Pore & A \\
\hline Strain \% & Stress tsf & Stress tsf & Pressure tsf & Parameter \\
\hline 0.00 & 6.0408 & 6.0408 & 0 & 0.000 \\
\hline 0.09 & 6.5251 & 6.0408 & 0.1459 & 0.301 \\
\hline 0.19 & 6.6978 & 6.0408 & 0.23854 & 0.363 \\
\hline 0.29 & 6.8014 & 6.0408 & 0.29734 & 0.391 \\
\hline 0.39 & 6.88 & 6.0408 & 0.33673 & 0.401 \\
\hline 0.49 & 6.9452 & 6.0408 & 0.36613 & 0.405 \\
\hline 0.60 & 7.0061 & 6.0408 & 0.3861 & 0.400 \\
\hline 0.70 & 7.0628 & 6.0408 & 0.39886 & 0.390 \\
\hline 0.81 & 7.1227 & 6.0408 & 0.40829 & 0.377 \\
\hline 0.91 & 7.1799 & 6.0408 & 0.41217 & 0.362 \\
\hline 1.02 & 7.2395 & 6.0408 & 0.41439 & 0.346 \\
\hline 1.12 & 7.299 & 6.0408 & 0.41384 & 0.329 \\
\hline 1.22 & 7.3608 & 6.0408 & 0.41107 & 0.311 \\
\hline 1.44 & 7.4766 & 6.0408 & 0.40053 & 0.279 \\
\hline 1.65 & 7.6041 & 6.0408 & 0.38277 & 0.245 \\
\hline 1.86 & 7.7328 & 6.0408 & 0.36169 & 0.214 \\
\hline 2.07 & 7.8633 & 6.0408 & 0.33617 & 0.184 \\
\hline 2.27 & 7.9933 & 6.0408 & 0.30844 & 0.158 \\
\hline 2.48 & 8.1251 & 6.0408 & 0.27793 & 0.133 \\
\hline 2.69 & 8.258 & 6.0408 & 0.2452 & 0.111 \\
\hline 2.90 & 8.3871 & 6.0408 & 0.20914 & 0.089 \\
\hline 3.11 & 8.5155 & 6.0408 & 0.17474 & 0.071 \\
\hline 3.32 & 8.6426 & 6.0408 & 0.13702 & 0.053 \\
\hline 3.52 & 8.7675 & 6.0408 & 0.099854 & 0.037 \\
\hline 3.74 & 8.8869 & 6.0408 & 0.062686 & 0.022 \\
\hline 3.95 & 9.0019 & 6.0408 & 0.024963 & 0.008 \\
\hline 4.16 & 9.114 & 6.0408 & -0.012204 & -0.004 \\
\hline 4.36 & 9.2232 & 6.0408 & -0.049372 & -0.016 \\
\hline 4.57 & 9.3264 & 6.0408 & -0.085985 & -0.026 \\
\hline 4.78 & 9.4276 & 6.0408 & -0.12204 & -0.036 \\
\hline 4.98 & 9.5259 & 6.0408 & -0.15699 & -0.045 \\
\hline 5.60 & 9.7987 & 6.0408 & -0.25796 & -0.069 \\
\hline 6.22 & 10.052 & 6.0408 & -0.35171 & -0.088 \\
\hline 6.83 & 10.279 & 6.0408 & -0.43769 & -0.103 \\
\hline 7.45 & 10.496 & 6.0408 & -0.51536 & -0.116 \\
\hline 8.07 & 10.702 & 6.0408 & -0.59025 & -0.127 \\
\hline 8.69 & 10.914 & 6.0408 & -0.66403 & -0.136 \\
\hline 9.31 & 11.12 & 6.0408 & -0.73559 & -0.145 \\
\hline 9.93 & 11.333 & 6.0408 & -0.8066 & -0.152 \\
\hline 10.55 & 11.545 & 6.0408 & -0.8765 & -0.159 \\
\hline 11.18 & 11.733 & 6.0408 & -0.94362 & -0.166 \\
\hline 11.80 & 11.935 & 6.0408 & -1.0124 & -0.172 \\
\hline 12.42 & 12.117 & 6.0408 & -1.0784 & -0.177 \\
\hline 13.03 & 12.312 & 6.0408 & -1.1439 & -0.182 \\
\hline 13.66 & 12.503 & 6.0408 & -1.2077 & -0.187 \\
\hline 14.28 & 12.666 & 6.0408 & -1.2737 & -0.192 \\
\hline 14.90 & 12.839 & 6.0408 & -1.3375 & -0.197 \\
\hline 15.52 & 13.006 & 6.0408 & -1.4013 & -0.201 \\
\hline 15.99 & 13.132 & 6.0408 & -1.4484 & -0.204 \\
\hline
\end{tabular}
Effective

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

Project: COLETO CREEK FACILITY Boring No.: B-4-1 S-7 Sample No.: S-7
Test No.: 20.8 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in
Specimen Area: 6.32 in^2 Specimen Volume: \(36.08 \mathrm{in} \wedge 3\)

Liquid Limit: 27
Time
Vertica1
Strain
\(\%\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
\begin{tabular}{r}
0 \\
5.0038 \\
10.004 \\
15.004 \\
20.004 \\
25.004 \\
30 \\
35 \\
40 \\
45.002 \\
50.003 \\
55.003 \\
60.003 \\
70.003 \\
80.004 \\
90.004 \\
100 \\
110 \\
120 \\
130 \\
140 \\
150 \\
160 \\
170 \\
180 \\
190 \\
200 \\
210 \\
220 \\
230 \\
240 \\
270 \\
300 \\
330 \\
360 \\
390 \\
420 \\
450 \\
480 \\
510 \\
540 \\
570 \\
600 \\
630 \\
660 \\
690 \\
720 \\
750 \\
773.86 \\
\hline
\end{tabular}
Corrected
Area
in^2
\begin{tabular}{rr}
Deviator & Deviator \\
Load & Stress \\
\(1 b\) & tsf
\end{tabular}

0
0.07
0.1
0.2
0.3
0
0.4749
0.57677
0.57677
0.67415

Piston Area: 0.00 in^2
Piston Friction: 0.001 b
Piston Weight: 0.001 b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 ib/in
Correction Type: Uniform
Measured Specific Gravity: 2.65
\begin{tabular}{rrr}
Pore & Horizontal & Vertical \\
Pressure & Stress & Stress \\
tsf & tsf & tsf \\
5.0958 & 6.5376 & 6.5376 \\
5.2246 & 6.5376 & 7.0504 \\
5.3665 & 6.5376 & 7.2455 \\
5.4806 & 6.5376 & 7.3663 \\
5.5686 & 6.5376 & 7.4524 \\
5.636 & 6.5376 & 7.5156 \\
5.6898 & 6.5376 & 7.5616 \\
5.7316 & 6.5376 & 7.5985 \\
5.7648 & 6.5376 & 7.6449 \\
5.7909 & 6.5376 & 7.6739 \\
5.8104 & 6.5376 & 7.7213 \\
5.8262 & 6.5376 & 7.7526 \\
5.8387 & 6.5376 & 7.7926 \\
5.8539 & 6.5376 & 7.8543 \\
5.8583 & 6.5376 & 7.9274 \\
5.855 & 6.5376 & 7.9932 \\
5.8463 & 6.5376 & 8.0716 \\
5.8338 & 6.5376 & 8.1484 \\
5.8186 & 6.5376 & 8.2227 \\
5.7979 & 6.5376 & 8.2931 \\
5.7762 & 6.5376 & 8.3741 \\
5.7523 & 6.5376 & 8.4769 \\
5.7278 & 6.5376 & 8.5521 \\
5.7018 & 6.5376 & 8.6477 \\
5.6735 & 6.5376 & 8.7263 \\
5.6442 & 6.5376 & 8.8033 \\
5.6148 & 6.5376 & 8.8828 \\
5.5849 & 6.5376 & 8.9849 \\
5.5534 & 6.5376 & 9.0877 \\
5.5208 & 6.5376 & 9.1746 \\
5.4876 & 6.5376 & 9.2583 \\
5.3849 & 6.5376 & 9.5364 \\
5.2746 & 6.5376 & 9.8297 \\
5.1589 & 6.5376 & 10.121 \\
5.0409 & 6.5376 & 10.419 \\
4.9187 & 6.5376 & 10.72 \\
4.7937 & 6.5376 & 11.033 \\
4.6665 & 6.5376 & 11.349 \\
4.535 & 6.5376 & 11.656 \\
4.4035 & 6.5376 & 11.951 \\
4.2698 & 6.5376 & 12.271 \\
4.1361 & 6.5376 & 12.587 \\
4.0008 & 6.5376 & 12.896 \\
3.8687 & 6.5376 & 13.213 \\
3.7378 & 6.5376 & 13.498 \\
3.6073 & 6.5376 & 13.775 \\
3.4807 & 6.5376 & 14.052 \\
3.3563 & 6.5376 & 14.327 \\
3.2617 & 6.5376 & 14.514 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/1/11
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 12.0'-14.0'
Elevation: ----

Soi 1 Description: F-M SAND LITTLE CLAY TRACE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D 4767

Specimen Height: 5.71 in
Specimen Area: 6.32 in^2 Specimen Volume: 36.08 in^3

Liquid Limit: 27
\begin{tabular}{|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & Total Horizontal \\
\hline & Strain & Stress & Stress \\
\hline & \% & tsf & tsf \\
\hline 1 & 0.00 & 6.5376 & 6.5376 \\
\hline 2 & 0.07 & 7.0504 & 6.5376 \\
\hline 3 & 0.17 & 7.2455 & 6.5376 \\
\hline 4 & 0.27 & 7.3663 & 6.5376 \\
\hline 5 & 0.37 & 7.4524 & 6.5376 \\
\hline 6 & 0.47 & 7.5156 & 6.5376 \\
\hline 7 & 0.58 & 7.5616 & 6.5376 \\
\hline 8 & 0.67 & 7.5985 & 6.5376 \\
\hline 9 & 0.78 & 7.6449 & 6.5376 \\
\hline 10 & 0.88 & 7.6739 & 6.5376 \\
\hline 11 & 0.98 & 7.7213 & 6.5376 \\
\hline 12 & 1.08 & 7.7526 & 6.5376 \\
\hline 13 & 1.18 & 7.7926 & 6.5376 \\
\hline 14 & 1.38 & 7.8543 & 6.5376 \\
\hline 15 & 1.59 & 7.9274 & 6.5376 \\
\hline 16 & 1.79 & 7.9932 & 6.5376 \\
\hline 17 & 1.99 & 8.0716 & 6.5376 \\
\hline 18 & 2.20 & 8.1484 & 6.5376 \\
\hline 19 & 2.40 & 8.2227 & 6.5376 \\
\hline 20 & 2.60 & 8.2931 & 6.5376 \\
\hline 21 & 2.81 & 8.3741 & 6.5376 \\
\hline 22 & 3.01 & 8.4769 & 6.5376 \\
\hline 23 & 3.21 & 8.5521 & 6.5376 \\
\hline 24 & 3.41 & 8.6477 & 6.5376 \\
\hline 25 & 3.61 & 8.7263 & 6.5376 \\
\hline 26 & 3.81 & 8.8033 & 6.5376 \\
\hline 27 & 4.02 & 8.8828 & 6.5376 \\
\hline 28 & 4.22 & 8.9849 & 6.5376 \\
\hline 29 & 4.42 & 9.0877 & 6.5376 \\
\hline 30 & 4.62 & 9.1746 & 6.5376 \\
\hline 31 & 4.82 & 9.2583 & 6.5376 \\
\hline 32 & 5.43 & 9.5364 & 6.5376 \\
\hline 33 & 6.04 & 9.8297 & 6.5376 \\
\hline 34 & 6.64 & 10.121 & 6.5376 \\
\hline 35 & 7.24 & 10.419 & 6.5376 \\
\hline 36 & 7.86 & 10.72 & 6.5376 \\
\hline 37 & 8.46 & 11.033 & 6.5376 \\
\hline 38 & 9.06 & 11.349 & 6.5376 \\
\hline 39 & 9.67 & 11.656 & 6.5376 \\
\hline 40 & 10.28 & 11.951 & 6.5376 \\
\hline 41 & 10.89 & 12.271 & 6.5376 \\
\hline 42 & 11.48 & 12.587 & 6.5376 \\
\hline 43 & 12.08 & 12.896 & 6.5376 \\
\hline 44 & 12.70 & 13.213 & 6.5376 \\
\hline 45 & 13.30 & 13.498 & 6.5376 \\
\hline 46 & 13.90 & 13.775 & 6.5376 \\
\hline 47 & 14.50 & 14.052 & 6.5376 \\
\hline 48 & 15.12 & 14.327 & 6.5376 \\
\hline
\end{tabular}

49

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b
Plastic Limit: 11

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform

Measured Specific Gravity: 2.65

Excess
Pore
Pore
Pressure
\begin{tabular}{|c|c|c|c|}
\hline Effective Vertical & Effective Horizontal & Stress & Effective \\
\hline Stress tsf & Stress tsf & Ratio & \[
p_{t s f}^{p}
\] \\
\hline 1.4418 & 1.4418 & 1.000 & 1.4418 \\
\hline 1.8258 & 1.313 & 1.391 & 1.5694 \\
\hline 1.879 & 1.1711 & 1.604 & 1.5251 \\
\hline 1.8857 & 1.057 & 1.784 & 1.4714 \\
\hline 1.8838 & 0.96898 & 1.944 & 1.4264 \\
\hline 1.8796 & 0.9016 & 2.085 & 1.3906 \\
\hline 1.8718 & 0.8478 & 2.208 & 1.3598 \\
\hline 1.8669 & 0.80595 & 2.316 & 1.3364 \\
\hline 1.8801 & 0.7728 & 2.433 & 1.3264 \\
\hline 1.883 & 0.74672 & 2.522 & 1.3149 \\
\hline 1.9108 & 0.72715 & 2.628 & 1.319 \\
\hline 1.9264 & 0.71139 & 2.708 & 1.3189 \\
\hline 1.9539 & 0.69889 & 2.796 & 1.3264 \\
\hline 2.0004 & 0.68368 & 2.926 & 1.342 \\
\hline 2.0691 & 0.67933 & 3.046 & 1.3742 \\
\hline 2.1382 & 0.68259 & 3.132 & 1.4104 \\
\hline 2.2253 & 0.69129 & 3.219 & 1.4583 \\
\hline 2.3146 & 0.70379 & 3.289 & 1.5092 \\
\hline 2.4041 & 0.719 & 3.344 & 1.5616 \\
\hline 2.4951 & 0.73965 & 3.373 & 1.6174 \\
\hline 2.5979 & 0.76139 & 3.412 & 1.6797 \\
\hline 2.7246 & 0.7853 & 3.469 & 1.7549 \\
\hline 2.8242 & 0.80976 & 3.488 & 1.817 \\
\hline 2.9459 & 0.83584 & 3.524 & 1.8909 \\
\hline 3.0528 & 0.8641 & 3.533 & 1.9584 \\
\hline 3.1592 & 0.89345 & 3.536 & 2.0263 \\
\hline 3.268 & 0.92279 & 3.541 & 2.0954 \\
\hline 3.3999 & 0.95268 & 3.569 & 2.1763 \\
\hline 3.5343 & 0.9842 & 3.591 & 2.2593 \\
\hline 3.6538 & 1.0168 & 3.593 & 2.3353 \\
\hline 3.7707 & 1.05 & 3.591 & 2.4103 \\
\hline 4.1515 & 1.1527 & 3.602 & 2.6521 \\
\hline 4.5551 & 1.263 & 3.607 & 2.909 \\
\hline 4.9621 & 1.3787 & 3.599 & 3.1704 \\
\hline 5.3783 & 1.4967 & 3.594 & 3.4375 \\
\hline 5.8017 & 1.6189 & 3.584 & 3.7103 \\
\hline 6.2388 & 1.7439 & 3.577 & 3.9914 \\
\hline 6.6822 & 1.8711 & 3.571 & 4.2767 \\
\hline 7.1206 & 2.0026 & 3.556 & 4.5616 \\
\hline 7.5479 & 2.1341 & 3.537 & 4.841 \\
\hline 8.0013 & 2.2678 & 3.528 & 5.1345 \\
\hline 8.4506 & 2.4015 & 3.519 & 5.426 \\
\hline 8.8949 & 2.5368 & 3.506 & 5.7159 \\
\hline 9.3444 & 2.6689 & 3.501 & 6.0066 \\
\hline 9.7607 & 2.7998 & 3.486 & 6.2803 \\
\hline 10.168 & 2.9303 & 3.470 & 6.5489 \\
\hline 10.571 & 3.0569 & 3.458 & 6.8139 \\
\hline 10.971 & 3.1813 & 3.449 & 7.0762 \\
\hline 11.253 & 3.2759 & 3.435 & 7.2643 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Effective & Effective & & \\
\hline Vertical & Horizontal & Stress & Effective \\
\hline \[
\begin{aligned}
& \text { Stress } \\
& \text { tsf }
\end{aligned}
\] & Stress & Ratio & ¢ \({ }_{\text {p }}\) \\
\hline 1.4418 & 1.4418 & 1.000 & 1.4418 \\
\hline 1.8258 & 1.313 & 1.391 & 1.5694 \\
\hline 1.879 & 1.1711 & 1.604 & 1.5251 \\
\hline 1.8857 & 1.057 & 1.784 & 1.4714 \\
\hline 1.8838 & 0.96898 & 1.944 & 1.4264 \\
\hline 1.8796 & 0.9016 & 2.085 & 1.3906 \\
\hline 1.8718 & 0.8478 & 2.208 & 1.3598 \\
\hline 1.8669 & 0.80595 & 2.316 & 1.3364 \\
\hline 1.8801 & 0.7728 & 2.433 & 1.3264 \\
\hline 1.883 & 0.74672 & 2.522 & 1.3149 \\
\hline 1.9108 & 0.72715 & 2.628 & 1.319 \\
\hline 1.9264 & 0.71139 & 2.708 & 1.3189 \\
\hline 1.9539 & 0.69889 & 2.796 & 1.3264 \\
\hline 2.0004 & 0.68368 & 2.926 & 1.342 \\
\hline 2.0691 & 0.67933 & 3.046 & 1.3742 \\
\hline 2.1382 & 0.68259 & 3.132 & 1.4104 \\
\hline 2.2253 & 0.69129 & 3.219 & 1.4583 \\
\hline 2.3146 & 0.70379 & 3.289 & 1.5092 \\
\hline 2.4041 & 0.719 & 3.344 & 1.5616 \\
\hline 2.4951 & 0.73965 & 3.373 & 1.6174 \\
\hline 2.5979 & 0.76139 & 3.412 & 1.6797 \\
\hline 2.7246 & 0.7853 & 3.469 & 1.7549 \\
\hline 2.8242 & 0.80976 & 3.488 & 1.817 \\
\hline 2.9459 & 0.83584 & 3.524 & 1.8909 \\
\hline 3.0528 & 0.8641 & 3.533 & 1.9584 \\
\hline 3.1592 & 0.89345 & 3.536 & 2.0263 \\
\hline 3.268 & 0.92279 & 3.541 & 2.0954 \\
\hline 3.3999 & 0.95268 & 3.569 & 2.1763 \\
\hline 3.5343 & 0.9842 & 3.591 & 2.2593 \\
\hline 3.6538 & 1.0168 & 3.593 & 2.3353 \\
\hline 3.7707 & 1.05 & 3.591 & 2.4103 \\
\hline 4.1515 & 1.1527 & 3.602 & 2.6521 \\
\hline 4.5551 & 1.263 & 3.607 & 2.909 \\
\hline 4.9621 & 1.3787 & 3.599 & 3.1704 \\
\hline 5.3783 & 1.4967 & 3.594 & 3.4375 \\
\hline 5.8017 & 1.6189 & 3.584 & 3.7103 \\
\hline 6.2388 & 1.7439 & 3.577 & 3.9914 \\
\hline 6.6822 & 1.8711 & 3.571 & 4.2767 \\
\hline 7.1206 & 2.0026 & 3.556 & 4.5616 \\
\hline 7.5479 & 2.1341 & 3.537 & 4.841 \\
\hline 8.0013 & 2.2678 & 3.528 & 5.1345 \\
\hline 8.4506 & 2.4015 & 3.519 & 5.426 \\
\hline 8.8949 & 2.5368 & 3.506 & 5.7159 \\
\hline 9.3444 & 2.6689 & 3.501 & 6.0066 \\
\hline 9.7607 & 2.7998 & 3.486 & 6.2803 \\
\hline 10.168 & 2.9303 & 3.470 & 6.5489 \\
\hline 10.571 & 3.0569 & 3.458 & 6.8139 \\
\hline 10.971 & 3.1813 & 3.449 & 7.0762 \\
\hline 11.253 & 3.2759 & 3.435 & 7.2643 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Effective Horizontal & Stress & Effective \\
\hline Stress tsf & Ratio & \\
\hline 1.4418 & 1.000 & 1.4418 \\
\hline 1.313 & 1.391 & 1.5694 \\
\hline 1.1711 & 1.604 & 1.5251 \\
\hline 1.057 & 1.784 & 1.4714 \\
\hline 0.96898 & 1.944 & 1.4264 \\
\hline 0.9016 & 2.085 & 1.3906 \\
\hline 0.8478 & 2.208 & 1.3598 \\
\hline 0.80595 & 2.316 & 1.3364 \\
\hline 0.7728 & 2.433 & 1.3264 \\
\hline 0.74672 & 2.522 & 1.3149 \\
\hline 0.72715 & 2.628 & 1.319 \\
\hline 0.71139 & 2.708 & 1.3189 \\
\hline 0.69889 & 2.796 & 1.3264 \\
\hline 0.68368 & 2.926 & 1.342 \\
\hline 0.67933 & 3.046 & 1.3742 \\
\hline 0.68259 & 3.132 & 1.4104 \\
\hline 0.69129 & 3.219 & 1.4583 \\
\hline 0.70379 & 3.289 & 1.5092 \\
\hline 0.719 & 3.344 & 1.5616 \\
\hline 0.73965 & 3.373 & 1.6174 \\
\hline 0.76139 & 3.412 & 1.6797 \\
\hline 0.7853 & 3.469 & 1.7549 \\
\hline 0.80976 & 3.488 & 1.817 \\
\hline 0.83584 & 3.524 & 1.8909 \\
\hline 0.8641 & 3.533 & 1.9584 \\
\hline 0.89345 & 3.536 & 2.0263 \\
\hline 0.92279 & 3.541 & 2.0954 \\
\hline 0.95268 & 3.569 & 2.1763 \\
\hline 0.9842 & 3.591 & 2.2593 \\
\hline 1.0168 & 3.593 & 2.3353 \\
\hline 1.05 & 3.591 & 2.4103 \\
\hline 1.1527 & 3.602 & 2.6521 \\
\hline 1.263 & 3.607 & 2.909 \\
\hline 1.3787 & 3.599 & 3.1704 \\
\hline 1.4967 & 3.594 & 3.4375 \\
\hline 1.6189 & 3.584 & 3.7103 \\
\hline 1.7439 & 3.577 & 3.9914 \\
\hline 1.8711 & 3.571 & 4.2767 \\
\hline 2.0026 & 3.556 & 4.5616 \\
\hline 2.1341 & 3.537 & 4.841 \\
\hline 2.2678 & 3.528 & 5.1345 \\
\hline 2.4015 & 3.519 & 5.426 \\
\hline 2.5368 & 3.506 & 5.7159 \\
\hline 2.6689 & 3.501 & 6.0066 \\
\hline 2.7998 & 3.486 & 6.2803 \\
\hline 2.9303 & 3.470 & 6.5489 \\
\hline 3.0569 & 3.458 & 6.8139 \\
\hline 3.1813 & 3.449 & 7.0762 \\
\hline 3.2759 & 3.435 & 7.2643 \\
\hline
\end{tabular}
\[
0.55363
\]
\[
\begin{aligned}
& 0.56816 \\
& 0.59183
\end{aligned}
\]
\[
\begin{aligned}
& 0.59183 \\
& 0.60749
\end{aligned}
\]
\[
0.62751
\]
\[
0.65834
\]
\[
\begin{aligned}
& 0.69489 \\
& 0.69489
\end{aligned}
\]
\[
0.72781
\]
\[
\begin{aligned}
& 0.76699 \\
& 080547
\end{aligned}
\]
\[
\begin{aligned}
& 0.80542 \\
& 0.84255
\end{aligned}
\]
\[
\begin{aligned}
& 0.04774 \\
& 0.8774
\end{aligned}
\]
\[
\begin{aligned}
& 0.91827 \\
& 0.96965
\end{aligned}
\]
\[
\begin{array}{r}
9.96965 \\
1.0072
\end{array}
\]
\[
\begin{array}{r}
1.0072 \\
1.055
\end{array}
\]
\[
\begin{aligned}
& 1.0993 \\
& 1.1329
\end{aligned}
\]
\[
\begin{aligned}
& 1.1329 \\
& 1.1726
\end{aligned}
\]
\[
\begin{aligned}
& 1.1726 \\
& 1.2236
\end{aligned}
\]
\[
\begin{aligned}
& 1.226 \\
& 1.2751
\end{aligned}
\]
\[
1.3185
\]
\[
\begin{aligned}
& 1.3604 \\
& 1
\end{aligned}
\]
\[
\begin{aligned}
& 1.4994 \\
& 1
\end{aligned}
\]
\[
\begin{aligned}
& 1.641 \\
& 1.7917
\end{aligned}
\]
\[
\begin{aligned}
& 1.7917 \\
& 1.9408
\end{aligned}
\]
\[
\begin{aligned}
& 1.0400 \\
& 2.0944 \\
& 2.2475
\end{aligned}
\]
\[
\begin{aligned}
& 2.2475 \\
& 2.405
\end{aligned}
\]
\[
\begin{array}{r}
2.559 \\
2.559
\end{array}
\]
\[
\begin{aligned}
& 2.7069 \\
& 2.8667
\end{aligned}
\]
\[
\begin{aligned}
& 2.82015 \\
& 3.0245
\end{aligned}
\]
\[
\begin{aligned}
& 3.1791 \\
& 3.3378
\end{aligned}
\]
\[
\begin{aligned}
& 3.3378 \\
& 2 .
\end{aligned}
\]
\[
\begin{array}{r}
3.4800 \\
3.404
\end{array}
\]
\[
\begin{array}{r}
3.6186 \\
3.757 \\
3.750
\end{array}
\]
\[
3.8948
\]
\[
3.9884
\]

Project: COLETO CREEK FACILITY
Location: IPR-GDF SUEZ
Project No.: 60225561
Boring No.: B-4-1 S-13
Sample Type: 3" ST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Symbol} & (1) & \(\triangle\) & \(\square\) & \\
\hline \multicolumn{2}{|l|}{Test No.} & 10.4 PSI & 17.4 PSI & 24.3 PSI & \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \overline{\bar{O}} \\
& : \overline{\bar{E}} \\
& \underline{\underline{5}}
\end{aligned}
\]} & Diameter, in & 2.722 & 2.8299 & 2.6157 & \\
\hline & Height, in & 6.0571 & 5.4106 & 5.9323 & \\
\hline & Water Content, \% & 5.02 & 7.46 & 5.91 & \\
\hline & Dry Density, pcf & 121.2 & 121.3 & 120.9 & \\
\hline & Saturation, \% & 36.18 & 53.82 & 42.11 & \\
\hline & Void Ratio & 0.36923 & 0.3684 & 0.37292 & \\
\hline \multirow[t]{5}{*}{} & Water Content, \% & 13.55 & 13.79 & 12.58 & \\
\hline & Dry Density, pcf & 122. & 121.5 & 124.4 & \\
\hline & Saturation, \% & 100.00 & 100.00 & 100.00 & \\
\hline & Void Ratio & 0.36021 & 0.36668 & 0.33456 & \\
\hline & Back Press., tsf & 5.0425 & 5.0399 & 5.042 & \\
\hline \multicolumn{2}{|l|}{Minor Prin. Stress, tsf} & 0.74626 & 1.2529 & 1.798 & \\
\hline \multicolumn{2}{|l|}{Max. Dev. Stress, tsf} & 1.6147 & 1.6669 & 2.202 & \\
\hline \multicolumn{2}{|l|}{Time to Failure, min} & 3930 & 2700 & 3930 & \\
\hline \multicolumn{2}{|l|}{Strain Rate, \%/min} & 0.006 & 0.006 & 0.006 & \\
\hline \multicolumn{2}{|l|}{B-Value} & . 95 & . 95 & . 97 & \\
\hline \multicolumn{2}{|l|}{Measured Specific Gravity} & 2.66 & 2.66 & 2.66 & \\
\hline \multicolumn{2}{|l|}{Liquid Limit} & 40 & 40 & 40 & \\
\hline \multicolumn{2}{|l|}{Plastic Limit} & 24 & 24 & 24 & \\
\hline \multicolumn{2}{|l|}{Plasticity Index} & 16 & 16 & 16 & \\
\hline \multicolumn{2}{|l|}{Failure Sketch} & & & & \\
\hline
\end{tabular}
Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

\begin{tabular}{|l|l|l|}
\hline Project: COLETO CREEK FACILITY & Location: IPR-GDF SUEZ & Project No.: 60225561 \\
\hline Boring No.: B-4-1 S-13 & Tested By: BCM & Checked By: WPQ \\
\hline Sample No.: S-13 & Test Date: \(12 / 2 / 11\) & Depth: 24.0'-26.0' \\
\hline Test No.: B-4-1 S-13 & Sample Type: 3' ST & Elevation: ----- \\
\hline Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC \\
\hline Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3" ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 6.06 in
Specimen Area: 5.82 in^2

``` Specimen volume: 35.25 in^3

Liquid Limit: 40
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & \begin{tabular}{l}
Deviator \\
Load 1b
\end{tabular} & Deviator Stress tsf & Pore Pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 5.8194 & 0 & 0 & 5.0425 & 5.7888 & 5.7888 \\
\hline 2 & 5.0041 & 0.017083 & 5.8204 & 6.8968 & 0.085314 & 5.2419 & 5.7888 & 5.8741 \\
\hline 3 & 5.0010 & 0.037013 & 5.8216 & 11.372 & 0.14064 & 5.2811 & 5.7888 & 5.9294 \\
\hline 4 & 15 & 0.056944 & 5.8228 & 14.478 & 0.17902 & 5.308 & 5.7888 & 5.9678 \\
\hline 5 & 20 & 0.075451 & 5.8238 & 16.9 & 0.20893 & 5.3273 & 5.7888 & 5.9977 \\
\hline 6 & 25 & 0.093957 & 5.8249 & 18.795 & 0.23232 & 5.3425 & 5.7888 & 6.0211 \\
\hline 7 & 30 & 0.11389 & 5.8261 & 20.48 & 0.25309 & 5.3553 & 5.7888 & 6.0419 \\
\hline 8 & 35.001 & 0.13239 & 5.8272 & 21.901 & 0.27061 & 5.3658 & 5.7888 & 6.0594 \\
\hline 9 & 40.001 & 0.1509 & 5.8282 & 23.27 & 0.28747 & 5.3746 & 5.7888 & 6.0763 \\
\hline 10 & 45.001 & 0.17083 & 5.8294 & 24.428 & 0.30172 & 5.3828 & 5.7888 & 6.0905 \\
\hline 11 & 50.001 & 0.19076 & 5.8306 & 25.481 & 0.31466 & 5.3892 & 5.7888 & 6.1035 \\
\hline 12 & 55.001 & 0.21069 & 5.8317 & 26.481 & 0.32695 & 5.3951 & 5.7888 & 6.1157 \\
\hline 13 & 60.001 & 0.2292 & 5.8328 & 27.482 & 0.33923 & 5.4003 & 5.7888 & 6.128 \\
\hline 14 & 70.001 & 0.26764 & 5.8351 & 29.272 & 0.36119 & 5.4097 & 5.7888 & 6.15 \\
\hline 15 & 80.001 & 0.3075 & 5.8374 & 30.904 & 0.38118 & 5.4173 & 5.7888 & 6.17 \\
\hline 16 & 90.002 & 0.34593 & 5.8396 & 32.325 & 0.39856 & 5.4231 & 5.7888 & 6.1874 \\
\hline 17 & 100 & 0.38579 & 5.842 & 33.694 & 0.41527 & 5.4284 & 5.7888 & 6.2041 \\
\hline 18 & 110 & 0.42281 & 5.8441 & 34.905 & 0.43003 & 5.4337 & 5.7888 & 6.2188 \\
\hline 19 & 120 & 0.46124 & 5.8464 & 36.063 & 0.44413 & 5.4372 & 5.7888 & 6.2329 \\
\hline 20 & 130 & 0.50111 & 5.8487 & 37.116 & 0.45691 & 5.4407 & 5.7888 & 6.2457 \\
\hline 21 & 140 & 0.54097 & 5.8511 & 38.169 & 0.46969 & 5.4436 & 5.7888 & 6.2585 \\
\hline 22 & 150 & 0.5794 & 5.8534 & 39.117 & 0.48116 & 5.4454 & 5.7888 & 6.27 \\
\hline 23 & 160 & 0.61784 & 5.8556 & 40.012 & 0.49198 & 5.4477 & 5.7888 & 6.2808 \\
\hline 24 & 170 & 0.65628 & 5.8579 & 40.907 & 0.50279 & 5.4494 & 5.7888 & 6.2916 \\
\hline 25 & 180 & 0.69471 & 5.8602 & 41.802 & 0.51359 & 5.4512 & 5.7888 & 6.3024 \\
\hline 26 & 190 & 0.73457 & 5.8625 & 42.644 & 0.52373 & 5.453 & 5.7888 & 6.3125 \\
\hline 27 & 200 & 0.77159 & 5.8647 & 43.276 & 0.53129 & 5.4541 & 5.7888 & 6.3201 \\
\hline 28 & 210 & 0.81145 & 5.867 & 44.013 & 0.54012 & 5.4553 & 5.7888 & 6.3289 \\
\hline 29 & 220 & 0.84846 & 5.8692 & 44.75 & 0.54896 & 5.4565 & 5.7888 & 6.3378 \\
\hline 30 & 230 & 0.8869 & 5.8715 & 45.645 & 0.55973 & 5.4565 & 5.7888 & 6.3485 \\
\hline 31 & 270 & 1.0406 & 5.8806 & 48.593 & 0.59495 & 5.4576 & 5.7888 & 6.3838 \\
\hline 32 & 300 & 1.156 & 5.8875 & 50.541 & 0.61808 & 5.4576 & 5.7888 & 6.4069 \\
\hline 33 & 330 & 1.2713 & 5.8944 & 52.489 & 0.64116 & 5.4565 & 5.7888 & 6.43 \\
\hline 34 & 360 & 1.3866 & 5.9013 & 54.174 & 0.66096 & 5.4553 & 5.7888 & 6.4498 \\
\hline 35 & 390 & 1.5005 & 5.9081 & 55.911 & 0.68137 & 5.453 & 5.7888 & 6.4702 \\
\hline 36 & 420 & 1.6172 & 5.9151 & 57.596 & 0.70107 & 5.4506 & 5.7888 & 6.4899 \\
\hline 37 & 450 & 1.7325 & 5.922 & 59.07 & 0.71817 & 5.4465 & 5.7888 & 6.507 \\
\hline 38 & 480 & 1.8492 & 5.9291 & 60.702 & 0.73714 & 5.4436 & 5.7888 & 6.5259 \\
\hline 39 & 510 & 1.966 & 5.9361 & 62.334 & 0.75606 & 5.4407 & 5.7888 & 6.5449 \\
\hline 40 & 540 & 2.0841 & 5.9433 & 63.966 & 0.77492 & 5.4366 & 5.7888 & 6.5637 \\
\hline 41 & 570 & 2.2009 & 5.9504 & 65.44 & 0.79183 & 5.4331 & 5.7888 & 6.5806 \\
\hline 42 & 600 & 2.3176 & 5.9575 & 66.862 & 0.80806 & 5.4284 & 5.7888 & 6.5969 \\
\hline 43 & 630 & 2.4358 & 5.9647 & 68.388 & 0.82551 & 5.4231 & 5.7888 & 6.6143 \\
\hline 44 & 660 & 2.5539 & 5.972 & 69.863 & 0.84229 & 5.4196 & 5.7888 & 6.6311 \\
\hline 45 & 690 & 2.6721 & 5.9792 & 71.179 & 0.85711 & 5.4144 & 5.7888 & 6.6459 \\
\hline 46 & 720 & 2.7902 & 5.9865 & 72.548 & 0.87254 & 5.4091 & 5.7888 & 6.6613 \\
\hline 47 & 750 & 2.9056 & 5.9936 & 73.916 & 0.88795 & 5.4038 & 5.7888 & 6.6767 \\
\hline 48 & 780 & 3.0223 & 6.0008 & 75.285 & 0.9033 & 5.3992 & 5.7888 & 6.6921 \\
\hline 49 & 810 & 3.1376 & 6.0079 & 76.391 & 0.91548 & 5.3939 & 5.7888 & 6.7043 \\
\hline 50 & 840 & 3.2515 & 6.015 & 77.707 & 0.93016 & 5.3886 & 5.7888 & 6.719 \\
\hline 51 & 870 & 3.3654 & 6.0221 & 78.971 & 0.94417 & 5.3828 & 5.7888 & 6.733 \\
\hline 52 & 900 & 3.4807 & 6.0293 & 80.287 & 0.95876 & 5.3781 & 5.7888 & 6.7476 \\
\hline 53 & 930 & 3.5946 & 6.0364 & 81.498 & 0.97207 & 5.3729 & 5.7888 & 6.7609 \\
\hline 54 & 960 & 3.7085 & 6.0436 & 82.656 & 0.98472 & 5.3664 & 5.7888 & 6.7735 \\
\hline 55 & 990 & 3.8238 & 6.0508 & 84.025 & 0.99983 & 5.3623 & 5.7888 & 6.7886 \\
\hline 56 & 1020 & 3.9377 & 6.058 & 85.235 & 1.013 & 5.3559 & 5.7888 & 6.8018 \\
\hline 57 & 1050 & 4.053 & 6.0653 & 86.446 & 1.0262 & 5.3518 & 5.7888 & 6.815 \\
\hline 58 & 1080 & 4.1683 & 6.0726 & 87.447 & 1.0368 & 5.346 & 5.7888 & 6.8256 \\
\hline 59 & 1110 & 4.285 & 6.08 & 88.658 & 1.0499 & 5.3413 & 5.7888 & 6.8387 \\
\hline 60 & 1140 & 4.4018 & 6.0874 & 89.658 & 1.0604 & 5.336 & 5.7888 & 6.8492 \\
\hline 61 & 1170 & 4.5185 & 6.0948 & 90.816 & 1.0728 & 5.3308 & 5.7888 & 6.8616 \\
\hline 62 & 1200 & 4.6352 & 6.1023 & 91.974 & 1.0852 & 5.3243 & 5.7888 & 6.874 \\
\hline 63 & 1230 & 4.752 & 6.1098 & 93.133 & 1.0975 & 5.3185 & 5.7888 & 6.8863 \\
\hline 64 & 1260 & 4.8701 & 6.1174 & 94.185 & 1.1085 & 5.3126 & 5.7888 & 6.8973 \\
\hline 65 & 1290 & 4.9883 & 6.125 & 95.238 & 1.1195 & 5.3056 & 5.7888 & 6.9083 \\
\hline 66 & 1320 & 5.1064 & 6.1326 & 96.502 & 1.133 & 5.301 & 5.7888 & 6.9218 \\
\hline 67 & 1350 & 5.2232 & 6.1402 & 97.45 & 1.1427 & 5.2945 & 5.7888 & 6.9315 \\
\hline 68 & 1380 & 5.3385 & 6.1476 & 98.555 & 1.1543 & 5.2881 & 5.7888 & 6.9431 \\
\hline 69 & 1410 & 5.4552 & 6.1552 & 99.555 & 1.1645 & 5.2834 & 5.7888 & 6.9533 \\
\hline 70 & 1440 & 5.5705 & 6.1627 & 100.56 & 1.1748 & 5.277 & 5.7888 & 6.9636 \\
\hline 71 & 1470 & 5.683 & 6.1701 & 101.61 & 1.1857 & 5.27 & 5.7888 & 6.9745 \\
\hline 72 & 1500 & 5.7983 & 6.1776 & 102.45 & 1.1941 & 5.2659 & 5.7888 & 6.9829 \\
\hline 73 & 1530 & 5.9136 & 6.1852 & 103.61 & 1.2061 & 5.26 & 5.7888 & 6.9949 \\
\hline 74 & 1560 & 6.0275 & 6.1927 & 104.35 & 1.2132 & 5.2524 & 5.7888 & 7.002 \\
\hline 75 & 1590 & 6.1428 & 6.2003 & 105.29 & 1.2227 & 5.2477 & 5.7888 & 7.0115 \\
\hline 76 & 1620 & 6.2581 & 6.2079 & 106.35 & 1.2334 & 5.2413 & 5.7888 & 7.0222 \\
\hline 77 & 1650 & 6.372 & 6.2155 & 107.24 & 1.2423 & 5.2355 & 5.7888 & 7.0311 \\
\hline 78 & 1680 & 6.4887 & 6.2233 & 107.98 & 1.2493 & 5.2302 & 5.7888 & 7.0381 \\
\hline 79 & 1710 & 6.6041 & 6.2309 & 108.87 & 1.2581 & 5.2238 & 5.7888 & 7.0469 \\
\hline
\end{tabular}

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in correction Type: Uniform

Plastic Limit: 24
Measured Specific Gravity: 2.66

Project: COLETO CREEK FACILITY
Sample No.: S-13
Sample No: \(\mathrm{S}-13\)
Test No.: 10.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Test Date: \(12 / 2 / 11\)

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: -----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA \(=\) MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{ll}
Specimen Height: 6.06 in & Piston Area: 0.00 in^2 \\
Specimen Area: 5.82 in^2 & Piston Friction: 0.00 lb \\
Specimen Volume: 35.25 in^3 & Piston Weight: \(0.00 \mathrm{7b}\)
\end{tabular}

Filter Strip Correction: 0.00 tsf Membrane Correction: \(0.00 \mathrm{1b} / \mathrm{in}\) Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & Total Vertical & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & Excess Pore & A & \begin{tabular}{l}
Effective \\
Vertical
\end{tabular} & \begin{tabular}{l}
Effective \\
Horizontal
\end{tabular} & Stress & Effective & \\
\hline & Strain \% & \[
\begin{array}{r}
\text { Stress } \\
\text { tsf }
\end{array}
\] & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
{\underset{\text { tsf }}{\text { p }}}^{\text {(}}
\] & \[
\begin{gathered}
\mathrm{q} \\
\mathrm{tsf}
\end{gathered}
\] \\
\hline 1 & 0.00 & 5.7888 & 5.7888 & 0 & 0.000 & 0.74626 & 0.74626 & 1.000 & 0.74626 & 0 \\
\hline 2 & 0.02 & 5.8741 & 5.7888 & 0.19936 & 2.337 & 0.63221 & 0.5469 & 1.156 & 0.58956 & 0.042657 \\
\hline 3 & 0.04 & 5.9294 & 5.7888 & 0.23853 & 1.696 & 0.64837 & 0.50773 & 1.277 & 0.57805 & 0.070321 \\
\hline 4 & 0.06 & 5.9678 & 5.7888 & 0.26543 & 1.483 & 0.65986 & 0.48083 & 1.372 & 0.57035 & 0.089512 \\
\hline 5 & 0.08 & 5.9977 & 5.7888 & 0.28472 & 1.363 & 0.67047 & 0.46154 & 1.453 & 0.56601 & 0.10447 \\
\hline 6 & 0.09 & 6.0211 & 5.7888 & 0.29992 & 1.291 & 0.67866 & 0.44634 & 1.520 & 0.5625 & 0.11616 \\
\hline 7 & 0.11 & 6.0419 & 5.7888 & 0.31278 & 1.236 & 0.68657 & 0.43348 & 1.584 & 0.56002 & 0.12655 \\
\hline 8 & 0.13 & 6.0594 & 5.7888 & 0.32331 & 1.195 & 0.69356 & 0.42295 & 1.640 & 0.55826 & 0.1353 \\
\hline 9 & 0.15 & 6.0763 & 5.7888 & 0.33208 & 1.155 & 0.70165 & 0.41418 & 1.694 & 0.55792 & 0.14373 \\
\hline 10 & 0.17 & 6.0905 & 5.7888 & 0.34026 & 1.128 & 0.70772 & 0.406 & 1.743 & 0.55686 & 0.15086 \\
\hline 11 & 0.19 & 6.1035 & 5.7888 & 0.34669 & 1.102 & 0.71423 & 0.39957 & 1.787 & 0.5569 & 0.15733 \\
\hline 12 & 0.21 & 6.1157 & 5.7888 & 0.35254 & 1.078 & 0.72067 & 0.39372 & 1.830 & 0.5572 & 0.16347 \\
\hline 13 & 0.23 & 6.128 & 5.7888 & 0.3578 & 1.055 & 0.72769 & 0.38846 & 1.873 & 0.55808 & 0.16962 \\
\hline 14 & 0.27 & 6.15 & 5.7888 & 0.36716 & 1.017 & 0.7403 & 0.37911 & 1.953 & 0.5597 & 0.1806 \\
\hline 15 & 0.31 & 6.17 & 5.7888 & 0.37476 & 0.983 & 0.75268 & 0.37151 & 2.026 & 0.56209 & 0.19059 \\
\hline 16 & 0.35 & 6.1874 & 5.7888 & 0.3806 & 0.955 & 0.76421 & 0.36566 & 2.090 & 0.56494 & 0.19928 \\
\hline 17 & 0.39 & 6.2041 & 5.7888 & 0.38586 & 0.929 & 0.77566 & 0.3604 & 2.152 & 0.56803 & 0.20763 \\
\hline 18 & 0.42 & 6.2188 & 5.7888 & 0.39113 & 0.910 & 0.78517 & 0.35514 & 2.211 & 0.57015 & 0.21501 \\
\hline 19 & 0.46 & 6.2329 & 5.7888 & 0.39463 & 0.889 & 0.79576 & 0.35163 & 2.263 & 0.57369 & 0.22206 \\
\hline 20 & 0.50 & 6.2457 & 5.7888 & 0.39814 & 0.871 & 0.80503 & 0.34812 & 2.313 & 0.57658 & 0.22846 \\
\hline 21 & 0.54 & 6.2585 & 5.7888 & 0.40106 & 0.854 & 0.81488 & 0.3452 & 2.361 & 0.58004 & 0.23484 \\
\hline 22 & 0.58 & 6.27 & 5.7888 & 0.40282 & 0.837 & 0.8246 & 0.34344 & 2.401 & 0.58402 & 0.24058 \\
\hline 23 & 0.62 & 6.2808 & 5.7888 & 0.40516 & 0.824 & 0.83308 & 0.3411 & 2.442 & 0.58709 & 0.24599 \\
\hline 24 & 0.66 & 6.2916 & 5.7888 & 0.40691 & 0.809 & 0.84214 & 0.33935 & 2.482 & 0.59075 & 0.25139 \\
\hline 25 & 0.69 & 6.3024 & 5.7888 & 0.40866 & 0.796 & 0.85119 & 0.3376 & 2.521 & 0.59439 & 0.2568 \\
\hline 26 & 0.73 & 6.3125 & 5.7888 & 0.41042 & 0.784 & 0.85957 & 0.33584 & 2.559 & 0.59771 & 0.26187 \\
\hline 27 & 0.77 & 6.3201 & 5.7888 & 0.41159 & 0.775 & 0.86596 & 0.33467 & 2.587 & 0.60032 & 0.26565 \\
\hline 28 & 0.81 & 6.3289 & 5.7888 & 0.41276 & 0.764 & 0.87363 & 0.3335 & 2.620 & 0.60357 & 0.27006 \\
\hline 29 & 0.85 & 6.3378 & 5.7888 & 0.41393 & 0.754 & 0.8813 & 0.33233 & 2.652 & 0.60682 & 0.27448 \\
\hline 30 & 0.89 & 6.3485 & 5.7888 & 0.41393 & 0.740 & 0.89206 & 0.33233 & 2.684 & 0.6122 & 0.27986 \\
\hline 31 & 1.04 & 6.3838 & 5.7888 & 0.4151 & 0.698 & 0.92612 & 0.33117 & 2.797 & 0.62864 & 0.29748 \\
\hline 32 & 1.16 & 6.4069 & 5.7888 & 0.4151 & 0.672 & 0.94925 & 0.33117 & 2.866 & 0.64021 & 0.30904 \\
\hline 33 & 1.27 & 6.43 & 5.7888 & 0.41393 & 0.646 & 0.97349 & 0.33233 & 2.929 & 0.65291 & 0.32058 \\
\hline 34 & 1.39 & 6.4498 & 5.7888 & 0.41276 & 0.624 & 0.99447 & 0.3335 & 2.982 & 0.66398 & 0.33048 \\
\hline 35 & 1.50 & 6.4702 & 5.7888 & 0.41042 & 0.602 & 1.0172 & 0.33584 & 3.029 & 0.67653 & 0.34069 \\
\hline 36 & 1.62 & 6.4899 & 5.7888 & 0.40808 & 0.582 & 1.0393 & 0.33818 & 3.073 & 0.68872 & 0.35054 \\
\hline 37 & 1.73 & 6.507 & 5.7888 & 0.40399 & 0.563 & 1.0604 & 0.34227 & 3.098 & 0.70136 & 0.35909 \\
\hline 38 & 1.85 & 6.5259 & 5.7888 & 0.40106 & 0.544 & 1.0823 & 0.3452 & 3.135 & 0.71377 & 0.36857 \\
\hline 39 & 1.97 & 6.5449 & 5.7888 & 0.39814 & 0.527 & 1.1042 & 0.34812 & 3.172 & 0.72615 & 0.37803 \\
\hline 40 & 2.08 & 6.5637 & 5.7888 & 0.39405 & 0.509 & 1.1271 & 0.35221 & 3.200 & 0.73967 & 0.38746 \\
\hline 41 & 2.20 & 6.5806 & 5.7888 & 0.39054 & 0.493 & 1.1475 & 0.35572 & 3.226 & 0.75163 & 0.39591 \\
\hline 42 & 2.32 & 6.5969 & 5.7888 & 0.38586 & 0.478 & 1.1685 & 0.3604 & 3.242 & 0.76443 & 0.40403 \\
\hline 43 & 2.44 & 6.6143 & 5.7888 & 0.3806 & 0.461 & 1.1912 & 0.36566 & 3.258 & 0.77842 & 0.41276 \\
\hline 44 & 2.55 & 6.6311 & 5.7888 & 0.37709 & 0.448 & 1.2115 & 0.36917 & 3.282 & 0.79031 & 0.42114 \\
\hline 45 & 2.67 & 6.6459 & 5.7888 & 0.37183 & 0.434 & 1.2315 & 0.37443 & 3.289 & 0.80299 & 0.42856 \\
\hline 46 & 2.79 & 6.6613 & 5.7888 & 0.36657 & 0.420 & 1.2522 & 0.37969 & 3.298 & 0.81596 & 0.43627 \\
\hline 47 & 2.91 & 6.6767 & 5.7888 & 0.36131 & 0.407 & 1.2729 & 0.38495 & 3.307 & 0.82893 & 0.44397 \\
\hline 48 & 3.02 & 6.6921 & 5.7888 & 0.35663 & 0.395 & 1.2929 & 0.38963 & 3.318 & 0.84128 & 0.45165 \\
\hline 49 & 3.14 & 6.7043 & 5.7888 & 0.35137 & 0.384 & 1.3104 & 0.39489 & 3.318 & 0.85263 & 0.45774 \\
\hline 50 & 3.25 & 6.719 & 5.7888 & 0.34611 & 0.372 & 1.3303 & 0.40015 & 3.324 & 0.86523 & 0.46508 \\
\hline 51 & 3.37 & 6.733 & 5.7888 & 0.34026 & 0.360 & 1.3502 & 0.406 & 3.326 & 0.87808 & 0.47208 \\
\hline 52 & 3.48 & 6.7476 & 5.7888 & 0.33558 & 0.350 & 1.3694 & 0.41068 & 3.335 & 0.89006 & 0.47938 \\
\hline 53 & 3.59 & 6.7609 & 5.7888 & 0.33032 & 0.340 & 1.388 & 0.41594 & 3.337 & 0.90197 & 0.48603 \\
\hline 54 & 3.71 & 6.7735 & 5.7888 & 0.32389 & 0.329 & 1.4071 & 0.42237 & 3.331 & 0.91473 & 0.49236 \\
\hline 55 & 3.82 & 6.7886 & 5.7888 & 0.3198 & 0.320 & 1.4263 & 0.42646 & 3.344 & 0.92638 & 0.49991 \\
\hline 56 & 3.94 & 6.8018 & 5.7888 & 0.31337 & 0.309 & 1.4459 & 0.43289 & 3.340 & 0.93941 & 0.50652 \\
\hline 57 & 4.05 & 6.815 & 5.7888 & 0.30928 & 0.301 & 1.4632 & 0.43699 & 3.348 & 0.95008 & 0.5131 \\
\hline 58 & 4.17 & 6.8256 & 5.7888 & 0.30343 & 0.293 & 1.4797 & 0.44283 & 3.341 & 0.96124 & 0.51841 \\
\hline 59 & 4.29 & 6.8387 & 5.7888 & 0.29875 & 0.285 & 1.4974 & 0.44751 & 3.346 & 0.97246 & 0.52495 \\
\hline 60 & 4.40 & 6.8492 & 5.7888 & 0.29349 & 0.277 & 1.5132 & 0.45277 & 3.342 & 0.983 & 0.53022 \\
\hline 61 & 4.52 & 6.8616 & 5.7888 & 0.28823 & 0.269 & 1.5309 & 0.45803 & 3.342 & 0.99445 & 0.53642 \\
\hline 62 & 4.64 & 6.874 & 5.7888 & 0.2818 & 0.260 & 1.5497 & 0.46446 & 3.336 & 1.0071 & 0.5426 \\
\hline 63 & 4.75 & 6.8863 & 5.7888 & 0.27595 & 0.251 & 1.5678 & 0.47031 & 3.334 & 1.0191 & 0.54876 \\
\hline 64 & 4.87 & 6.8973 & 5.7888 & 0.2701 & 0.244 & 1.5847 & 0.47616 & 3.328 & 1.0304 & 0.55427 \\
\hline 65 & 4.99 & 6.9083 & 5.7888 & 0.26309 & 0.235 & 1.6027 & 0.48317 & 3.317 & 1.0429 & 0.55977 \\
\hline 66 & 5.11 & 6.9218 & 5.7888 & 0.25841 & 0.228 & 1.6208 & 0.48785 & 3.322 & 1.0543 & 0.56649 \\
\hline 67 & 5.22 & 6.9315 & 5.7888 & 0.25198 & 0.221 & 1.637 & 0.49428 & 3.312 & 1.0656 & 0.57135 \\
\hline 68 & 5.34 & 6.9431 & 5.7888 & 0.24555 & 0.213 & 1.655 & 0.50071 & 3.305 & 1.0778 & 0.57713 \\
\hline 69 & 5.46 & 6.9533 & 5.7888 & 0.24087 & 0.207 & 1.6699 & 0.50539 & 3.304 & 1.0877 & 0.58227 \\
\hline 70 & 5.57 & 6.9636 & 5.7888 & 0.23444 & 0.200 & 1.6866 & 0.51182 & 3.295 & 1.0992 & 0.5874 \\
\hline 71 & 5.68 & 6.9745 & 5.7888 & 0.22743 & 0.192 & 1.7045 & 0.51884 & 3.285 & 1.1117 & 0.59285 \\
\hline 72 & 5.80 & 6.9829 & 5.7888 & 0.22333 & 0.187 & 1.717 & 0.52293 & 3.283 & 1.12 & 0.59703 \\
\hline 73 & 5.91 & 6.9949 & 5.7888 & 0.21749 & 0.180 & 1.7349 & 0.52877 & 3.281 & 1.1318 & 0.60304 \\
\hline 74 & 6.03 & 7.002 & 5.7888 & 0.20989 & 0.173 & 1.7496 & 0.53637 & 3.262 & 1.143 & 0.6066 \\
\hline 75 & 6.14 & 7.0115 & 5.7888 & 0.20521 & 0.168 & 1.7638 & 0.54105 & 3.260 & 1.1524 & 0.61135 \\
\hline 76 & 6.26 & 7.0222 & 5.7888 & 0.19878 & 0.161 & 1.7809 & 0.54748 & 3.253 & 1.1642 & 0.61671 \\
\hline 77 & 6.37 & 7.0311 & 5.7888 & 0.19293 & 0.155 & 1.7956 & 0.55333 & 3.245 & 1.1745 & 0.62114 \\
\hline 78 & 6.49 & 7.0381 & 5.7888 & 0.18767 & 0.150 & 1.8079 & 0.55859 & 3.236 & 1.1832 & 0.62463 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
6.60 & 7.0469 & 5.7888 \\
6.72 & 7.0574 \\
6.84 & 7.0679 & 5.7888 \\
6.96 & 7.076 & 5.7888 \\
7.08 & 7.0829 & 5.7888 \\
7.19 & 7.0915 & 5.7888 \\
7.31 & 7.0989 & 5.7888 \\
7.43 & 7.1056 & 5.7888 \\
7.55 & 7.1136 & 5.7888 \\
7.66 & 7.121 & 5.7888 \\
7.78 & 7.1265 & 5.7888 \\
7.90 & 7.1339 & 5.7888 \\
8.01 & 7.14 & 5.7888 \\
8.12 & 7.1479 & 5.7888 \\
8.24 & 7.1552 & 5.7888 \\
8.35 & 7.1618 & 5.7888 \\
8.46 & 7.1679 & 5.7888 \\
8.58 & 7.1751 & 5.7888 \\
8.69 & 7.1799 & 5.7888 \\
8.81 & 7.1894 & 5.7888 \\
8.93 & 7.1947 & 5.7888 \\
9.04 & 7.1988 & 5.7888 \\
9.16 & 7.2053 & 5.7888 \\
9.28 & 7.2106 & 5.7888 \\
9.40 & 7.2152 & 5.7888 \\
9.51 & 7.2199 & 5.7888 \\
9.63 & 7.2245 & 5.7888 \\
9.75 & 7.232 & 5.7888 \\
9.87 & 7.2371 & 5.7888 \\
9.98 & 7.2406 & 5.7888 \\
10.10 & 7.2463 & 5.7888 \\
10.22 & 7.2491 & 5.7888 \\
10.33 & 7.2542 & 5.7888 \\
10.45 & 7.2593 & 5.7888 \\
10.56 & 7.2656 & 5.7888 \\
10.68 & 7.2719 & 5.7888 \\
10.79 & 7.2728 & 5.7888 \\
10.91 & 7.2755 & 5.7888 \\
11.02 & 7.2794 & 5.7888 \\
11.14 & 7.2839 & 5.7888 \\
11.26 & 7.2894 & 5.7888 \\
11.37 & 7.2932 & 5.7888 \\
11.49 & 7.2987 & 5.7888 \\
11.61 & 7.3007 & 5.7888 \\
11.73 & 7.305 & 5.7888 \\
11.85 & 7.311 & 5.7888 \\
11.97 & 7.313 & 5.7888 \\
12.08 & 7.3172 & 5.7888 \\
12.20 & 7.3221 & 5.7888 \\
12.32 & 7.3252 & 5.7888 \\
12.43 & 7.3266 & 5.7888 \\
12.55 & 7.3325 & 5.7888 \\
12.67 & 7.3395 & 5.7888 \\
12.78 & 7.3438 & 5.7888 \\
12.89 & 7.3468 & 5.7888 \\
13.01 & 7.3493 & 5.7888 \\
13.12 & 7.3512 & 5.7888 \\
13.24 & 7.3542 & 5.7888 \\
13.35 & 7.3561 & 5.7888 \\
13.47 & 7.3613 & 5.7888 \\
13.59 & 7.3654 & 5.7888 \\
13.71 & 7.3666 & 5.7888 \\
13.82 & 7.3678 & 5.7888 \\
13.94 & 7.3719 & 5.7888 \\
14.06 & 7.3775 & 5.7888 \\
14.17 & 7.3804 & 5.7888 \\
14.29 & 7.3821 & 5.7888 \\
14.41 & 7.3799 & 5.7888 \\
14.53 & 7.3805 & 5.7888 \\
14.64 & 7.3867 & 5.7888 \\
14.76 & 7.3956 & 5.7888 \\
14.88 & 7.3973 & 5.7888 \\
14.99 & 7.3985 & 5.7888 \\
15.10 & 7.4018 & 5.7888 \\
15.22 & 7.4035 & 5.7888 \\
\hline
\end{tabular}
0.18124
0.17598
\begin{tabular}{rrr}
0.144 & 1.8231 & 0.56502 \\
0.139 & 1.8389 & 0.57028 \\
0.133 & 1.8553 & 0.57613 \\
0.127 & 1.8704 & 0.58315 \\
0.122 & 1.8831 & 0.58899 \\
0.117 & 1.8964 & 0.59367 \\
0.112 & 1.9102 & 0.6001 \\
0.107 & 1.9216 & 0.60478 \\
0.102 & 1.936 & 0.61121 \\
0.097 & 1.9487 & 0.61647 \\
0.093 & 1.96 & 0.62332 \\
0.088 & 1.9726 & 0.62758 \\
0.083 & 1.9852 & 0.63401 \\
0.079 & 1.9978 & 0.63869 \\
0.074 & 2.0109 & 0.64453 \\
0.070 & 2.0228 & 0.6498 \\
0.065 & 2.0353 & 0.65623 \\
0.062 & 2.0472 & 0.6609 \\
0.058 & 2.0561 & 0.665 \\
0.054 & 2.0709 & 0.67026 \\
0.050 & 2.082 & 0.6761 \\
0.046 & 2.0914 & 0.68137 \\
0.042 & 2.1031 & 0.68663 \\
0.039 & 2.1125 & 0.69072 \\
0.035 & 2.123 & 0.69657 \\
0.032 & 2.1317 & 0.70066 \\
0.028 & 2.1416 & 0.70592 \\
0.025 & 2.1538 & 0.7106 \\
0.021 & 2.1636 & 0.71528 \\
0.018 & 2.1717 & 0.71995 \\
0.015 & 2.1815 & 0.72404 \\
0.012 & 2.189 & 0.72872 \\
0.009 & 2.1982 & 0.73281 \\
0.007 & 2.2069 & 0.73632 \\
0.002 & 2.2196 & 0.74275 \\
-0.001 & 2.2305 & 0.74743 \\
-0.004 & 2.2356 & 0.75152 \\
-0.006 & 2.2418 & 0.75503 \\
-0.009 & 2.2497 & 0.75912 \\
-0.011 & 2.2571 & 0.76205 \\
-0.014 & 2.2685 & 0.76789 \\
-0.017 & 2.277 & 0.77257 \\
-0.020 & 2.286 & 0.77608 \\
-0.022 & 2.2909 & 00.779 \\
-0.024 & 2.2987 & 0.78251 \\
-0.027 & 2.3094 & 0.78719 \\
-0.029 & 2.3149 & 0.79069 \\
-0.032 & 2.3238 & 0.79537 \\
-0.034 & 2.331 & 0.79771 \\
-0.038 & 2.3411 & 0.80473 \\
-0.039 & 2.3437 & 0.80589 \\
-0.041 & 2.3525 & 0.80882 \\
-0.043 & 2.3636 & 0.81291 \\
-0.045 & 2.3714 & 0.81642 \\
-0.047 & 2.378 & 0.81993 \\
-0.049 & 2.3834 & 0.82285 \\
-0.051 & 2.3888 & 0.82636 \\
-0.053 & 2.3947 & 0.82928 \\
-0.056 & 2.4006 & 0.83337 \\
-0.058 & 2.4094 & 0.83688 \\
-0.059 & 2.4158 & 0.83922 \\
-0.062 & 2.4211 & 0.84331 \\
-0.064 & 2.4258 & 0.84682 \\
-0.066 & 2.4334 & 0.85033 \\
-0.067 & 2.442 & 0.85325 \\
-0.068 & 2.4466 & 0.855 \\
-0.070 & 2.4518 & 0.85851 \\
-0.072 & 2.4519 & 0.86085 \\
-0.073 & 2.4549 & 0.86319 \\
-0.075 & 2.464 & 0.86611 \\
-0.077 & 2.4764 & 0.86962 \\
-0.078 & 2.4805 & 0.87196 \\
-0.080 & 2.4851 & 0.87547 \\
-0.082 & 2.4909 & 0.87781 \\
-0.083 & 2.4943 & 0.87956 \\
\hline
\end{tabular}
3.227
3.225
3.220
3.207
3.197
3.194
3.183
3.177
3.168
3.161
3.150
3.143
3.131
3.128
3.120
3.113
3.102
3.098
3.092
3.090
3.079
3.069
3.063
3.058
3.048
3.042
3.034
3.031
3.025
3.016
3.013
3.004
3.000
2.997
2.988
2.984
2.975
2.969
2.964
2.962
2.954
2.947
2.946
2.941
2.938
2.934
2.928
2.922
2.922
2.909
2.908
2.909
2.908
2.905
2.900
2.896
2.891
2.888
2.881
2.879
2.879
2.871
2.865
2.862
2.862
2.861
2.856
2.848
2.844
2.845
2.848
2.845
2.839
2.838
2.836 0.62903
0.6343
0.63957
0.64361
0.64703
0.65135
0.65504
0.65842
0.66241
0.6661
0.66886
0.67253
0.67561
0.67956
0.68319
0.68651
0.68954
0.69314
0.69554
0.70031
0.70297
0.70502
0.70826
0.71088
0.71321
0.71553
0.71783
0.72158
0.72416
0.72588
0.72874
0.73013
0.73271
0.73527
0.73841
0.74153
0.74202
0.74337
0.74531
0.74753
0.7503
0.7522
0.75495
0.75595
0.75808
0.7611
0.76209
0.76421
0.76663
0.76818
0.76888
0.77183
0.77536
0.77748
0.77902
0.78025
0.7812
0.78272
0.78364
0.78625
0.78828
0.78889
0.78951
0.79153
0.79435
0.79579
0.79666
0.79555
0.79584
0.79894
0.80341
0.80426
0.80484
0.80652

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Sample Type: 3 " ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
```

Specimen Height: 5.41 in
Specimen Area: 6.29 in^2

```
Specimen Volume: \(34.03 \mathrm{in} \wedge 3\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore pressure tsf & Horizontal Stress tsf & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 6.2898 & 0 & 0 & 5.0399 & 6.2928 & 6.2928 \\
\hline 2 & 5.0042 & 0.0151 & 6.2908 & 12.364 & 0.14151 & 5.111 & 6.2928 & 6.4343 \\
\hline 3 & 10 & 0.035234 & 6.292 & 19.701 & 0.22544 & 5.1588 & 6.2928 & 6.5182 \\
\hline 4 & 15 & 0.057045 & 6.2934 & 25.408 & 0.29068 & 5.1965 & 6.2928 & 6.5835 \\
\hline 5 & 20 & 0.078856 & 6.2948 & 29.756 & 0.34035 & 5.2265 & 6.2928 & 6.6331 \\
\hline 6 & 25 & 0.10067 & 6.2962 & 33.696 & 0.38533 & 5.2526 & 6.2928 & 6.6781 \\
\hline 7 & 30 & 0.12248 & 6.2975 & 23.234 & 0.26563 & 5.2232 & 6.2928 & 6.5584 \\
\hline 8 & 35.001 & 0.14261 & 6.2988 & 33.628 & 0.38439 & 5.2704 & 6.2928 & 6.6772 \\
\hline 9 & 40.001 & 0.16442 & 6.3002 & 37.976 & 0.434 & 5.2948 & 6.2928 & 6.7268 \\
\hline 10 & 45.001 & 0.18623 & 6.3016 & 28.533 & 0.32601 & 5.2676 & 6.2928 & 6.6188 \\
\hline 11 & 50.001 & 0.20637 & 6.3028 & 37.297 & 0.42606 & 5.307 & 6.2928 & 6.7189 \\
\hline 12 & 55.001 & 0.23154 & 6.3044 & 21.332 & 0.24362 & 5.2565 & 6.2928 & 6.5364 \\
\hline 13 & 60.001 & 0.24999 & 6.3056 & 34.375 & 0.39251 & 5.3098 & 6.2928 & 6.6853 \\
\hline 14 & 70.001 & 0.29529 & 6.3085 & 30.163 & 0.34426 & 5.3065 & 6.2928 & 6.6371 \\
\hline 15 & 80.001 & 0.33724 & 6.3111 & 23.845 & 0.27204 & 5.2959 & 6.2928 & 6.5648 \\
\hline 16 & 90.002 & 0.37583 & 6.3136 & 43.751 & 0.49893 & 5.377 & 6.2928 & 6.7917 \\
\hline 17 & 100 & 0.42113 & 6.3164 & 42.12 & 0.48012 & 5.3792 & 6.2928 & 6.7729 \\
\hline 18 & 110 & 0.46475 & 6.3192 & 37.636 & 0.42882 & 5.3715 & 6.2928 & 6.7216 \\
\hline 19 & 120 & 0.51005 & 6.3221 & 27.582 & 0.31412 & 5.3459 & 6.2928 & 6.6069 \\
\hline 20 & 130 & 0.55032 & 6.3246 & 48.098 & 0.54756 & 5.4242 & 6.2928 & 6.8404 \\
\hline 21 & 140 & 0.59394 & 6.3274 & 42.052 & 0.47851 & 5.4087 & 6.2928 & 6.7713 \\
\hline 22 & 150 & 0.64092 & 6.3304 & 29.552 & 0.33612 & 5.3737 & 6.2928 & 6.6289 \\
\hline 23 & 160 & 0.67951 & 6.3329 & 51.971 & 0.59087 & 5.4514 & 6.2928 & 6.8837 \\
\hline 24 & 170 & 0.72481 & 6.3357 & 42.935 & 0.48792 & 5.4248 & 6.2928 & 6.7807 \\
\hline 25 & 180 & 0.76507 & 6.3383 & 56.794 & 0.64515 & 5.477 & 6.2928 & 6.938 \\
\hline 26 & 190 & 0.8087 & 6.3411 & 50.612 & 0.57467 & 5.4603 & 6.2928 & 6.8675 \\
\hline 27 & 200 & 0.85567 & 6.3441 & 30.979 & 0.35158 & 5.4031 & 6.2928 & 6.6444 \\
\hline 28 & 210 & 0.89594 & 6.3467 & 55.639 & 0.6312 & 5.4864 & 6.2928 & 6.924 \\
\hline 29 & 220 & 0.94124 & 6.3496 & 38.723 & 0.4391 & 5.4364 & 6.2928 & 6.7319 \\
\hline 30 & 230 & 0.98151 & 6.3522 & 59.376 & 0.67301 & 5.5064 & 6.2928 & 6.9658 \\
\hline 31 & 240 & 1.0268 & 6.3551 & 41.984 & 0.47566 & 5.4553 & 6.2928 & 6.7685 \\
\hline 32 & 270 & 1.1543 & 6.3633 & 62.637 & 0.70873 & 5.5347 & 6.2928 & 7.0015 \\
\hline 33 & 300 & 1.2835 & 6.3716 & 68.751 & 0.77689 & 5.5636 & 6.2928 & 7.0697 \\
\hline 34 & 330 & 1.4161 & 6.3802 & 52.854 & 0.59645 & 5.5253 & 6.2928 & 6.8893 \\
\hline 35 & 360 & 1.5436 & 6.3884 & 72.691 & 0.81926 & 5.5963 & 6.2928 & 7.1121 \\
\hline 36 & 390 & 1.6728 & 6.3968 & 77.515 & 0.87247 & 5.6152 & 6.2928 & 7.1653 \\
\hline 37 & 420 & 1.8053 & 6.4055 & 80.504 & 0.90489 & 5.6297 & 6.2928 & 7.1977 \\
\hline 38 & 450 & 1.9362 & 6.414 & 83.425 & 0.93648 & 5.643 & 6.2928 & 7.2293 \\
\hline 39 & 480 & 2.0654 & 6.4225 & 87.229 & 0.9779 & 5.6547 & 6.2928 & 7.2707 \\
\hline 40 & 510 & 2.1962 & 6.4311 & 90.218 & 1.0101 & 5.6647 & 6.2928 & 7.3029 \\
\hline 41 & 540 & 2.3254 & 6.4396 & 92.936 & 1.0391 & 5.6735 & 6.2928 & 7.3319 \\
\hline 42 & 570 & 2.4563 & 6.4482 & 95.925 & 1.0711 & 5.6819 & 6.2928 & 7.3639 \\
\hline 43 & 600 & 2.5855 & 6.4568 & 98.439 & 1.0977 & 5.6885 & 6.2928 & 7.3905 \\
\hline 44 & 630 & 2.7163 & 6.4654 & 100.27 & 1.1167 & 5.6957 & 6.2928 & 7.4095 \\
\hline 45 & 660 & 2.8489 & 6.4743 & 102.18 & 1.1363 & 5.7013 & 6.2928 & 7.4291 \\
\hline 46 & 690 & 2.9781 & 6.4829 & 104.15 & 1.1567 & 5.7057 & 6.2928 & 7.4495 \\
\hline 47 & 720 & 3.1089 & 6.4916 & 105.84 & 1.1739 & 5.7102 & 6.2928 & 7.4667 \\
\hline 48 & 750 & 3.2381 & 6.5003 & 107.75 & 1.1934 & 5.7141 & 6.2928 & 7.4862 \\
\hline 49 & 780 & 3.369 & 6.5091 & 109.72 & 1.2136 & 5.7169 & 6.2928 & 7.5064 \\
\hline 50 & 810 & 3.4982 & 6.5178 & 111.55 & 1.2323 & 5.7191 & 6.2928 & 7.5251 \\
\hline 51 & 840 & 3.6307 & 6.5268 & 112.37 & 1.2396 & 5.7202 & 6.2928 & 7.5324 \\
\hline 52 & 870 & 3.7616 & 6.5357 & 112.91 & 1.2439 & 5.7213 & 6.2928 & 7.5367 \\
\hline 53 & 900 & 3.8925 & 6.5446 & 114.34 & 1.2579 & 5.7218 & 6.2928 & 7.5507 \\
\hline 54 & 930 & 4.0233 & 6.5535 & 115.56 & 1.2696 & 5.7218 & 6.2928 & 7.5624 \\
\hline 55 & 960 & 4.1525 & 6.5623 & 116.99 & 1.2835 & 5.7213 & 6.2928 & 7.5763 \\
\hline 56 & 990 & 4.2817 & 6.5712 & 118.21 & 1.2952 & 5.7207 & 6.2928 & 7.588 \\
\hline 57 & 1020 & 4.4143 & 6.5803 & 118.96 & 1.3016 & 5.7196 & 6.2928 & 7.5944 \\
\hline 58 & 1050 & 4.5418 & 6.5891 & 120.31 & 1.3147 & 5.7202 & 6.2928 & 7.6075 \\
\hline 59 & 1080 & 4.6726 & 6.5981 & 121.13 & 1.3218 & 5.7202 & 6.2928 & 7.6146 \\
\hline 60 & 1110 & 4.8018 & 6.6071 & 122.56 & 1.3355 & 5.7196 & 6.2928 & 7.6283 \\
\hline 61 & 1140 & 4.931 & 6.6161 & 123.71 & 1.3463 & 5.7174 & 6.2928 & 7.6391 \\
\hline 62 & 1170 & 5.0619 & 6.6252 & 125 & 1.3585 & 5.7146 & 6.2928 & 7.6513 \\
\hline 63 & 1200 & 5.1928 & 6.6343 & 126.09 & 1.3684 & 5.7113 & 6.2928 & 7.6612 \\
\hline 64 & 1230 & 5.322 & 6.6434 & 127.18 & 1.3783 & 5.708 & 6.2928 & 7.6711 \\
\hline 65 & 1260 & 5.4545 & 6.6527 & 128.06 & 1.3859 & 5.7052 & 6.2928 & 7.6787 \\
\hline 66 & 1290 & 5.5837 & 6.6618 & 128.81 & 1.3921 & 5.7019 & 6.2928 & 7.6849 \\
\hline 67 & 1320 & 5.7129 & 6.6709 & 129.89 & 1.4019 & 5.6991 & 6.2928 & 7.6947 \\
\hline 68 & 1350 & 5.8437 & 6.6802 & 130.71 & 1.4088 & 5.6957 & 6.2928 & 7.7016 \\
\hline 69 & 1380 & 5.9746 & 6.6895 & 131.73 & 1.4178 & 5.6924 & 6.2928 & 7.7106 \\
\hline 70 & 1410 & 6.1055 & 6.6988 & 133.15 & 1.4312 & 5.6896 & 6.2928 & 7.724 \\
\hline 71 & 1440 & 6.2363 & 6.7082 & 134.85 & 1.4474 & 5.6869 & 6.2928 & 7.7402 \\
\hline 72 & 1470 & 6.3655 & 6.7174 & 136.14 & 1.4592 & 5.683 & 6.2928 & 7.752 \\
\hline 73 & 1500 & 6.4947 & 6.7267 & 138.38 & 1.4812 & 5.6796 & 6.2928 & 7.774 \\
\hline 74 & 1530 & 6.6239 & 6.736 & 140.02 & 1.4966 & 5.6774 & 6.2928 & 7.7894 \\
\hline 75 & 1560 & 6.7531 & 6.7453 & 140.15 & 1.496 & 5.6735 & 6.2928 & 7.7888 \\
\hline 76 & 1590 & 6.884 & 6.7548 & 140.9 & 1.5018 & 5.6696 & 6.2928 & 7.7946 \\
\hline 77 & 1620 & 7.0132 & 6.7642 & 141.24 & 1.5034 & 5.6669 & 6.2928 & 7.7962 \\
\hline 78 & 1650 & 7.1407 & 6.7735 & 143.21 & 1.5223 & 5.6647 & 6.2928 & 7.8151 \\
\hline 79 & 1680 & 7.2682 & 6.7828 & 142.94 & 1.5173 & 5.6624 & 6.2928 & 7.8101 \\
\hline
\end{tabular}

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 tsf Membrane Correction: 0.00 1b/in Correction Type: Uniform
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 80 & 1710 & 7.3991 & 6.7924 & 144.57 & 1.5324 & 5.6597 & 6.2928 & 7.8252 \\
\hline 81 & 1740 & 7.5299 & 6.802 & 144.91 & 1.5339 & 5.6585 & 6.2928 & 7.8267 \\
\hline 82 & 1770 & 7.6641 & 6.8119 & 145.45 & 1.5374 & 5.6563 & 6.2928 & 7.8302 \\
\hline 83 & 1800 & 7.7984 & 6.8218 & 144.97 & 1.5301 & 5.6547 & 6.2928 & 7.8229 \\
\hline 84 & 1830 & 7.9292 & 6.8315 & 146.13 & 1.5401 & 5.6524 & 6.2928 & 7.8329 \\
\hline 85 & 1860 & 8.0618 & 6.8414 & 147.01 & 1.5472 & 5.6497 & 6.2928 & 7.84 \\
\hline 86 & 1890 & 8.1927 & 6.8511 & 146.81 & 1.5428 & 5.6463 & 6.2928 & 7.8356 \\
\hline 87 & 1920 & 8.3235 & 6.8609 & 148.1 & 1.5542 & 5.6441 & 6.2928 & 7.847 \\
\hline 88 & 1950 & 8.4527 & 6.8706 & 149.8 & 1.5698 & 5.6408 & 6.2928 & 7.8626 \\
\hline 89 & 1980 & 8.5836 & 6.8804 & 149.39 & 1.5633 & 5.6386 & 6.2928 & 7.8561 \\
\hline 90 & 2010 & 8.7128 & 6.8901 & 150.75 & 1.5753 & 5.6358 & 6.2928 & 7.8681 \\
\hline 91 & 2040 & 8.842 & 6.8999 & 150.48 & 1.5702 & 5.6319 & 6.2928 & 7.863 \\
\hline 92 & 2070 & 8.9695 & 6.9096 & 150.82 & 1.5716 & 5.6291 & 6.2928 & 7.8644 \\
\hline 93 & 2100 & 9.0987 & 6.9194 & 151.63 & 1.5778 & 5.6263 & 6.2928 & 7.8706 \\
\hline 94 & 2130 & 9.2295 & 6.9294 & 153.33 & 1.5932 & 5.6241 & 6.2928 & 7.886 \\
\hline 95 & 2160 & 9.3604 & 6.9394 & 154.76 & 1.6057 & 5.6213 & 6.2928 & 7.8985 \\
\hline 96 & 2190 & 9.4913 & 6.9494 & 156.66 & 1.6231 & 5.6191 & 6.2928 & 7.9159 \\
\hline 97 & 2220 & 9.6238 & 6.9596 & 156.32 & 1.6172 & 5.6169 & 6.2928 & 7.91 \\
\hline 98 & 2250 & 9.7547 & 6.9697 & 155.71 & 1.6085 & 5.6152 & 6.2928 & 7.9013 \\
\hline 99 & 2280 & 9.8872 & 6.9799 & 155.5 & 1.6041 & 5.6119 & 6.2928 & 7.8969 \\
\hline 100 & 2310 & 10.02 & 6.9902 & 155.3 & 1.5996 & 5.6097 & 6.2928 & 7.8924 \\
\hline 101 & 2340 & 10.151 & 7.0004 & 155.71 & 1.6015 & 5.6069 & 6.2928 & 7.8943 \\
\hline 102 & 2370 & 10.285 & 7.0109 & 156.18 & 1.604 & 5.6041 & 6.2928 & 7.8968 \\
\hline 103 & 2400 & 10.417 & 7.0213 & 157.2 & 1.612 & 5.6008 & 6.2928 & 7.9048 \\
\hline 104 & 2430 & 10.548 & 7.0315 & 157.75 & 1.6153 & 5.598 & 6.2928 & 7.9081 \\
\hline 105 & 2460 & 10.681 & 7.042 & 157.75 & 1.6129 & 5.5963 & 6.2928 & 7.9057 \\
\hline 106 & 2490 & 10.81 & 7.0522 & 158.22 & 1.6154 & 5.5925 & 6.2928 & 7.9082 \\
\hline 107 & 2520 & 10.939 & 7.0624 & 158.97 & 1.6207 & 5.5886 & 6.2928 & 7.9135 \\
\hline 108 & 2550 & 11.07 & 7.0728 & 159.78 & 1.6266 & 5.5858 & 6.2928 & 7.9194 \\
\hline 109 & 2580 & 11.199 & 7.0831 & 160.26 & 1.6291 & 5.5825 & 6.2928 & 7.9219 \\
\hline 110 & 2610 & 11.328 & 7.0934 & 161.14 & 1.6356 & 5.5797 & 6.2928 & 7.9284 \\
\hline 111 & 2640 & 11.459 & 7.1039 & 159.85 & 1.6202 & 5.578 & 6.2928 & 7.913 \\
\hline 112 & 2670 & 11.59 & 7.1144 & 160.6 & 1.6253 & 5.5752 & 6.2928 & 7.9181 \\
\hline 113 & 2700 & 11.718 & 7.1247 & 164.95 & 1.6669 & 5.573 & 6.2928 & 7.9597 \\
\hline 114 & 2730 & 11.852 & 7.1355 & 159.92 & 1.6137 & 5.5703 & 6.2928 & 7.9065 \\
\hline 115 & 2760 & 11.983 & 7.1461 & 158.56 & 1.5976 & 5.5669 & 6.2928 & 7.8904 \\
\hline 116 & 2790 & 12.112 & 7.1566 & 159.78 & 1.6075 & 5.5647 & 6.2928 & 7.9003 \\
\hline 117 & 2820 & 12.243 & 7.1673 & 159.92 & 1.6065 & 5.5619 & 6.2928 & 7.8993 \\
\hline 118 & 2850 & 12.375 & 7.1781 & 159.85 & 1.6034 & 5.5603 & 6.2928 & 7.8962 \\
\hline 119 & 2880 & 12.506 & 7.1889 & 160.26 & 1.6051 & 5.558 & 6.2928 & 7.8979 \\
\hline 120 & 2910 & 12.639 & 7.1998 & 160.06 & 1.6006 & 5.5541 & 6.2928 & 7.8934 \\
\hline 121 & 2940 & 12.771 & 7.2107 & 160.4 & 1.6016 & 5.5525 & 6.2928 & 7.8944 \\
\hline 122 & 2970 & 12.904 & 7.2217 & 160.19 & 1.5971 & 5.5497 & 6.2928 & 7.8899 \\
\hline 123 & 3000 & 13.035 & 7.2326 & 160.33 & 1.5961 & 5.5475 & 6.2928 & 7.8889 \\
\hline 124 & 3030 & 13.169 & 7.2438 & 160.74 & 1.5976 & 5.5458 & 6.2928 & 7.8904 \\
\hline 125 & 3060 & 13.298 & 7.2545 & 160.87 & 1.5966 & 5.5442 & 6.2928 & 7.8894 \\
\hline 126 & 3090 & 13.427 & 7.2654 & 160.87 & 1.5942 & 5.543 & 6.2928 & 7.887 \\
\hline 127 & 3120 & 13.56 & 7.2765 & 161.62 & 1.5992 & 5.5403 & 6.2928 & 7.892 \\
\hline 128 & 3150 & 13.689 & 7.2874 & 162.43 & 1.6049 & 5.5397 & 6.2928 & 7.8977 \\
\hline 129 & 3180 & 13.818 & 7.2983 & 162.98 & 1.6078 & 5.538 & 6.2928 & 7.9006 \\
\hline 130 & 3210 & 13.947 & 7.3093 & 162.84 & 1.6041 & 5.5369 & 6.2928 & 7.8969 \\
\hline 131 & 3240 & 14.078 & 7.3204 & 163.39 & 1.607 & 5.5353 & 6.2928 & 7.8998 \\
\hline 132 & 3270 & 14.208 & 7.3314 & 163.93 & 1.6099 & 5.5342 & 6.2928 & 7.9027 \\
\hline 133 & 3300 & 14.338 & 7.3426 & 165.02 & 1.6181 & 5.533 & 6.2928 & 7.9109 \\
\hline 134 & 3330 & 14.468 & 7.3537 & 164.4 & 1.6097 & 5.5319 & 6.2928 & 7.9025 \\
\hline 135 & 3360 & 14.598 & 7.365 & 165.02 & 1.6132 & 5.5314 & 6.2928 & 7.906 \\
\hline 136 & 3390 & 14.731 & 7.3765 & 165.15 & 1.612 & 5.5303 & 6.2928 & 7.9048 \\
\hline 137 & 3420 & 14.864 & 7.3879 & 165.49 & 1.6128 & 5.5292 & 6.2928 & 7.9056 \\
\hline 138 & 3450 & 14.994 & 7.3993 & 165.56 & 1.611 & 5.5275 & 6.2928 & 7.9038 \\
\hline 139 & 3480 & 15.127 & 7.4109 & 165.42 & 1.6072 & 5.5258 & 6.2928 & 7.9 \\
\hline 140 & 3510 & 15.261 & 7.4226 & 165.9 & 1.6092 & 5.5242 & 6.2928 & 7.902 \\
\hline 141 & 3540 & 15.394 & 7.4342 & 166.31 & 1.6107 & 5.523 & 6.2928 & 7.9035 \\
\hline 142 & 3570 & 15.525 & 7.4457 & 167.12 & 1.6161 & 5.5219 & 6.2928 & 7.9089 \\
\hline 143 & 3600 & 15.655 & 7.4573 & 166.99 & 1.6122 & 5.5197 & 6.2928 & 7.905 \\
\hline 144 & 3630 & 15.788 & 7.469 & 167.19 & 1.6117 & 5.5181 & 6.2928 & 7.9045 \\
\hline 145 & 3660 & 15.916 & 7.4804 & 167.6 & 1.6132 & 5.5169 & 6.2928 & 7.906 \\
\hline 146 & 3690 & 16.048 & 7.4922 & 168.55 & 1.6198 & 5.5153 & 6.2928 & 7.9126 \\
\hline 147 & 3695.9 & 16.073 & 7.4944 & 168.96 & 1.6232 & 5.5158 & 6.2928 & 7.916 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: \(\mathrm{B}-4-\mathrm{A}\)
Sample No.: \(\mathrm{S}-13\)
Sample No. \(\mathrm{S}-13\)
Test No.: 17.4 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 2 / 11\)
Sample Type: \(3^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{|c|c|c|}
\hline Specimen Height: 5.41 in & Piston Area: 0.00 in^2 & Fi7ter Strip Correction: 0.00 tsf \\
\hline Specimen Area: 6.29 in^2 & Piston Friction: 0.00 1b & Membrane Correction: 0.00 1b/in \\
\hline Specimen Volume: 34.03 in^3 & Piston Weight: 0.00 1b & Correction Type: Uniform \\
\hline
\end{tabular}

Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Tota 1 \\
Vertical
\end{tabular} & Tota 1 Horizontal & Excess Pore & A & Effective Vertical & Effective Horizontal & Stress & Effective & \\
\hline & Strain \% & Stress tsf & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
\mathrm{p}_{\mathrm{ts}}^{\mathrm{f}}
\] & tsf \\
\hline 1 & 0.00 & 6.2928 & 6.2928 & 0 & 0.000 & 1.2529 & 1.2529 & 1.000 & 1.2529 & 0 \\
\hline 2 & 0.02 & 6.4343 & 6.2928 & 0.071079 & 0.502 & 1.3233 & 1.1818 & 1.120 & 1.2525 & 0.070757 \\
\hline 3 & 0.04 & 6.5182 & 6.2928 & 0.11883 & 0.527 & 1.3595 & 1.134 & 1.199 & 1.2468 & 0.11272 \\
\hline 4 & 0.06 & 6.5835 & 6.2928 & 0.1566 & 0.539 & 1.3869 & 1.0963 & 1.265 & 1.2416 & 0.14534 \\
\hline 5 & 0.08 & 6.6331 & 6.2928 & 0.18658 & 0.548 & 1.4066 & 1.0663 & 1.319 & 1.2365 & 0.17017 \\
\hline 6 & 0.10 & 6.6781 & 6.2928 & 0.21268 & 0.552 & 1.4255 & 1.0402 & 1.370 & 1.2328 & 0.19267 \\
\hline 7 & 0.12 & 6.5584 & 6.2928 & 0.18325 & 0.690 & 1.3352 & 1.0696 & 1.248 & 1.2024 & 0.13282 \\
\hline 8 & 0.14 & 6.6772 & 6.2928 & 0.23045 & 0.600 & 1.4068 & 1.0224 & 1.376 & 1.2146 & 0.1922 \\
\hline 9 & 0.16 & 6.7268 & 6.2928 & 0.25488 & 0.587 & 1.432 & 0.99798 & 1.435 & 1.215 & 0.217 \\
\hline 10 & 0.19 & 6.6188 & 6.2928 & 0.22767 & 0.698 & 1.3512 & 1.0252 & 1.318 & 1.1882 & 0.16301 \\
\hline 11 & 0.21 & 6.7189 & 6.2928 & 0.2671 & 0.627 & 1.4118 & 0.98576 & 1.432 & 1.1988 & 0.21303 \\
\hline 12 & 0.23 & 6.5364 & 6.2928 & 0.21657 & 0.889 & 1.2799 & 1.0363 & 1.235 & 1.1581 & 0.12181 \\
\hline 13 & 0.25 & 6.6853 & 6.2928 & 0.26988 & 0.688 & 1.3755 & 0.98299 & 1.399 & 1.1792 & 0.19626 \\
\hline 14 & 0.30 & 6.6371 & 6.2928 & 0.26655 & 0.774 & 1.3306 & 0.98632 & 1.349 & 1.1585 & 0.17213 \\
\hline 15 & 0.34 & 6.5648 & 6.2928 & 0.25599 & 0.941 & 1.2689 & 0.99687 & 1.273 & 1.1329 & 0.13602 \\
\hline 16 & 0.38 & 6.7917 & 6.2928 & 0.33707 & 0.676 & 1.4147 & 0.9158 & 1.545 & 1.1653 & 0.24947 \\
\hline 17 & 0.42 & 6.7729 & 6.2928 & 0.33929 & 0.707 & 1.3937 & 0.91357 & 1.526 & 1.1536 & 0.24006 \\
\hline 18 & 0.46 & 6.7216 & 6.2928 & 0.33152 & 0.773 & 1.3502 & 0.92135 & 1.465 & 1.1358 & 0.21441 \\
\hline 19 & 0.51 & 6.6069 & 6.2928 & 0.30597 & 0.974 & 1.261 & 0.94689 & 1.332 & 1.104 & 0.15706 \\
\hline 20 & 0.55 & 6.8404 & 6.2928 & 0.38427 & 0.702 & 1.4161 & 0.86859 & 1.630 & 1.1424 & 0.27378 \\
\hline 21 & 0.59 & 6.7713 & 6.2928 & 0.36872 & 0.771 & 1.3627 & 0.88414 & 1.541 & 1.1234 & 0.23926 \\
\hline 22 & 0.64 & 6.6289 & 6.2928 & 0.33374 & 0.993 & 1.2552 & 0.91913 & 1.366 & 1.0872 & 0.16806 \\
\hline 23 & 0.68 & 6.8837 & 6.2928 & 0.41148 & 0.696 & 1.4323 & 0.84138 & 1.702 & 1.1368 & 0.29543 \\
\hline 24 & 0.72 & 6.7807 & 6.2928 & 0.38483 & 0.789 & 1.356 & 0.86804 & 1.562 & 1.112 & 0.24396 \\
\hline 25 & 0.77 & 6.938 & 6.2928 & 0.43702 & 0.677 & 1.461 & 0.81584 & 1.791 & 1.1384 & 0.32258 \\
\hline 26 & 0.81 & 6.8675 & 6.2928 & 0.42036 & 0.731 & 1.4072 & 0.8325 & 1.690 & 1.1198 & 0.28734 \\
\hline 27 & 0.86 & 6.6444 & 6.2928 & 0.36317 & 1.033 & 1.2413 & 0.8897 & 1.395 & 1.0655 & 0.17579 \\
\hline 28 & 0.90 & 6.924 & 6.2928 & 0.44646 & 0.707 & 1.4376 & 0.8064 & 1.783 & 1.122 & 0.3156 \\
\hline 29 & 0.94 & 6.7319 & 6.2928 & 0.39649 & 0.903 & 1.2955 & 0.85638 & 1.513 & 1.0759 & 0.21955 \\
\hline 30 & 0.98 & 6.9658 & 6.2928 & 0.46646 & 0.693 & 1.4594 & 0.78641 & 1.856 & 1.1229 & 0.3365 \\
\hline 31 & 1.03 & 6.7685 & 6.2928 & 0.41537 & 0.873 & 1.3132 & 0.8375 & 1.568 & 1.0753 & 0.23783 \\
\hline 32 & 1.15 & 7.0015 & 6.2928 & 0.49478 & 0.698 & 1.4668 & 0.75809 & 1.935 & 1.1125 & 0.35436 \\
\hline 33 & 1.28 & 7.0697 & 6.2928 & 0.52365 & 0.674 & 1.5061 & 0.72921 & 2.065 & 1.1177 & 0.38845 \\
\hline 34 & 1.42 & 6.8893 & 6.2928 & 0.48534 & 0.814 & 1.364 & 0.76753 & 1.777 & 1.0658 & 0.29823 \\
\hline 35 & 1.54 & 7.1121 & 6.2928 & 0.55641 & 0.679 & 1.5157 & 0.69645 & 2.176 & 1.1061 & 0.40963 \\
\hline 36 & 1.67 & 7.1653 & 6.2928 & 0.57529 & 0.659 & 1.55 & 0.67757 & 2.288 & 1.1138 & 0.43624 \\
\hline 37 & 1.81 & 7.1977 & 6.2928 & 0.58973 & 0.652 & 1.568 & 0.66313 & 2.365 & 1.1156 & 0.45245 \\
\hline 38 & 1.94 & 7.2293 & 6.2928 & 0.60306 & 0.644 & 1.5863 & 0.6498 & 2.441 & 1.118 & 0.46824 \\
\hline 39 & 2.07 & 7.2707 & 6.2928 & 0.61472 & 0.629 & 1.616 & 0.63814 & 2.532 & 1.1271 & 0.48895 \\
\hline 40 & 2.20 & 7.3029 & 6.2928 & 0.62472 & 0.618 & 1.6382 & 0.62815 & 2.608 & 1.1332 & 0.50503 \\
\hline 41 & 2.33 & 7.3319 & 6.2928 & 0.6336 & 0.610 & 1.6584 & 0.61926 & 2.678 & 1.1388 & 0.51955 \\
\hline 42 & 2.46 & 7.3639 & 6.2928 & 0.64193 & 0.599 & 1.682 & 0.61093 & 2.753 & 1.1465 & 0.53554 \\
\hline 43 & 2.59 & 7.3905 & 6.2928 & 0.64859 & 0.591 & 1.702 & 0.60427 & 2.817 & 1.1531 & 0.54885 \\
\hline 44 & 2.72 & 7.4095 & 6.2928 & 0.65581 & 0.587 & 1.7137 & 0.59705 & 2.870 & 1.1554 & 0.55833 \\
\hline 45 & 2.85 & 7.4291 & 6.2928 & 0.66137 & 0.582 & 1.7278 & 0.5915 & 2.921 & 1.1596 & 0.56814 \\
\hline 46 & 2.98 & 7.4495 & 6.2928 & 0.66581 & 0.576 & 1.7437 & 0.58706 & 2.970 & 1.1654 & 0.57833 \\
\hline 47 & 3.11 & 7.4667 & 6.2928 & 0.67025 & 0.571 & 1.7565 & 0.58261 & 3.015 & 1.1696 & 0.58697 \\
\hline 48 & 3.24 & 7.4862 & 6.2928 & 0.67414 & 0.565 & 1.7722 & 0.57873 & 3.062 & 1.1754 & 0.59672 \\
\hline 49 & 3.37 & 7.5064 & 6.2928 & 0.67692 & 0.558 & 1.7896 & 0.57595 & 3.107 & 1.1828 & 0.60681 \\
\hline 50 & 3.50 & 7.5251 & 6.2928 & 0.67914 & 0.551 & 1.806 & 0.57373 & 3.148 & 1.1899 & 0.61613 \\
\hline 51 & 3.63 & 7.5324 & 6.2928 & 0.68025 & 0.549 & 1.8122 & 0.57262 & 3.165 & 1.1924 & 0.61978 \\
\hline 52 & 3.76 & 7.5367 & 6.2928 & 0.68136 & 0.548 & 1.8154 & 0.57151 & 3.176 & 1.1934 & 0.62193 \\
\hline 53 & 3.89 & 7.5507 & 6.2928 & 0.68191 & 0.542 & 1.8288 & 0.57095 & 3.203 & 1.1999 & 0.62893 \\
\hline 54 & 4.02 & 7.5624 & 6.2928 & 0.68191 & 0.537 & 1.8405 & 0.57095 & 3.224 & 1.2057 & 0.63479 \\
\hline 55 & 4.15 & 7.5763 & 6.2928 & 0.68136 & 0.531 & 1.855 & 0.57151 & 3.246 & 1.2133 & 0.64176 \\
\hline 56 & 4.28 & 7.588 & 6.2928 & 0.6808 & 0.526 & 1.8673 & 0.57206 & 3.264 & 1.2197 & 0.6476 \\
\hline 57 & 4.41 & 7.5944 & 6.2928 & 0.67969 & 0.522 & 1.8748 & 0.57317 & 3.271 & 1.224 & 0.65079 \\
\hline 58 & 4.54 & 7.6075 & 6.2928 & 0.68025 & 0.517 & 1.8873 & 0.57262 & 3.296 & 1.23 & 0.65734 \\
\hline 59 & 4.67 & 7.6146 & 6.2928 & 0.68025 & 0.515 & 1.8944 & 0.57262 & 3.308 & 1.2335 & 0.66089 \\
\hline 60 & 4.80 & 7.6283 & 6.2928 & 0.67969 & 0.509 & 1.9087 & 0.57317 & 3.330 & 1.2409 & 0.66777 \\
\hline 61 & 4.93 & 7.6391 & 6.2928 & 0.67747 & 0.503 & 1.9217 & 0.57539 & 3.340 & 1.2485 & 0.67315 \\
\hline 62 & 5.06 & 7.6513 & 6.2928 & 0.67469 & 0.497 & 1.9366 & 0.57817 & 3.350 & 1.2574 & 0.67923 \\
\hline 63 & 5.19 & 7.6612 & 6.2928 & 0.67136 & 0.491 & 1.9499 & 0.5815 & 3.353 & 1.2657 & 0.6842 \\
\hline 64 & 5.32 & 7.6711 & 6.2928 & 0.66803 & 0.485 & 1.9631 & 0.58483 & 3.357 & 1.274 & 0.68915 \\
\hline 65 & 5.45 & 7.6787 & 6.2928 & 0.66525 & 0.480 & 1.9735 & 0.58761 & 3.359 & 1.2806 & 0.69297 \\
\hline 66 & 5.58 & 7.6849 & 6.2928 & 0.66192 & 0.475 & 1.9831 & 0.59094 & 3.356 & 1.287 & 0.69606 \\
\hline 67 & 5.71 & 7.6947 & 6.2928 & 0.65915 & 0.470 & 1.9957 & 0.59372 & 3.361 & 1.2947 & 0.70097 \\
\hline 68 & 5.84 & 7.7016 & 6.2928 & 0.65581 & 0.466 & 2.0058 & 0.59705 & 3.360 & 1.3014 & 0.70439 \\
\hline 69 & 5.97 & 7.7106 & 6.2928 & 0.65248 & 0.460 & 2.0182 & 0.60038 & 3.361 & 1.3093 & 0.7089 \\
\hline 70 & 6.11 & 7.724 & 6.2928 & 0.64971 & 0.454 & 2.0343 & 0.60316 & 3.373 & 1.3187 & 0.71558 \\
\hline 71 & 6.24 & 7.7402 & 6.2928 & 0.64693 & 0.447 & 2.0533 & 0.60594 & 3.389 & 1.3296 & 0.7237 \\
\hline 72 & 6.37 & 7.752 & 6.2928 & 0.64304 & 0.441 & 2.0691 & 0.60982 & 3.393 & 1.3394 & 0.72962 \\
\hline 73 & 6.49 & 7.774 & 6.2928 & 0.63971 & 0.432 & 2.0944 & 0.61315 & 3.416 & 1.3538 & 0.74061 \\
\hline 74 & 6.62 & 7.7894 & 6.2928 & 0.63749 & 0.426 & 2.112 & 0.61538 & 3.432 & 1.3637 & 0.7483 \\
\hline 75 & 6.75 & 7.7888 & 6.2928 & 0.6336 & 0.424 & 2.1152 & 0.61926 & 3.416 & 1.3673 & 0.74799 \\
\hline 76 & 6.88 & 7.7946 & 6.2928 & 0.62971 & 0.419 & 2.125 & 0.62315 & 3.410 & 1.3741 & 0.75092 \\
\hline 77 & 7.01 & 7.7962 & 6.2928 & 0.62694 & 0.417 & 2.1293 & 0.62593 & 3.402 & 1.3776 & 0.75169 \\
\hline 78 & 7.14 & 7.8151 & 6.2928 & 0.62472 & 0.410 & 2.1504 & 0.62815 & 3.423 & 1.3893 & 0.76113 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 79 & 7.27 & 7.8101 & 6.2928 & 0.6225 & 0.410 & 2.1476 & 0.63037 & 3.407 & 1.389 & 0.75864 \\
\hline 80 & 7.40 & 7.8252 & 6.2928 & 0.61972 & 0.404 & 2.1656 & 0.63315 & 3.420 & 1.3994 & 0.76621 \\
\hline 81 & 7.53 & 7.8267 & 6.2928 & 0.61861 & 0.403 & 2.1681 & 0.63426 & 3.418 & 1.4012 & 0.76693 \\
\hline 82 & 7.66 & 7.8302 & 6.2928 & 0.61639 & 0.401 & 2.1738 & 0.63648 & 3.415 & 1.4052 & 0.76868 \\
\hline 83 & 7.80 & 7.8229 & 6.2928 & 0.61472 & 0.402 & 2.1683 & 0.63814 & 3.398 & 1.4032 & 0.76506 \\
\hline 84 & 7.93 & 7.8329 & 6.2928 & 0.6125 & 0.398 & 2.1805 & 0.64036 & 3.405 & 1.4104 & 0.77006 \\
\hline 85 & 8.06 & 7.84 & 6.2928 & 0.60972 & 0.394 & 2.1903 & 0.64314 & 3.406 & 1.4167 & 0.7736 \\
\hline 86 & 8.19 & 7.8356 & 6.2928 & 0.60639 & 0.393 & 2.1893 & 0.64647 & 3.387 & 1.4179 & 0.77142 \\
\hline 87 & 8.32 & 7.847 & 6.2928 & 0.60417 & 0.389 & 2.2029 & 0.64869 & 3.396 & 1.4258 & 0.7771 \\
\hline 88 & 8.45 & 7.8626 & 6.2928 & 0.60084 & 0.383 & 2.2218 & 0.65203 & 3.408 & 1.4369 & 0.7849 \\
\hline 89 & 8.58 & 7.8561 & 6.2928 & 0.59862 & 0.383 & 2.2175 & 0.65425 & 3.389 & 1.4359 & 0.78165 \\
\hline 90 & 8.71 & 7.8681 & 6.2928 & 0.59584 & 0.378 & 2.2323 & 0.65702 & 3.398 & 1.4447 & 0.78764 \\
\hline 91 & 8.84 & 7.863 & 6.2928 & 0.59195 & 0.377 & 2.2311 & 0.66091 & 3.376 & 1.446 & 0.78511 \\
\hline 92 & 8.97 & 7.8644 & 6.2928 & 0.58918 & 0.375 & 2.2352 & 0.66369 & 3.368 & 1.4495 & 0.78578 \\
\hline 93 & 9.10 & 7.8706 & 6.2928 & 0.5864 & 0.372 & 2.2443 & 0.66646 & 3.367 & 1.4554 & 0.78891 \\
\hline 94 & 9.23 & 7.886 & 6.2928 & 0.58418 & 0.367 & 2.2619 & 0.66869 & 3.383 & 1.4653 & 0.79659 \\
\hline 95 & 9.36 & 7.8985 & 6.2928 & 0.5814 & 0.362 & 2.2772 & 0.67146 & 3.391 & 1.4743 & 0.80285 \\
\hline 96 & 9.49 & 7.9159 & 6.2928 & 0.57918 & 0.357 & 2.2968 & 0.67368 & 3.409 & 1.4852 & 0.81154 \\
\hline 97 & 9.62 & 7.91 & 6.2928 & 0.57696 & 0.357 & 2.2931 & 0.6759 & 3.393 & 1.4845 & 0.8086 \\
\hline 98 & 9.75 & 7.9013 & 6.2928 & 0.57529 & 0.358 & 2.2861 & 0.67757 & 3.374 & 1.4818 & 0.80427 \\
\hline 99 & 9.89 & 7.8969 & 6.2928 & 0.57196 & 0.357 & 2.285 & 0.6809 & 3.356 & 1.4829 & 0.80204 \\
\hline 100 & 10.02 & 7.8924 & 6.2928 & 0.56974 & 0.356 & 2.2827 & 0.68312 & 3.342 & 1.4829 & 0.79981 \\
\hline 101 & 10.15 & 7.8943 & 6.2928 & 0.56696 & 0.354 & 2.2874 & 0.6859 & 3.335 & 1.4866 & 0.80074 \\
\hline 102 & 10.28 & 7.8968 & 6.2928 & 0.56419 & 0.352 & 2.2926 & 0.68868 & 3.329 & 1.4907 & 0.80198 \\
\hline 103 & 10.42 & 7.9048 & 6.2928 & 0.56086 & 0.348 & 2.3041 & 0.69201 & 3.330 & 1.498 & 0.80602 \\
\hline 104 & 10.55 & 7.9081 & 6.2928 & 0.55808 & 0.346 & 2.31 & 0.69478 & 3.325 & 1.5024 & 0.80763 \\
\hline 105 & 10.68 & 7.9057 & 6.2928 & 0.55641 & 0.345 & 2.3093 & 0.69645 & 3.316 & 1.5029 & 0.80643 \\
\hline 106 & 10.81 & 7.9082 & 6.2928 & 0.55253 & 0.342 & 2.3157 & 0.70034 & 3.307 & 1.508 & 0.80769 \\
\hline 107 & 10.94 & 7.9135 & 6.2928 & 0.54864 & 0.339 & 2.3249 & 0.70422 & 3.301 & 1.5146 & 0.81033 \\
\hline 108 & 11.07 & 7.9194 & 6.2928 & 0.54586 & 0.336 & 2.3336 & 0.707 & 3.301 & 1.5203 & 0.81329 \\
\hline 109 & 11.20 & 7.9219 & 6.2928 & 0.54253 & 0.333 & 2.3394 & 0.71033 & 3.293 & 1.5249 & 0.81453 \\
\hline 110 & 11.33 & 7.9284 & 6.2928 & 0.53976 & 0.330 & 2.3488 & 0.71311 & 3.294 & 1.5309 & 0.81782 \\
\hline 111 & 11.46 & 7.913 & 6.2928 & 0.53809 & 0.332 & 2.3349 & 0.71478 & 3.267 & 1.5249 & 0.81008 \\
\hline 112 & 11.59 & 7.9181 & 6.2928 & 0.53531 & 0.329 & 2.3429 & 0.71755 & 3.265 & 1.5302 & 0.81266 \\
\hline 113 & 11.72 & 7.9597 & 6.2928 & 0.53309 & 0.320 & 2.3867 & 0.71977 & 3.316 & 1.5532 & 0.83346 \\
\hline 114 & 11.85 & 7.9065 & 6.2928 & 0.53031 & 0.329 & 2.3362 & 0.72255 & 3.233 & 1.5294 & 0.80683 \\
\hline 115 & 11.98 & 7.8904 & 6.2928 & 0.52698 & 0.330 & 2.3235 & 0.72588 & 3.201 & 1.5247 & 0.79878 \\
\hline 116 & 12.11 & 7.9003 & 6.2928 & 0.52476 & 0.326 & 2.3356 & 0.7281 & 3.208 & 1.5319 & 0.80376 \\
\hline 117 & 12.24 & 7.8993 & 6.2928 & 0.52199 & 0.325 & 2.3374 & 0.73088 & 3.198 & 1.5341 & 0.80325 \\
\hline 118 & 12.38 & 7.8962 & 6.2928 & 0.52032 & 0.325 & 2.3359 & 0.73255 & 3.189 & 1.5342 & 0.8017 \\
\hline 119 & 12.51 & 7.8979 & 6.2928 & 0.5181 & 0.323 & 2.3398 & 0.73477 & 3.184 & 1.5373 & 0.80254 \\
\hline 120 & 12.64 & 7.8934 & 6.2928 & 0.51421 & 0.321 & 2.3393 & 0.73865 & 3.167 & 1.539 & 0.8003 \\
\hline 121 & 12.77 & 7.8944 & 6.2928 & 0.51255 & 0.320 & 2.3419 & 0.74032 & 3.163 & 1.5411 & 0.80079 \\
\hline 122 & 12.90 & 7.8899 & 6.2928 & 0.50977 & 0.319 & 2.3402 & 0.7431 & 3.149 & 1.5416 & 0.79855 \\
\hline 123 & 13.03 & 7.8889 & 6.2928 & 0.50755 & 0.318 & 2.3414 & 0.74532 & 3.141 & 1.5433 & 0.79803 \\
\hline 124 & 13.17 & 7.8904 & 6.2928 & 0.50588 & 0.317 & 2.3446 & 0.74698 & 3.139 & 1.5458 & 0.79882 \\
\hline 125 & 13.30 & 7.8894 & 6.2928 & 0.50422 & 0.316 & 2.3453 & 0.74865 & 3.133 & 1.547 & 0.79831 \\
\hline 126 & 13.43 & 7.887 & 6.2928 & 0.50311 & 0.316 & 2.344 & 0.74976 & 3.126 & 1.5469 & 0.79712 \\
\hline 127 & 13.56 & 7.892 & 6.2928 & 0.50033 & 0.313 & 2.3517 & 0.75254 & 3.125 & 1.5521 & 0.7996 \\
\hline 128 & 13.69 & 7.8977 & 6.2928 & 0.49977 & 0.311 & 2.3579 & 0.75309 & 3.131 & 1.5555 & 0.80243 \\
\hline 129 & 13.82 & 7.9006 & 6.2928 & 0.49811 & 0.310 & 2.3626 & 0.75476 & 3.130 & 1.5587 & 0.80391 \\
\hline 130 & 13.95 & 7.8969 & 6.2928 & 0.497 & 0.310 & 2.3599 & 0.75587 & 3.122 & 1.5579 & 0.80203 \\
\hline 131 & 14.08 & 7.8998 & 6.2928 & 0.49533 & 0.308 & 2.3645 & 0.75753 & 3.121 & 1.561 & 0.80349 \\
\hline 132 & 14.21 & 7.9027 & 6.2928 & 0.49422 & 0.307 & 2.3685 & 0.75864 & 3.122 & 1. 5636 & 0.80495 \\
\hline 133 & 14.34 & 7.9109 & 6.2928 & 0.49311 & 0.305 & 2.3779 & 0.75975 & 3.130 & 1. 5688 & 0.80905 \\
\hline 134 & 14.47 & 7.9025 & 6.2928 & 0.492 & 0.306 & 2.3705 & 0.76087 & 3.116 & 1.5657 & 0.80484 \\
\hline 135 & 14.60 & 7.906 & 6.2928 & 0.49144 & 0.305 & 2.3746 & 0.76142 & 3.119 & 1.568 & 0.80659 \\
\hline 136 & 14.73 & 7.9048 & 6.2928 & 0.49033 & 0.304 & 2.3745 & 0.76253 & 3.114 & 1.5685 & 0.806 \\
\hline 137 & 14.86 & 7.9056 & 6.2928 & 0.48922 & 0.303 & 2.3765 & 0.76364 & 3.112 & 1.57 & 0.80641 \\
\hline 138 & 14.99 & 7.9038 & 6.2928 & 0.48756 & 0.303 & 2.3763 & 0.76531 & 3.105 & 1.5708 & 0.8055 \\
\hline 139 & 15.13 & 7.9 & 6.2928 & 0.48589 & 0.302 & 2.3741 & 0.76697 & 3.095 & 1.5706 & 0.80358 \\
\hline 140 & 15.26 & 7.902 & 6.2928 & 0.48422 & 0.301 & 2.3779 & 0.76864 & 3.094 & 1.5733 & 0.80462 \\
\hline 141 & 15.39 & 7.9035 & 6.2928 & 0.48311 & 0.300 & 2.3804 & 0.76975 & 3.092 & 1.5751 & 0.80533 \\
\hline 142 & 15.52 & 7.9089 & 6.2928 & 0.482 & 0.298 & 2.3869 & 0.77086 & 3.096 & 1.5789 & 0.80803 \\
\hline 143 & 15.66 & 7.905 & 6.2928 & 0.47978 & 0.298 & 2.3853 & 0.77308 & 3.085 & 1.5792 & 0.80612 \\
\hline 144 & 15.79 & 7.9045 & 6.2928 & 0.47812 & 0.297 & 2.3864 & 0.77475 & 3.080 & 1.5806 & 0.80584 \\
\hline 145 & 15.92 & 7.906 & 6.2928 & 0.47701 & 0.296 & 2.389 & 0.77586 & 3.079 & 1.5824 & 0.80658 \\
\hline 146 & 16.05 & 7.9126 & 6.2928 & 0.47534 & 0.293 & 2.3973 & 0.77752 & 3.083 & 1.5874 & 0.80988 \\
\hline 147 & 16.07 & 7.916 & 6.2928 & 0.4759 & 0.293 & 2.4002 & 0.77697 & 3.089 & 1.5886 & 0.81159 \\
\hline
\end{tabular}

Location: IPR-GDF SUEZ Tested By: BCM
Test Date: 12/2/11
Sample Type: \({ }^{\prime \prime}\) ST

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soi 1 Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767

Liquid Limit: 40

Piston Area: 0.00 in^2
Piston Friction: 0.00 1b
Piston Weight: 0.00 1b

Filter Strip Correction: 0.00 tsf
Membrane Correction: 0.00 1b/in
Correction Type: Uniform Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Time min & Vertical Strain \% & Corrected Area in^2 & Deviator Load 1b & Deviator Stress tsf & Pore Pressure tsf & \begin{tabular}{l}
Horizontal \\
Stress tsf
\end{tabular} & Vertical Stress tsf \\
\hline 1 & 0 & 0 & 5.3738 & 0 & 0 & 5.042 & 6.84 & 6.84 \\
\hline 2 & 5 & 0.017296 & 5.3747 & 9.9129 & 0.13279 & 5.1121 & 6.84 & 6.9728 \\
\hline 3 & 10 & 0.036033 & 5.3757 & 12.588 & 0.16859 & 5.1464 & 6.84 & 7.0086 \\
\hline 4 & 15 & 0.054771 & 5.3767 & 13.427 & 0.1798 & 5.167 & 6.84 & 7.0198 \\
\hline 5 & 20 & 0.073508 & 5.3778 & 13.847 & 0.18538 & 5.1822 & 6.84 & 7.0254 \\
\hline 6 & 25 & 0.092245 & 5.3788 & 14.319 & 0.19167 & 5.1958 & 6.84 & 7.0317 \\
\hline 7 & 30.001 & 0.11242 & 5.3799 & 14.843 & 0.19865 & 5.2083 & 6.84 & 7.0386 \\
\hline 8 & 35.001 & 0.13116 & 5.3809 & 15.945 & 0.21335 & 5.2214 & 6.84 & 7.0533 \\
\hline 9 & 40.001 & 0.15134 & 5.3819 & 17.046 & 0.22804 & 5.2344 & 6.84 & 7.068 \\
\hline 10 & 45.001 & 0.17152 & 5.383 & 18.515 & 0.24764 & 5.2485 & 6.84 & 7.0876 \\
\hline 11 & 50.001 & 0.19026 & 5.384 & 19.931 & 0.26653 & 5.2632 & 6.84 & 7.1065 \\
\hline 12 & 55.001 & 0.20899 & 5.3851 & 21.189 & 0.28331 & 5.2768 & 6.84 & 7.1233 \\
\hline 13 & 60.001 & 0.22773 & 5.3861 & 22.553 & 0.30149 & 5.2898 & 6.84 & 7.1415 \\
\hline 14 & 70.001 & 0.26521 & 5.3881 & 29.739 & 0.39739 & 5.3404 & 6.84 & 7.2374 \\
\hline 15 & 80.001 & 0.30124 & 5.39 & 35.088 & 0.46871 & 5.3887 & 6.84 & 7.3087 \\
\hline 16 & 90.002 & 0.34015 & 5.3921 & 39.127 & 0.52245 & 5.4322 & 6.84 & 7.3625 \\
\hline 17 & 100 & 0.37907 & 5.3943 & 42.746 & 0.57055 & 5.4703 & 6.84 & 7.4106 \\
\hline 18 & 110 & 0.41799 & 5.3964 & 45.788 & 0.61092 & 5.5056 & 6.84 & 7.4509 \\
\hline 19 & 120 & 0.45546 & 5.3984 & 48.463 & 0.64637 & 5.5376 & 6.84 & 7.4864 \\
\hline 20 & 130 & 0.49582 & 5.4006 & 51.138 & 0.68177 & 5.5664 & 6.84 & 7.5218 \\
\hline 21 & 140 & 0.53473 & 5.4027 & 53.498 & 0.71295 & 5.5925 & 6.84 & 7.553 \\
\hline 22 & 150 & 0.57365 & 5.4048 & 55.439 & 0.73853 & 5.6175 & 6.84 & 7.5785 \\
\hline 23 & 160 & 0.61401 & 5.407 & 57.274 & 0.76267 & 5.6393 & 6.84 & 7.6027 \\
\hline 24 & 170 & 0.65292 & 5.4091 & 58.9 & 0.78401 & 5.6594 & 6.84 & 7.624 \\
\hline 25 & 180 & 0.69184 & 5.4112 & 60.474 & 0.80464 & 5.6789 & 6.84 & 7.6446 \\
\hline 26 & 190 & 0.7322 & 5.4134 & 61.837 & 0.82245 & 5.6974 & 6.84 & 7.6625 \\
\hline 27 & 200 & 0.77111 & 5.4156 & 63.306 & 0.84166 & 5.7132 & 6.84 & 7.6817 \\
\hline 28 & 210 & 0.81147 & 5.4178 & 63.935 & 0.84968 & 5.7284 & 6.84 & 7.6897 \\
\hline 29 & 220 & 0.85039 & 5.4199 & 65.824 & 0.87443 & 5.7431 & 6.84 & 7.7144 \\
\hline 30 & 230 & 0.8893 & 5.422 & 67.082 & 0.8908 & 5.7566 & 6.84 & 7.7308 \\
\hline 31 & 240 & 0.92966 & 5.4242 & 68.131 & 0.90436 & 5.7697 & 6.84 & 7.7444 \\
\hline 32 & 270 & 1.0493 & 5.4308 & 71.121 & 0.9429 & 5.8034 & 6.84 & 7.7829 \\
\hline 33 & 300 & 1.1689 & 5.4374 & 73.639 & 0.9751 & 5.8306 & 6.84 & 7.8151 \\
\hline 34 & 330 & 1.2871 & 5.4439 & 75.999 & 1.0052 & 5.8545 & 6.84 & 7.8452 \\
\hline 35 & 360 & 1.4053 & 5.4504 & 77.939 & 1.0296 & 5.8746 & 6.84 & 7.8696 \\
\hline 36 & 390 & 1.5235 & 5.4569 & 79.775 & 1.0526 & 5.8925 & 6.84 & 7.8926 \\
\hline 37 & 420 & 1.6417 & 5.4635 & 81.611 & 1.0755 & 5.9083 & 6.84 & 7.9155 \\
\hline 38 & 450 & 1.7599 & 5.4701 & 83.184 & 1.0949 & 5.9219 & 6.84 & 7.9349 \\
\hline 39 & 480 & 1.8781 & 5.4767 & 84.653 & 1.1129 & 5.9333 & 6.84 & 7.9529 \\
\hline 40 & 510 & 1.9977 & 5.4833 & 86.174 & 1.1315 & 5.9441 & 6.84 & 7.9715 \\
\hline 41 & 540 & 2.1159 & 5.49 & 87.538 & 1.148 & 5.9534 & 6.84 & 7.988 \\
\hline 42 & 570 & 2.2326 & 5.4965 & 88.849 & 1.1638 & 5.9615 & 6.84 & 8.0038 \\
\hline 43 & 600 & 2.3494 & 5.5031 & 90.265 & 1.181 & 5.9675 & 6.84 & 8.021 \\
\hline 44 & 630 & 2.4704 & 5.5099 & 91.838 & 1.2001 & 5.974 & 6.84 & 8.0401 \\
\hline 45 & 660 & 2.5872 & 5.5165 & 93.097 & 1.2151 & 5.9805 & 6.84 & 8.0551 \\
\hline 46 & 690 & 2.7068 & 5.5233 & 94.146 & 1.2273 & 5.9843 & 6.84 & 8.0673 \\
\hline 47 & 720 & 2.8236 & 5.5299 & 95.667 & 1.2456 & 5.9876 & 6.84 & 8.0856 \\
\hline 48 & 750 & 2.9418 & 5.5367 & 96.821 & 1.2591 & 5.992 & 6.84 & 8.0991 \\
\hline 49 & 780 & 3.0599 & 5.5434 & 97.818 & 1.2705 & 5.9952 & 6.84 & 8.1105 \\
\hline 50 & 810 & 3.1781 & 5.5502 & 99.129 & 1.2859 & 5.9979 & 6.84 & 8.1259 \\
\hline 51 & 840 & 3.2934 & 5.5568 & 99.968 & 1.2953 & 6.0001 & 6.84 & 8.1353 \\
\hline 52 & 870 & 3.4102 & 5.5635 & 101.02 & 1.3073 & 6.0034 & 6.84 & 8.1473 \\
\hline 53 & 900 & 3.5284 & 5.5703 & 101.86 & 1.3166 & 6.0045 & 6.84 & 8.1566 \\
\hline 54 & 930 & 3.6451 & 5.5771 & 102.96 & 1.3292 & 6.0061 & 6.84 & 8.1692 \\
\hline 55 & 960 & 3.7633 & 5.5839 & 104.01 & 1.3411 & 6.0072 & 6.84 & 8.1811 \\
\hline 56 & 990 & 3.883 & 5.5909 & 104.95 & 1.3516 & 6.0083 & 6.84 & 8.1916 \\
\hline 57 & 1020 & 3.9997 & 5.5977 & 105.95 & 1.3627 & 6.0093 & 6.84 & 8.2027 \\
\hline 58 & 1050 & 4.1179 & 5.6046 & 106.89 & 1.3732 & 6.011 & 6.84 & 8.2132 \\
\hline 59 & 1080 & 4.2346 & 5.6114 & 107.99 & 1.3857 & 6.011 & 6.84 & 8.2257 \\
\hline 60 & 1110 & 4.3514 & 5.6183 & 108.83 & 1.3947 & 6.0126 & 6.84 & 8.2347 \\
\hline 61 & 1140 & 4.4681 & 5.6251 & 109.46 & 1.4011 & 6.0131 & 6.84 & 8.2411 \\
\hline 62 & 1170 & 4.5849 & 5.632 & 110.25 & 1.4094 & 6.0148 & 6.84 & 8.2494 \\
\hline 63 & 1200 & 4.7045 & 5.6391 & 111.14 & 1.419 & 6.0142 & 6.84 & 8.259 \\
\hline 64 & 1230 & 4.8213 & 5.646 & 112.03 & 1.4287 & 6.0126 & 6.84 & 8.2687 \\
\hline 65 & 1260 & 4.9438 & 5.6533 & 112.98 & 1.4388 & 6.0131 & 6.84 & 8.2788 \\
\hline 66 & 1290 & 5.0576 & 5.6601 & 113.81 & 1.4478 & 6.0115 & 6.84 & 8.2878 \\
\hline 67 & 1320 & 5.1744 & 5.667 & 114.97 & 1.4607 & 6.0104 & 6.84 & 8.3007 \\
\hline 68 & 1350 & 5.294 & 5.6742 & 115.81 & 1.4695 & 6.0093 & 6.84 & 8.3095 \\
\hline 69 & 1380 & 5.4093 & 5.6811 & 116.8 & 1.4803 & 6.0088 & 6.84 & 8.3203 \\
\hline 70 & 1410 & 5.5261 & 5.6881 & 117.91 & 1.4924 & 6.0077 & 6.84 & 8.3324 \\
\hline 71 & 1440 & 5.6443 & 5.6953 & 118.95 & 1.5038 & 6.005 & 6.84 & 8.3438 \\
\hline 72 & 1470 & 5.7596 & 5.7022 & 120.06 & 1.5159 & 6.0028 & 6.84 & 8.3559 \\
\hline 73 & 1500 & 5.8763 & 5.7093 & 120.95 & 1.5253 & 6.0023 & 6.84 & 8.3653 \\
\hline 74 & 1530 & 5.9945 & 5.7165 & 121.94 & 1.5359 & 6.0012 & 6.84 & 8.3759 \\
\hline 75 & 1560 & 6.1141 & 5.7238 & 122.84 & 1.5452 & 5.999 & 6.84 & 8.3852 \\
\hline 76 & 1590 & 6.2309 & 5.7309 & 123.94 & 1.5571 & 5.9941 & 6.84 & 8.3971 \\
\hline 77 & 1620 & 6.3491 & 5.7381 & 124.93 & 1.5676 & 5.9914 & 6.84 & 8.4076 \\
\hline 78 & 1650 & 6.4673 & 5.7454 & 125.83 & 1.5768 & 5.9892 & 6.84 & 8.4168 \\
\hline 79 & 1680 & 6.5854 & 5.7526 & 126.87 & 1.588 & 5.9882 & 6.84 & 8.428 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: \(\mathrm{B}-4-\mathrm{A}\)
Sample No.
S -13
Test No.: 24.3 PSI

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/2/11
Test Date: \(12 / 2 / 11\)

Project No.: 60225561
Checked By: WPQ
Depth: 24.0'-26.0'
Elevation: ----

Soil Description: CLAYEY F-C SAND LITTLE SILT - BROWNISH GRAY SC
Remarks: FAILURE CRITERIA = MAXIMUM EFFECTIVE STRESS RATIO TEST PERFORMED AS PER ASTM D4767
\begin{tabular}{|c|c|c|}
\hline Specimen Height: 5.93 in & Piston Area: 0.00 in^2 & Filter Strip Correction: 0.00 tsf \\
\hline Specimen Area: 5.37 in^2 & Piston Friction: 0.00 1b & Membrane Correction: 0.00 1b/in \\
\hline Specimen Volume: 31.88 in^3 & Piston Weight: 0.00 1b & Correction Type: Uniform \\
\hline
\end{tabular}

Measured Specific Gravity: 2.66
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Vertical & \begin{tabular}{l}
Total \\
Vertical
\end{tabular} & \[
\begin{array}{r}
\text { Total } \\
\text { Horizontal }
\end{array}
\] & Excess Pore & A & Effective Vertical & \begin{tabular}{l}
Effective \\
Horizontal
\end{tabular} & Stress & Effective & \\
\hline & Strain \% & \[
\begin{aligned}
& \text { Stress } \\
& \text { tsf }
\end{aligned}
\] & Stress tsf & Pressure tsf & Parameter & Stress tsf & Stress tsf & Ratio & \[
\underset{\text { tsf }}{p}
\] & \[
\begin{gathered}
q \\
\operatorname{ts}
\end{gathered}
\] \\
\hline 1 & 0.00 & 6.84 & 6.84 & 0 & 0.000 & 1.798 & 1.798 & 1.000 & 1.798 & 0 \\
\hline 2 & 0.02 & 6.9728 & 6.84 & 0.070104 & 0.528 & 1.8607 & 1.7279 & 1.077 & 1.7943 & 0.066397 \\
\hline 3 & 0.04 & 7.0086 & 6.84 & 0.10434 & 0.619 & 1.8622 & 1.6936 & 1.100 & 1.7779 & 0.084297 \\
\hline 4 & 0.05 & 7.0198 & 6.84 & 0.12499 & 0.695 & 1.8528 & 1.673 & 1.107 & 1.7629 & 0.0899 \\
\hline 5 & 0.07 & 7.0254 & 6.84 & 0.14021 & 0.756 & 1.8432 & 1.6578 & 1.112 & 1.7505 & 0.092692 \\
\hline 6 & 0.09 & 7.0317 & 6.84 & 0.15379 & 0.802 & 1.8359 & 1.6442 & 1.117 & 1.74 & 0.095834 \\
\hline 7 & 0.11 & 7.0386 & 6.84 & 0.16629 & 0.837 & 1.8303 & 1.6317 & 1.122 & 1.731 & 0.099325 \\
\hline 8 & 0.13 & 7.0533 & 6.84 & 0.17933 & 0.841 & 1.832 & 1.6186 & 1.132 & 1.7253 & 0.10667 \\
\hline 9 & 0.15 & 7.068 & 6.84 & 0.19238 & 0.844 & 1.8336 & 1.6056 & 1.142 & 1.7196 & 0.11402 \\
\hline 10 & 0.17 & 7.0876 & 6.84 & 0.20651 & 0.834 & 1.8391 & 1.5915 & 1.156 & 1.7153 & 0.12382 \\
\hline 11 & 0.19 & 7.1065 & 6.84 & 0.22118 & 0.830 & 1.8433 & 1.5768 & 1.169 & 1.7101 & 0.13326 \\
\hline 12 & 0.21 & 7.1233 & 6.84 & 0.23477 & 0.829 & 1.8465 & 1.5632 & 1.181 & 1.7049 & 0.14165 \\
\hline 13 & 0.23 & 7.1415 & 6.84 & 0.24781 & 0.822 & 1.8517 & 1.5502 & 1.194 & 1.7009 & 0.15074 \\
\hline 14 & 0.27 & 7.2374 & 6.84 & 0.29835 & 0.751 & 1.897 & 1.4996 & 1.265 & 1.6983 & 0.1987 \\
\hline 15 & 0.30 & 7.3087 & 6.84 & 0.34671 & 0.740 & 1.92 & 1.4513 & 1.323 & 1.6856 & 0.23436 \\
\hline 16 & 0.34 & 7.3625 & 6.84 & 0.39019 & 0.747 & 1.9302 & 1.4078 & 1.371 & 1.669 & 0.26123 \\
\hline 17 & 0.38 & 7.4106 & 6.84 & 0.42823 & 0.751 & 1.9403 & 1.3697 & 1.417 & 1.655 & 0.28528 \\
\hline 18 & 0.42 & 7.4509 & 6.84 & 0.46355 & 0.759 & 1.9453 & 1.3344 & 1.458 & 1.6399 & 0.30546 \\
\hline 19 & 0.46 & 7.4864 & 6.84 & 0.49562 & 0.767 & 1.9487 & 1.3024 & 1.496 & 1.6255 & 0.32318 \\
\hline 20 & 0.50 & 7.5218 & 6.84 & 0.52442 & 0.769 & 1.9553 & 1.2736 & 1.535 & 1.6144 & 0.34088 \\
\hline 21 & 0.53 & 7.553 & 6.84 & 0.5505 & 0.772 & 1.9604 & 1.2475 & 1.572 & 1.6039 & 0.35648 \\
\hline 22 & 0.57 & 7.5785 & 6.84 & 0.5755 & 0.779 & 1.961 & 1.2225 & 1.604 & 1.5917 & 0.36926 \\
\hline 23 & 0.61 & 7.6027 & 6.84 & 0.59724 & 0.783 & 1.9634 & 1.2007 & 1.635 & 1.5821 & 0.38133 \\
\hline 24 & 0.65 & 7.624 & 6.84 & 0.61735 & 0.787 & 1.9646 & 1.1806 & 1.664 & 1.5726 & 0.39201 \\
\hline 25 & 0.69 & 7.6446 & 6.84 & 0.63691 & 0.792 & 1.9657 & 1.1611 & 1.693 & 1.5634 & 0.40232 \\
\hline 26 & 0.73 & 7.6625 & 6.84 & 0.65539 & 0.797 & 1.965 & 1.1426 & 1.720 & 1.5538 & 0.41123 \\
\hline 27 & 0.77 & 7.6817 & 6.84 & 0.67115 & 0.797 & 1.9685 & 1.1268 & 1.747 & 1.5477 & 0.42083 \\
\hline 28 & 0.81 & 7.6897 & 6.84 & 0.68636 & 0.808 & 1.9613 & 1.1116 & 1.764 & 1.5365 & 0.42484 \\
\hline 29 & 0.85 & 7.7144 & 6.84 & 0.70104 & 0.802 & 1.9714 & 1.0969 & 1.797 & 1.5342 & 0.43721 \\
\hline 30 & 0.89 & 7.7308 & 6.84 & 0.71462 & 0.802 & 1.9742 & 1.0834 & 1.822 & 1.5288 & 0.4454 \\
\hline 31 & 0.93 & 7.7444 & 6.84 & 0.72766 & 0.805 & 1.9747 & 1.0703 & 1.845 & 1.5225 & 0.45218 \\
\hline 32 & 1.05 & 7.7829 & 6.84 & 0.76136 & 0.807 & 1.9795 & 1.0366 & 1.910 & 1.5081 & 0.47145 \\
\hline 33 & 1.17 & 7.8151 & 6.84 & 0.78853 & 0.809 & 1.9845 & 1.0094 & 1.966 & 1.497 & 0.48755 \\
\hline 34 & 1.29 & 7.8452 & 6.84 & 0.81244 & 0.808 & 1.9907 & 0.98553 & 2.020 & 1.4881 & 0.50258 \\
\hline 35 & 1.41 & 7.8696 & 6.84 & 0.83255 & 0.809 & 1.995 & 0.96543 & 2.066 & 1.4802 & 0.51479 \\
\hline 36 & 1.52 & 7.8926 & 6.84 & 0.85048 & 0.808 & 2.0001 & 0.94749 & 2.111 & 1.4738 & 0.52628 \\
\hline 37 & 1.64 & 7.9155 & 6.84 & 0.86624 & 0.805 & 2.0072 & 0.93173 & 2.154 & 1.4695 & 0.53775 \\
\hline 38 & 1.76 & 7.9349 & 6.84 & 0.87983 & 0.804 & 2.0131 & 0.91815 & 2.193 & 1.4656 & 0.54746 \\
\hline 39 & 1.88 & 7.9529 & 6.84 & 0.89124 & 0.801 & 2.0196 & 0.90674 & 2.227 & 1.4632 & 0.55645 \\
\hline 40 & 2.00 & 7.9715 & 6.84 & 0.90211 & 0.797 & 2.0274 & 0.89587 & 2.263 & 1.4616 & 0.56576 \\
\hline 41 & 2.12 & 7.988 & 6.84 & 0.91135 & 0.794 & 2.0347 & 0.88663 & 2.295 & 1.4606 & 0.57402 \\
\hline 42 & 2.23 & 8.0038 & 6.84 & 0.9195 & 0.790 & 2.0423 & 0.87848 & 2.325 & 1.4604 & 0.58192 \\
\hline 43 & 2.35 & 8.021 & 6.84 & 0.92548 & 0.784 & 2.0535 & 0.8725 & 2.354 & 1.463 & 0.59049 \\
\hline 44 & 2.47 & 8.0401 & 6.84 & 0.932 & 0.777 & 2.0661 & 0.86598 & 2.386 & 1.466 & 0.60004 \\
\hline 45 & 2.59 & 8.0551 & 6.84 & 0.93852 & 0.772 & 2.0745 & 0.85946 & 2.414 & 1.467 & 0.60754 \\
\hline 46 & 2.71 & 8.0673 & 6.84 & 0.94232 & 0.768 & 2.0829 & 0.85565 & 2.434 & 1.4693 & 0.61363 \\
\hline 47 & 2.82 & 8.0856 & 6.84 & 0.94558 & 0.759 & 2.098 & 0.85239 & 2.461 & 1.4752 & 0.62279 \\
\hline 48 & 2.94 & 8.0991 & 6.84 & 0.94993 & 0.754 & 2.1071 & 0.84804 & 2.485 & 1.4776 & 0.62954 \\
\hline 49 & 3.06 & 8.1105 & 6.84 & 0.95319 & 0.750 & 2.1153 & 0.84478 & 2.504 & 1.48 & 0.63524 \\
\hline 50 & 3.18 & 8.1259 & 6.84 & 0.95591 & 0.743 & 2.128 & 0.84207 & 2.527 & 1.485 & 0.64297 \\
\hline 51 & 3.29 & 8.1353 & 6.84 & 0.95808 & 0.740 & 2.1352 & 0.83989 & 2.542 & 1.4875 & 0.64765 \\
\hline 52 & 3.41 & 8.1473 & 6.84 & 0.96134 & 0.735 & 2.1439 & 0.83663 & 2.563 & 1.4903 & 0.65365 \\
\hline 53 & 3.53 & 8.1566 & 6.84 & 0.96243 & 0.731 & 2.1521 & 0.83555 & 2.576 & 1.4938 & 0.65828 \\
\hline 54 & 3.65 & 8.1692 & 6.84 & 0.96406 & 0.725 & 2.1631 & 0.83392 & 2.594 & 1.4985 & 0.66459 \\
\hline 55 & 3.76 & 8.1811 & 6.84 & 0.96515 & 0.720 & 2.1739 & 0.83283 & 2.610 & 1.5034 & 0.67054 \\
\hline 56 & 3.88 & 8.1916 & 6.84 & 0.96623 & 0.715 & 2.1833 & 0.83174 & 2.625 & 1.5075 & 0.67578 \\
\hline 57 & 4.00 & 8.2027 & 6.84 & 0.96732 & 0.710 & 2.1934 & 0.83065 & 2.641 & 1.512 & 0.68137 \\
\hline 58 & 4.12 & 8.2132 & 6.84 & 0.96895 & 0.706 & 2.2022 & 0.82902 & 2.656 & 1.5156 & 0.68659 \\
\hline 59 & 4.23 & 8.2257 & 6.84 & 0.96895 & 0.699 & 2.2147 & 0.82902 & 2.671 & 1.5218 & 0.69283 \\
\hline 60 & 4.35 & 8.2347 & 6.84 & 0.97058 & 0.696 & 2.2221 & 0.82739 & 2.686 & 1.5248 & 0.69736 \\
\hline 61 & 4.47 & 8.2411 & 6.84 & 0.97112 & 0.693 & 2.2279 & 0.82685 & 2.694 & 1.5274 & 0.70053 \\
\hline 62 & 4.58 & 8.2494 & 6.84 & 0.97276 & 0.690 & 2.2346 & 0.82522 & 2.708 & 1.5299 & 0.70471 \\
\hline 63 & 4.70 & 8.259 & 6.84 & 0.97221 & 0.685 & 2.2448 & 0.82576 & 2.718 & 1.5353 & 0.70952 \\
\hline 64 & 4.82 & 8.2687 & 6.84 & 0.97058 & 0.679 & 2.2561 & 0.82739 & 2.727 & 1.5417 & 0.71433 \\
\hline 65 & 4.94 & 8.2788 & 6.84 & 0.97112 & 0.675 & 2.2657 & 0.82685 & 2.740 & 1.5463 & 0.71942 \\
\hline 66 & 5.06 & 8.2878 & 6.84 & 0.96949 & 0.670 & 2.2763 & 0.82848 & 2.748 & 1.5524 & 0.7239 \\
\hline 67 & 5.17 & 8.3007 & 6.84 & 0.96841 & 0.663 & 2.2902 & 0.82957 & 2.761 & 1.5599 & 0.73034 \\
\hline 68 & 5.29 & 8.3095 & 6.84 & 0.96732 & 0.658 & 2.3001 & 0.83065 & 2.769 & 1.5654 & 0.73474 \\
\hline 69 & 5.41 & 8.3203 & 6.84 & 0.96678 & 0.653 & 2.3115 & 0.8312 & 2.781 & 1.5714 & 0.74016 \\
\hline 70 & 5.53 & 8.3324 & 6.84 & 0.96569 & 0.647 & 2.3247 & 0.83228 & 2.793 & 1.5785 & 0.74622 \\
\hline 71 & 5.64 & 8.3438 & 6.84 & 0.96297 & 0.640 & 2.3388 & 0.835 & 2.801 & 1.5869 & 0.75192 \\
\hline 72 & 5.76 & 8.3559 & 6.84 & 0.9608 & 0.634 & 2.3531 & 0.83718 & 2.811 & 1.5951 & 0.75795 \\
\hline 73 & 5.88 & 8.3653 & 6.84 & 0.96026 & 0.630 & 2.363 & 0.83772 & 2.821 & 1.6004 & 0.76264 \\
\hline 74 & 5.99 & 8.3759 & 6.84 & 0.95917 & 0.624 & 2.3747 & 0.83881 & 2.831 & 1.6068 & 0.76795 \\
\hline 75 & 6.11 & 8.3852 & 6.84 & 0.957 & 0.619 & 2.3861 & 0.84098 & 2.837 & 1.6136 & 0.77258 \\
\hline 76 & 6.23 & 8.3971 & 6.84 & 0.9521 & 0.611 & 2.403 & 0.84587 & 2.841 & 1.6244 & 0.77854 \\
\hline 77 & 6.35 & 8.4076 & 6.84 & 0.94939 & 0.606 & 2.4162 & 0.84859 & 2.847 & 1.6324 & 0.78381 \\
\hline 78 & 6.47 & 8.4168 & 6.84 & 0.94721 & 0.601 & 2.4276 & 0.85076 & 2.853 & 1.6392 & 0.78841 \\
\hline
\end{tabular}

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
15

Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE
Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: . 75 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 17 / 11\)
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth: ----
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed & Vertical & Vertical & Horizontal & Horizontal & Cumulative \\
\hline & Time & Stress & Displacement & Stress & Displacement & Displacement \\
\hline & min & tsf & in & tsf & in & in \\
\hline 1 & 0.00 & 0.75 & 0.01082 & 0 & 0 & 0 \\
\hline 2 & 2.00 & 0.75 & 0.01127 & 0.06009 & 0.001129 & 0.001129 \\
\hline 3 & 4.00 & 0.75 & 0.01182 & 0.1469 & 0.004796 & 0.004796 \\
\hline 4 & 6.00 & 0.75 & 0.01225 & 0.143 & 0.008888 & 0.008888 \\
\hline 5 & 8.00 & 0.75 & 0.01266 & 0.2189 & 0.0127 & 0.0127 \\
\hline 6 & 10.00 & 0.75 & 0.0135 & 0.2873 & 0.01651 & 0.01651 \\
\hline 7 & 12.00 & 0.75 & 0.01429 & 0.3483 & 0.02031 & 0.02031 \\
\hline 8 & 14.00 & 0.75 & 0.01498 & 0.4009 & 0.02384 & 0.02384 \\
\hline 9 & 16.00 & 0.75 & 0.01557 & 0.4496 & 0.02751 & 0.02751 \\
\hline 10 & 18.00 & 0.75 & 0.01607 & 0.4908 & 0.03104 & 0.03104 \\
\hline 11 & 20.00 & 0.75 & 0.01648 & 0.5329 & 0.03456 & 0.03456 \\
\hline 12 & 22.00 & 0.75 & 0.01683 & 0.5689 & 0.03809 & 0.03809 \\
\hline 13 & 24.00 & 0.75 & 0.01715 & 0.6005 & 0.0419 & 0.0419 \\
\hline 14 & 26.00 & 0.75 & 0.01735 & 0.6294 & 0.04543 & 0.04543 \\
\hline 15 & 28.00 & 0.75 & 0.01757 & 0.6558 & 0.04938 & 0.04938 \\
\hline 16 & 98.00 & 0.75 & 0.02125 & 0.6014 & 0.1943 & 0.1943 \\
\hline 17 & 180.15 & 0.75 & 0.03304 & 0.6724 & 0.3589 & 0.3589 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY
Boring No.: B-1-1
Sample No.: S-16-18
Test No.: 1.25 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: 12/17/11
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth:
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed Time min & \[
\begin{array}{r}
\text { Vertical } \\
\text { Stress } \\
\text { tsf }
\end{array}
\] & \begin{tabular}{l}
Vertical \\
Displacement
\end{tabular} & Horizontal Stress tsf & Horizontal Displacement in & Cumulative Displacement in \\
\hline 1 & 0.00 & 1.25 & 0.01189 & 0 & 0 & 0 \\
\hline 2 & 12.00 & 1.25 & 0.01458 & 0.07233 & 0.002821 & 0.002821 \\
\hline 3 & 14.00 & 1.25 & 0.01451 & 0.07971 & 0.006913 & 0.006913 \\
\hline 4 & 16.00 & 1.25 & 0.01467 & 0.08127 & 0.011 & 0.011 \\
\hline 5 & 18.00 & 1.25 & 0.01488 & 0.1684 & 0.01481 & 0.01481 \\
\hline 6 & 20.00 & 1.25 & 0.01499 & 0.1843 & 0.0189 & 0.0189 \\
\hline 7 & 22.00 & 1.25 & 0.0153 & 0.313 & 0.02271 & 0.02271 \\
\hline 8 & 24.00 & 1.25 & 0.01616 & 0.413 & 0.0261 & 0.0261 \\
\hline 9 & 26.00 & 1.25 & 0.01703 & 0.5094 & 0.02963 & 0.02963 \\
\hline 10 & 28.00 & 1.25 & 0.01777 & 0.5879 & 0.03315 & 0.03315 \\
\hline 11 & 33.00 & 1.25 & 0.01959 & 0.7097 & 0.04246 & 0.04246 \\
\hline 12 & 38.00 & 1.25 & 0.02117 & 0.8061 & 0.05206 & 0.05206 \\
\hline 13 & 43.00 & 1.25 & 0.02223 & 0.8912 & 0.06193 & 0.06193 \\
\hline 14 & 48.00 & 1.25 & 0.02302 & 0.9647 & 0.07209 & 0.07209 \\
\hline 15 & 53.00 & 1.25 & 0.02348 & 1.018 & 0.08196 & 0.08196 \\
\hline 16 & 58.00 & 1.25 & 0.02364 & 1.05 & 0.09198 & 0.09198 \\
\hline 17 & 63.00 & 1.25 & 0.02373 & 1.067 & 0.1021 & 0.1021 \\
\hline 18 & 68.00 & 1.25 & 0.02364 & 1.064 & 0.1126 & 0.1126 \\
\hline 19 & 73.00 & 1.25 & 0.02385 & 1.029 & 0.123 & 0.123 \\
\hline 20 & 78.00 & 1.25 & 0.02424 & 0.9962 & 0.1333 & 0.1333 \\
\hline 21 & 83.00 & 1.25 & 0.0247 & 0.969 & 0.1436 & 0.1436 \\
\hline 22 & 88.00 & 1.25 & 0.02532 & 0.941 & 0.1542 & 0.1542 \\
\hline 23 & 93.00 & 1.25 & 0.02591 & 0.9196 & 0.1648 & 0.1648 \\
\hline 24 & 98.00 & 1.25 & 0.02646 & 0.9006 & 0.1754 & 0.1754 \\
\hline 25 & 103.00 & 1.25 & 0.02715 & 0.8831 & 0.1859 & 0.1859 \\
\hline 26 & 108.00 & 1.25 & 0.02788 & 0.8749 & 0.1964 & 0.1964 \\
\hline 27 & 113.00 & 1.25 & 0.02879 & 0.8695 & 0.2068 & 0.2068 \\
\hline 28 & 118.00 & 1.25 & 0.02939 & 0.8679 & 0.2174 & 0.2174 \\
\hline 29 & 123.00 & 1.25 & 0.03015 & 0.871 & 0.2277 & 0.2277 \\
\hline 30 & 128.00 & 1.25 & 0.03082 & 0.8718 & 0.2378 & 0.2378 \\
\hline 31 & 133.00 & 1.25 & 0.03154 & 0.8706 & 0.248 & 0.248 \\
\hline 32 & 138.00 & 1.25 & 0.03235 & 0.8772 & 0.2577 & 0.2577 \\
\hline 33 & 143.00 & 1.25 & 0.03304 & 0.8858 & 0.2673 & 0.2673 \\
\hline 34 & 148.00 & 1.25 & 0.0338 & 0.8955 & 0.2769 & 0.2769 \\
\hline 35 & 153.00 & 1.25 & 0.03439 & 0.9017 & 0.2872 & 0.2872 \\
\hline 36 & 158.00 & 1.25 & 0.03505 & 0.9064 & 0.2972 & 0.2972 \\
\hline 37 & 163.00 & 1.25 & 0.03568 & 0.9091 & 0.3074 & 0.3074 \\
\hline 38 & 168.00 & 1.25 & 0.0363 & 0.9185 & 0.3176 & 0.3176 \\
\hline 39 & 173.00 & 1.25 & 0.03691 & 0.922 & 0.3276 & 0.3276 \\
\hline 40 & 178.00 & 1.25 & 0.03753 & 0.9262 & 0.3377 & 0.3377 \\
\hline 41 & 183.00 & 1.25 & 0.03808 & 0.9321 & 0.3476 & 0.3476 \\
\hline 42 & 188.00 & 1.25 & 0.03874 & 0.9282 & 0.3578 & 0.3578 \\
\hline 43 & 193.00 & 1.25 & 0.0393 & 0.929 & 0.3678 & 0.3678 \\
\hline 44 & 198.00 & 1.25 & 0.03976 & 0.9309 & 0.3779 & 0.3779 \\
\hline 45 & 203.00 & 1.25 & 0.04033 & 0.941 & 0.3884 & 0.3884 \\
\hline 46 & 208.00 & 1.25 & 0.04084 & 0.9383 & 0.399 & 0.399 \\
\hline 47 & 213.00 & 1.25 & 0.04139 & 0.9371 & 0.4095 & 0.4095 \\
\hline 48 & 218.00 & 1.25 & 0.04193 & 0.9379 & 0.42 & 0.42 \\
\hline 49 & 223.00 & 1.25 & 0.04244 & 0.9356 & 0.4307 & 0.4307 \\
\hline 50 & 228.00 & 1.25 & 0.04296 & 0.936 & 0.4413 & 0.4413 \\
\hline 51 & 233.00 & 1.25 & 0.04351 & 0.9391 & 0.4517 & 0.4517 \\
\hline 52 & 238.00 & 1.25 & 0.04403 & 0.9406 & 0.462 & 0.462 \\
\hline 53 & 243.00 & 1.25 & 0.04459 & 0.9476 & 0.4723 & 0.4723 \\
\hline 54 & 248.00 & 1.25 & 0.04511 & 0.9566 & 0.4823 & 0.4823 \\
\hline
\end{tabular}

Project: COLETO CREEK FACILITY Boring No.: B-1-1
Sample No.: S-16-18
Test No.: 1.75 TSF

Location: IPR-GDF SUEZ
Tested By: BCM
Test Date: \(12 / 17 / 11\)
Sample Type: TRIMMED

Project No.: 60225561
Checked By: WPQ
Depth: ----
Elevation: ----

Soil Description: CALICHE SOIL (CALSIUM CARBONATE) SOME F-C SAND TRACE F GRAVEL - WHITE Remarks: TEST PERFORMED AS PER ASTM D 3080. SPECIMEN REMOLDED TO 117.0 PCF@ 16.5 WC

Step: 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Elapsed Time min & Vertical Stress tsf & \begin{tabular}{l}
Vertical \\
Displacement
\end{tabular} & Horizontal Stress tsf & Horizontal Displacement in & \begin{tabular}{l}
Cumulative \\
Displacement in
\end{tabular} \\
\hline 1 & 0.00 & 1.75 & 0.01256 & 0 & 0 & 0 \\
\hline 2 & 4.00 & 1.75 & 0.01529 & 0.1083 & 0.001552 & 0.001552 \\
\hline 3 & 6.00 & 1.75 & 0.0162 & 0.107 & 0.00522 & 0.00522 \\
\hline 4 & 8.00 & 1.75 & 0.01687 & 0.1474 & 0.009311 & 0.009311 \\
\hline 5 & 10.00 & 1.75 & 0.01767 & 0.3553 & 0.0127 & 0.0127 \\
\hline 6 & 12.00 & 1.75 & 0.01877 & 0.497 & 0.01622 & 0.01622 \\
\hline 7 & 14.00 & 1.75 & 0.01979 & 0.615 & 0.01961 & 0.01961 \\
\hline 8 & 16.00 & 1.75 & 0.0207 & 0.7159 & 0.02328 & 0.02328 \\
\hline 9 & 18.00 & 1.75 & 0.02152 & 0.8062 & 0.02694 & 0.02694 \\
\hline 10 & 20.00 & 1.75 & 0.02223 & 0.904 & 0.03061 & 0.03061 \\
\hline 11 & 22.00 & 1.75 & 0.02289 & 0.9887 & 0.03414 & 0.03414 \\
\hline 12 & 24.00 & 1.75 & 0.02361 & 1.072 & 0.03809 & 0.03809 \\
\hline 13 & 26.00 & 1.75 & 0.02409 & 1.144 & 0.0419 & 0.0419 \\
\hline 14 & 28.00 & 1.75 & 0.02466 & 1.209 & 0.04585 & 0.04585 \\
\hline 15 & 98.00 & 1.75 & 0.0315 & 1.356 & 0.1888 & 0.1888 \\
\hline 16 & 198.00 & 1.75 & 0.04639 & 1.405 & 0.392 & 0.392 \\
\hline 17 & 243.36 & 1.75 & 0.0505 & 1.298 & 0.4572 & 0.4572 \\
\hline
\end{tabular}

\section*{APPENDIX C}

\section*{Slide 7.0 Stability Analysis Models}

Coleto Creek Primary Pond, Cross Section A-A'
Max Storage Pool, Effective Stress Analysis, Non-circular

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit Weight \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 150 & 29 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty Clay or \\
Clayey Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 150 & 27 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

Coleto Creek Primary Pond, Cross Section A-A'
Max Storage Pool, Effective Stress Analysis, Circular

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit Weight \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 150 & 29 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty Clay \\
or Clayey Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 150 & 27 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

Coleto Creek Primary Pond, Cross Section A-A' Max Storage Pool, Total Stress Analysis, Non-circular

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit Weight \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 3000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty Clay \\
or Clayey Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 4000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

Coleto Creek Primary Pond, Cross Section A-A' Max Surcharge Pool, Total Stress Analysis, Non-circular

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit Weight \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg) \()\)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 3000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty Clay \\
or Clayey Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 4000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

Coleto Creek Primary Pond, Cross Section A-A'

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit \\
Weight \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg) \()\)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 3000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty Clay \\
or Clayey Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 4000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

\section*{Coleto Creek Primary Pond, Cross Section A-A'}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Material Name & Color & \begin{tabular}{c}
Unit \\
Weitht \\
(lbs/ft3)
\end{tabular} & \begin{tabular}{c}
Strength \\
Type
\end{tabular} & \begin{tabular}{c}
Cohesion \\
(psf)
\end{tabular} & \begin{tabular}{c}
Phi \\
(deg) \()\)
\end{tabular} & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & Hu Type \\
\hline \begin{tabular}{c}
Clayey Sand Fill \\
Material
\end{tabular} & & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 3000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline \begin{tabular}{c}
Natural Silty \\
Clay or Clayey \\
Sand
\end{tabular} & \(\square\) & 130 & \begin{tabular}{c}
Mohr- \\
Coulomb
\end{tabular} & 4000 & 0 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline Natural Sands & \(\square\) & 130 & \begin{tabular}{c}
Mohr-- \\
Coulomb
\end{tabular} & 0 & 36 & \begin{tabular}{c}
Water \\
Surface
\end{tabular} & \begin{tabular}{c}
Automatically \\
Calculated
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{Liquefaction Assessment Calculations}

\section*{APPENDIX D}

\section*{LIQUEFACTION FACTOR OF SAFETY}

\section*{ASSESSMENT METHODOLOGY}

\section*{Coleto Creek Power Station}

Sources: Coduto, Donald P., Geotechnical Engineering Principles and Practices. Prentice-Hall.
Rauch, Alan F., May 1997. EPOLLS: An Empiracle Method for Predicting Surface
Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes. Dissertation Submitted to Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Civil Engineering.
United States Environmental Protection Agency (USEPA), April 1995. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Office of Research and Development. Washington, DC. EPA/600/R-95/051

Methodology: Standard Penetration Test (SPT)

Step 1: Compute the standardized value of number of blow counts per foot normalized for overburden stress at the depth of the test
\[
\left(N_{1}\right)_{60}=N S P T \cdot C_{N} \cdot C E \cdot C B \cdot C S \cdot C_{R}
\]
where:
\(\left(N_{1}\right)_{60}=\) Measured blowcount normalized for overburden stress at the depth of the test \(\mathrm{C}_{\mathrm{N}}=\) Correction factor to normalize the measured blowcount to an equivalent value under one atmosphere of effective overburden stress
\[
\mathrm{C}_{\mathrm{N}}=\sqrt{\frac{P a}{\sigma^{\prime}{ }_{v o}}} \leq 2.0
\]
where:
\(\mathrm{Pa}=\) one atmosphere of pressure \((101.325 \mathrm{kPa})\) in the same units as \(\sigma_{\mathrm{vo}}{ }^{\prime}\)
\(\sigma_{v o}=\) vertical efffective stress at depth of \(\mathrm{N}_{\text {SPT }}\)
\(\mathrm{C}_{\mathrm{E}}=\) Correction factor of the measured SPT blowcount for level of energy delivered by the SPT hammer, 1.0 for safety hammer type with rope and pulley hammer release
\(C_{B}=\) Correction factor for borehole diameters outside the recommended range of 2.5 to 4.5 inch, 1.0 for borehole inside range
\(\mathrm{C}_{\mathrm{S}}=\) Correction factor for SPT samplers used without a sample liner, 1.0 for standard sampler
\(C_{R}=\) Correction factor for loss of energy through reflection in short lengths of drill rod:
where:
For \(\mathrm{z}<3 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=0.75\)
For \(3<z<9 m ; C_{R}=(15+z) / 24\)
For \(z>9 \mathrm{~m} ; \mathrm{C}_{\mathrm{R}}=1.0\)
where: \(z=\) length of drill rod in meters (approximately equal to depth of \(\mathrm{N}_{\text {SPT }}\))

Step 2: Compute a clean-sand equivalent value of \(\left(\mathrm{N}_{1}\right)_{60}\)
\[
\left(N_{1}\right)_{60}-c s=\left(N_{1}\right)_{60}+\Delta\left(N_{1}\right)
\]
where:
\(\Delta\left(N_{1}\right)_{60}=\) correction factor computed as follows:
For FC \(<5 \%, \Delta\left(N_{1}\right)_{60}=0.0\)
For \(5<\mathrm{FC}<35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7^{*}(\mathrm{FC}-5) / 30\)
For FC \(>35 \%, \Delta\left(\mathrm{~N}_{1}\right)_{60}=7.0\)
where:
FC = Fines content (percent finer than 0.075 mm)
Note: Where data was available, those FC were used. Otherwise, representative values from the USGS standard soil classification were used for the soil type observed during drilling.

Step 3: Compute the cyclic resistance ratio for a standardized magnitude 7.5 earthquake (CRR \({ }_{\text {M7.5 }}\))
\[
100 \cdot C R R_{M 7.5}=\frac{95}{34-\left(N_{1}\right)_{60}-c s}+\frac{\left(N_{1}\right)_{60}-c s}{1.3}-\frac{1}{2}
\]

Note: A value of \(\left(\mathrm{N}_{1}\right)_{60}-\mathrm{cs}>30\) indicates an unliquefiable soil with an infinite CRR. Designated as UL in the calculation tables.

Step 4: Adjust the standardized cyclic resistance ratio for the worst-case magnitude of earthquake for the area
\[
C R R=C R R M_{75} . M S F \cdot K \sigma \cdot K \alpha
\]
where:
MSF = magnitude scaling factor computed as follows:
\[
\text { For } \mathrm{M}_{\mathrm{w}}<7.0 ; \text { MSF }=10^{3.00} * \mathrm{M}_{\mathrm{w}}^{-3.46}
\]
where:
\(M_{w}=\) estimated worst-case magnitude eartquake, 6.1 taken from Figure 3.3 Seismic Source Zones in the Contiguous United States (USGS, 1982) and Table 3.1 Parameters for Seismic Source Zones (USGS, 2982) (USEPA, 1995)

Note: Two additional correction factors are potentially applicable for liquefiable soil deposits subject to significant overburden with a stress factor greater than \(1 \mathrm{tsf}(2000 \mathrm{psf})(\mathrm{K} \sigma)\) or static shear stresses such as significant slopes (\(K \alpha\)). K \(\sigma\) values were interpolated using Figure 5.7 Curves for Estimation of Correction Factor (Harder 1988, and Hynes 1988, as Quoted in Marcuson, et.al., 1990) (USEPA, 1998). No K \(\alpha\) factor was applied due to the relatively flat ground surface in the area.

Step 5: Estimate the average cyclic shear stress (CSR)
\[
C S R=0.65 \cdot \frac{a_{\max }}{g} \cdot \frac{\sigma_{v o}}{\sigma_{v o}^{\prime}} \cdot r d
\]
where:
\(a_{\max } / \mathrm{g}=\) peak horizonal acceleration that would occur at the ground surface in the absence of excess pore pressures or liquefaction, 0.03 g taken from the 2014 United States Geological Survey National Seismic Hazard Maps found at
http://earthquake.usgs.gov/hazards/products/conterminous/2014/2014pga2pct.pdf).
\(\sigma_{\mathrm{vo}}=\) total vertical overburden stress
\(\mathrm{g}=\) acceleration due to gravity, \(9.81 \mathrm{~m} / \mathrm{s}^{2}\)
\(r_{d}=\) stress reduction factor calculated as follows for depths up to 30 m :
\[
r_{d}=1.0+1.6 * 10^{-6}\left(z^{4}-42 z^{3}+105 z^{2}-4200 z\right)
\]

Step 6: Calculate the Factor of Safety against liquefaction (FS \({ }_{\text {liq }}\))
\[
F S_{l i q}=\frac{C R R}{C S R}
\]

\section*{Coleto Creek Power Plant}
\begin{tabular}{lcl}
Depth to Water \(=\) & 12 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & \(4 "\) to \(50^{\prime}\) bgs \\
& \(3^{\prime \prime}, 50^{\prime}\) ' on end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \[
\begin{array}{lc}
& \text { Soil } \\
\mathrm{N}_{\text {SPT }} & \text { Type }
\end{array}
\] & \[
\begin{gathered}
\sigma_{\text {'vo }}^{\prime} \\
(\mathrm{psf})
\end{gathered}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Kб & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\mathrm{vo}}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 2 & 0.61 & Unsaturated & 40 SC & 250 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 60.0 & 35 & 7.0 & 67.0 & UL & 1.92 & NA & UL & 0.03 & 250 & 1.00 & UL & UL \\
\hline 2 & 4 & 1.22 & Unsaturated & 13 SC & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 35 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.62 & 0.03 & 500 & 0.99 & 0.019 & 32 \\
\hline 3 & 6 & 1.83 & Unsaturated & 14 SC & 750 & 1.68 & 1.0 & 1.00 & 1.0 & 0.75 & 17.6 & 35 & 7.0 & 24.6 & 0.29 & 1.92 & NA & 0.55 & 0.03 & 750 & 0.99 & 0.019 & 28 \\
\hline 4 & 8 & 2.44 & Unsaturated & 15 sc & 1000 & 1.45 & 1.0 & 1.00 & 1.0 & 0.75 & 16.4 & 90.6 & 7.0 & 23.4 & 0.26 & 1.92 & NA & 0.51 & 0.03 & 1000 & 0.98 & 0.019 & 26 \\
\hline 7 & 14 & 4.27 & Saturated & 10 Sc & 1635.4 & 1.14 & 1.0 & 1.00 & 1.0 & 0.80 & 9.1 & 35 & 7.0 & 16.1 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1760 & 0.97 & 0.020 & 16 \\
\hline 8 & 16 & 4.88 & Saturated & 13 SC & 1770.8 & 1.09 & 1.0 & 1.00 & 1.0 & 0.83 & 11.8 & 35 & 7.0 & 18.8 & 0.20 & 1.92 & NA & 0.39 & 0.03 & 2020 & 0.96 & 0.021 & 18 \\
\hline & 18 & 5.49 & Saturated & 9 SC & 1906.2 & 1.05 & 1.0 & 1.00 & 1.0 & 0.85 & 8.1 & 35 & 7.0 & 15.1 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 2280 & 0.96 & 0.022 & 14 \\
\hline 10 & 20 & 6.10 & Saturated & 15 Sc & 2041.6 & 1.02 & 1.0 & 1.00 & 1.0 & 0.88 & 13.4 & 39.5 & 7.0 & 20.4 & 0.22 & 1.92 & 0.93 & 0.40 & 0.03 & 2540 & 0.95 & 0.023 & 17 \\
\hline 12 & 24 & 7.32 & Saturated & 13 SC & 2312.4 & 0.96 & 1.0 & 1.00 & 1.0 & 0.93 & 11.6 & 35 & 7.0 & 18.6 & 0.20 & 1.92 & 0.92 & 0.35 & 0.03 & 3060 & 0.94 & 0.024 & 15 \\
\hline 13 & 26 & 7.92 & Saturated & 21 sc & 2447.8 & 0.93 & 1.0 & 1.00 & 1.0 & 0.96 & 18.7 & 35 & 7.0 & 25.7 & 0.31 & 1.92 & 0.92 & 0.54 & 0.03 & 3320 & 0.93 & 0.025 & 22 \\
\hline 14 & 28 & 8.53 & Saturated & 15 SC & 2583.2 & 0.91 & 1.0 & 1.00 & 1.0 & 0.98 & 13.3 & 35 & 7.0 & 20.3 & 0.22 & 1.92 & 0.91 & 0.39 & 0.03 & 3580 & 0.92 & 0.025 & 16 \\
\hline 15 & 30 & 9.14 & Saturated & 28 SC & 2718.6 & 0.88 & 1.0 & 1.00 & 1.0 & 1.0 & 24.7 & 35 & 7.0 & 31.7 & UL & 1.92 & 0.91 & UL & 0.03 & 3840 & 0.91 & UL & UL \\
\hline 16 & 32 & 9.75 & Saturated & 12 SC & 2854 & 0.86 & 1.0 & 1.00 & 1.0 & 1.0 & 10.3 & 35 & 7.0 & 17.3 & 0.19 & 1.92 & 0.90 & 0.32 & 0.03 & 4100 & 0.90 & 0.025 & 13 \\
\hline 18 & 34.7 & 10.58 & Saturated & 6 SM & 3036.79 & 0.83 & 1.0 & 1.00 & 1.0 & 1.0 & 5.0 & 15 & 2.3 & 7.3 & 0.09 & 1.92 & 0.90 & 0.15 & 0.03 & 4451 & 0.89 & 0.025 & 6 \\
\hline 18A & 36 & 10.97 & Saturated & 15 SM & 3124.8 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 12.3 & 15 & 2.3 & 14.7 & 0.16 & 1.92 & 0.90 & 0.27 & 0.03 & 4620 & 0.88 & 0.025 & 11 \\
\hline 19 & 36.7 & 11.19 & Saturated & 24 SP & 3172.19 & 0.82 & 1.0 & 1.00 & 1.0 & 1.0 & 19.6 & 1 & 0.0 & 19.6 & 0.21 & 1.92 & 0.89 & 0.36 & 0.03 & 4711 & 0.88 & 0.025 & 14 \\
\hline 19A & 38 & 11.58 & Saturated & 26 SP & 3260.2 & 0.81 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.89 & 0.39 & 0.03 & 4880 & 0.87 & 0.025 & 15 \\
\hline 20 & 40 & 12.19 & Saturated & 39 SP & 3395.6 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 30.8 & 1 & 0.0 & 30.8 & UL & 1.92 & 0.89 & UL & 0.03 & 5140 & 0.86 & UL & UL \\
\hline 21 & 42 & 12.80 & Saturated & 27 SP & 3531 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.9 & 1 & 0.0 & 20.9 & 0.23 & 1.92 & 0.88 & 0.39 & 0.03 & 5400 & 0.84 & 0.025 & 15 \\
\hline 22 & 44 & 13.41 & Saturated & 35 SM & 3666.4 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 15 & 2.3 & 28.9 & 0.40 & 1.92 & 0.88 & 0.68 & 0.03 & 5660 & 0.83 & UL & UL \\
\hline 23 & 46 & 14.02 & Saturated & 34 SP & 3801.8 & 0.75 & 1.0 & 1.00 & 1.0 & 1.0 & 25.4 & 1 & 0.0 & 25.4 & 0.30 & 1.92 & 0.87 & 0.50 & 0.03 & 5920 & 0.82 & UL & UL \\
\hline 24 & 48 & 14.63 & Saturated & 66 SP & 3937.2 & 0.73 & 1.0 & 1.00 & 1.0 & 1.0 & 48.4 & 1 & 0.0 & 48.4 & UL & 1.92 & 0.87 & UL & 0.03 & 6180 & 0.80 & UL & UL \\
\hline 25 & 50 & 15.24 & Saturated & 56 SP & 4072.6 & 0.72 & 1.0 & 1.00 & 1.0 & 1.0 & 40.4 & 1 & 0.0 & 40.4 & UL & 1.92 & 0.86 & UL & 0.03 & 6440 & 0.79 & ut & UL \\
\hline 26 & 52 & 15.85 & Saturated & 50 SP & 4208 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 35.5 & 1 & 0.0 & 35.5 & UL & 1.92 & 0.86 & UL & 0.03 & 6700 & 0.77 & UL & UL \\
\hline 27 & 57 & 17.37 & Saturated & 50 SP & 4546.5 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.1 & 1 & 0.0 & 34.1 & UL & 1.92 & 0.85 & UL & 0.03 & 7350 & 0.73 & UL & UL \\
\hline 28 & 62 & 18.90 & Saturated & 66 SP & 4885 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 43.4 & 1 & 0.0 & 43.4 & UL & 1.92 & 0.84 & UL & 0.03 & 8000 & 0.68 & UL & UL \\
\hline 29 & 67 & 20.42 & Saturated & 50 SC & 5223.5 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 31.8 & 35 & 7.0 & 38.8 & UL & 1.92 & 0.83 & UL & 0.03 & 8650 & 0.64 & ut & UL \\
\hline 30 & 72 & 21.95 & Saturated & 92 sc & 5562 & 0.62 & 1.0 & 1.00 & 1.0 & 1.0 & 56.7 & 35 & 7.0 & 63.7 & UL & 1.92 & 0.81 & UL & 0.03 & 9300 & 0.59 & UL & UL \\
\hline 31 & 75 & 22.86 & Saturated & 50 Sc & 5765.1 & 0.61 & 1.0 & 1.00 & 1.0 & 1.0 & 30.3 & 35 & 7.0 & 37.3 & UL & 1.92 & 0.81 & UL & 0.03 & 9690 & 0.57 & UL & UL \\
\hline 32 & 81 & 24.69 & Saturated & 50 SP & 6171.3 & 0.59 & 1.0 & 1.00 & 1.0 & 1.0 & 29.3 & 1 & 0.0 & 29.3 & UL & 1.92 & 0.79 & UL & 0.03 & 10470 & 0.52 & UL & UL \\
\hline 33 & 86 & 26.21 & Saturated & 50 SM & 6509.8 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 28.5 & 15 & 2.3 & 30.8 & UL & 1.92 & 0.78 & UL & 0.03 & 11120 & 0.48 & UL & UL \\
\hline 34 & 91 & 27.74 & Saturated & 50 CL & 6848.3 & 0.56 & 1.0 & 1.00 & 1.0 & 1.0 & 27.8 & 77.9 & 7.0 & 34.8 & UL & 1.92 & 0.77 & UL & 0.03 & 11770 & 0.46 & ut & UL \\
\hline 35 & 96 & 29.26 & Saturated & 50 CL & 7186.8 & 0.54 & 1.0 & 1.00 & 1.0 & 1.0 & 27.1 & 90 & 7.0 & 34.1 & UL & 1.92 & 0.76 & UL & 0.03 & 12420 & 0.44 & ut & UL \\
\hline 36 & 100 & 30.48 & Saturated & 50 Sc & 7457.6 & 0.53 & 1.0 & 1.00 & 1.0 & 1.0 & 26.6 & 35 & 7.0 & 33.6 & UL & 1.92 & 0.75 & UL & 0.03 & 12940 & 0.43 & UL & UL \\
\hline 37 & 107 & 32.61 & Saturated & 93 CH & 7931.5 & 0.52 & 1.0 & 1.00 & 1.0 & 1.0 & 48.0 & 90 & 7.0 & 55.0 & UL & 1.92 & 0.74 & UL & 0.03 & 13850 & 0.44 & UL & UL \\
\hline 38 & 112 & 34.14 & Saturated & 51 CH & 9516 & 0.47 & 1.0 & 1.00 & 1.0 & 1.0 & 24.1 & 90 & 7.0 & 31.1 & UL & 1.92 & 0.68 & UL & 0.03 & 14500 & 0.47 & UL & UL \\
\hline 39 & 117 & 35.66 & Saturated & 38 CH & 9854.5 & 0.46 & 1.0 & 1.00 & 1.0 & 1.0 & 17.6 & 90 & 7.0 & 24.6 & 0.29 & 1.92 & 0.67 & 0.37 & 0.03 & 15150 & 0.51 & 0.015 & 24 \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter = & \(4 "\), to \(50^{\prime}\) bgs \\
& \(3^{\prime \prime}, 50^{\prime}\) 'to end of boring
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lcl}
Depth to Water \(=\) & 3.5 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 \\
Borehole Diameter = & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\text {d }}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 5 & ol & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 7.5 & 50 & 7.0 & 14.5 & 0.16 & 1.92 & NA & 0.30 & 0.03 & 125 & 1.00 & 0.019 & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 16 & OL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 24.0 & 50 & 7.0 & 31.0 & 0.55 & 1.92 & NA & 1.05 & 0.03 & 375 & 0.99 & 0.019 & UL \\
\hline 3 & 5 & 1.52 & Saturated & 15 & sc & 510.4 & 2.04 & 1.0 & 1.00 & 1.0 & 0.75 & 22.9 & 35 & 7.0 & 29.9 & 0.46 & 1.92 & NA & 0.88 & 0.03 & 635 & 0.99 & 0.024 & 37 \\
\hline 4 & 7 & 2.13 & Saturated & 16 & SP & 645.8 & 1.81 & 1.0 & 1.00 & 1.0 & 0.75 & 21.7 & 1 & 0.0 & 21.7 & 0.24 & 1.92 & NA & 0.46 & 0.03 & 895 & 0.99 & 0.027 & 17 \\
\hline 5 & 9 & 2.74 & Saturated & 15 & SP & 781.2 & 1.65 & 1.0 & 1.00 & 1.0 & 0.75 & 18.5 & 1 & 0.0 & 18.5 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1155 & 0.98 & 0.028 & 13 \\
\hline 6 & 10 & 3.05 & Saturated & 18 & SP & 848.9 & 1.58 & 1.0 & 1.00 & 1.0 & 0.75 & 21.3 & 1 & 0.0 & 21.3 & 0.23 & 1.92 & NA & 0.45 & 0.03 & 1285 & 0.98 & 0.029 & 16 \\
\hline 6 A & 11 & 3.35 & Saturated & 15 & SP & 916.6 & 1.52 & 1.0 & 1.00 & 1.0 & 0.75 & 17.1 & 1 & 0.0 & 17.1 & 0.18 & 1.92 & NA & 0.35 & 0.03 & 1415 & 0.98 & 0.029 & 12 \\
\hline 7 & 14 & 4.27 & Saturated & 26 & ML & 1119.7 & 1.37 & 1.0 & 1.00 & 1.0 & 0.80 & 28.6 & 50 & 7.0 & 35.6 & UL & 1.92 & NA & UL & 0.03 & 1805 & 0.97 & UL & UL \\
\hline 7 A & 15 & 4.57 & Saturated & 32 & CL & 1187.4 & 1.34 & 1.0 & 1.00 & 1.0 & 0.75 & 32.0 & 50 & 7.0 & 39.0 & UL & 1.92 & NA & UL & 0.03 & 1935 & 0.97 & UL & UL \\
\hline 8 & 20 & 6.10 & Saturated & 21 & ML & 1525.9 & 1.18 & 1.0 & 1.00 & 1.0 & 0.88 & 21.8 & 50 & 7.0 & 28.8 & 0.40 & 1.92 & NA & 0.76 & 0.03 & 2585 & 0.95 & 0.031 & 24 \\
\hline 9 & 25 & 7.62 & Saturated & 35 & SP & 1864.4 & 1.07 & 1.0 & 1.00 & 1.0 & 0.94 & 35.1 & 1 & 0.0 & 35.1 & UL & 1.92 & NA & UL & 0.03 & 3235 & 0.93 & UL & UL \\
\hline 10 & 31 & 9.45 & Saturated & 41 & SP & 2270.6 & 0.97 & 1.0 & 1.00 & 1.0 & 1.02 & 40.4 & 1 & 0.0 & 40.4 & UL & 1.92 & 0.92 & UL & 0.03 & 4015 & 0.91 & UL & UL \\
\hline 11 & 35 & 10.67 & Saturated & 45 & sc & 2541.4 & 0.91 & 1.0 & 1.00 & 1.0 & 1.07 & 43.9 & 35 & 7.0 & 50.9 & UL & 1.92 & 0.92 & UL & 0.03 & 4535 & 0.89 & UL & UL \\
\hline 12 & 39 & 11.89 & Saturated & 50 & Sc & 2812.2 & 0.87 & 1.0 & 1.00 & 1.0 & 1.12 & 48.6 & 35 & 7.0 & 55.6 & UL & 1.92 & 0.91 & UL & 0.03 & 5055 & 0.86 & UL & UL \\
\hline 13 & 45 & 13.72 & Saturated & 42 & SP & 3218.4 & 0.81 & 1.0 & 1.00 & 1.0 & 1.20 & 40.9 & 1 & 0.0 & 40.9 & UL & 1.92 & 0.89 & UL & 0.03 & 5835 & 0.82 & UL & UL \\
\hline 14 & 50 & 15.24 & Saturated & 26 & CL & 3556.9 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 20.1 & 50 & 7.0 & 27.1 & 0.34 & 1.92 & 0.88 & 0.57 & 0.03 & 6485 & 0.79 & 0.028 & 21 \\
\hline 15 & 54 & 16.46 & Saturated & 56 & SP & 3827.7 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 41.6 & 1 & 0.0 & 41.6 & UL & 1.92 & 0.87 & UL & 0.03 & 7005 & 0.75 & UL & UL \\
\hline 15A & 55 & 16.76 & Saturated & 120 & SP & 3895.4 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 88.4 & 1 & 0.0 & 88.4 & UL & 1.92 & 0.87 & UL & 0.03 & 7135 & 0.74 & UL & UL \\
\hline 16 & 59 & 17.98 & Saturated & 83 & CL & 4166.2 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 59.2 & 50 & 7.0 & 66.2 & UL & 1.92 & 0.86 & UL & 0.03 & 7655 & 0.71 & UL & UL \\
\hline 17 & 65 & 19.81 & Saturated & 50 & SM & 4572.4 & 0.68 & 1.0 & 1.00 & 1.0 & 1.0 & 34.0 & 35 & 7.0 & 41.0 & UL & 1.92 & 0.85 & UL & 0.03 & 8435 & 0.66 & UL & UL \\
\hline 18 & 70 & 21.34 & Saturated & 56 & CH & 4910.9 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 36.8 & 90 & 7.0 & 43.8 & UL & 1.92 & 0.84 & UL & 0.03 & 9085 & 0.61 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

TEST BORING B-3-1 \({ }^{1}\)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water = & 28 & ft (Only saturated strata was found between 28.0 and 28.5 ft bgs) \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter = & \(4 "\), to \(30^{\prime}\) \\
& \(3^{\prime \prime}\), to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {Spt }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {ilq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 19 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 28.5 & 35 & 7.0 & 35.5 & UL & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 17 & SC & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 35 & 7.0 & 32.5 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 26 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 35.9 & 35 & 7.0 & 42.9 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 26 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 30.3 & 35 & 7.0 & 37.3 & UL & 1.92 & NA & UL & 0.03 & 875 & 0.99 & UL & UL \\
\hline 5 & 9 & 2.74 & Unsaturated & 9 & sc & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 9.3 & 35 & 7.0 & 16.3 & 0.17 & 1.92 & NA & 0.33 & 0.03 & 1125 & 0.98 & 0.019 & 17 \\
\hline 6 & 11 & 3.35 & Unsaturated & 15 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 14.0 & 35 & 7.0 & 21.0 & 0.23 & 1.92 & NA & 0.44 & 0.03 & 1375 & 0.98 & 0.019 & 23 \\
\hline 7 & 13 & 3.96 & Unsaturated & 12 & sc & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.79 & 10.8 & 35 & 7.0 & 17.8 & 0.19 & 1.92 & NA & 0.37 & 0.03 & 1625 & 0.97 & 0.019 & 19 \\
\hline 8 & 15 & 4.57 & Unsaturated & 11 & sc & 1875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.8 & 35 & 7.0 & 15.8 & 0.17 & 1.92 & NA & 0.32 & 0.03 & 1875 & 0.97 & 0.019 & 17 \\
\hline 8 A & 16 & 4.88 & Unsaturated & 24 & sc & 2000 & 1.03 & 1.0 & 1.00 & 1.0 & 0.83 & 20.5 & 40 & 7.0 & 27.5 & 0.35 & 1.92 & NA & 0.68 & 0.03 & 2000 & 0.96 & 0.019 & 36 \\
\hline 11 & 21 & 6.40 & Unsaturated & 18 & sc & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 14.4 & 34.8 & 7.0 & 21.4 & 0.23 & 1.92 & 0.91 & 0.41 & 0.03 & 2625 & 0.95 & 0.019 & 22 \\
\hline 12 & 23 & 7.01 & Unsaturated & 21 & CL & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 16.6 & 50 & 7.0 & 23.6 & 0.27 & 1.92 & 0.90 & 0.46 & 0.03 & 2875 & 0.94 & 0.018 & 25 \\
\hline 14 & 27 & 8.23 & Unsaturated & 19 & Sc & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 1.0 & 15.0 & 35 & 7.0 & 22.0 & 0.24 & 1.92 & 0.89 & 0.42 & 0.03 & 3375 & 0.93 & 0.018 & 23 \\
\hline 15 & 28.5 & 8.69 & Saturated & 16 & sc & 3533.85 & 0.77 & 1.0 & 1.00 & 1.0 & 1.0 & 12.4 & 35 & 7.0 & 19.4 & 0.21 & 1.92 & 0.88 & 0.35 & 0.03 & 3565 & 0.92 & 0.018 & 20 \\
\hline 15A & 29 & 8.84 & Unsaturated & 20 & SM & 3627.5 & 0.76 & 1.0 & 1.00 & 1.0 & 1.0 & 15.3 & 35 & 7.0 & 22.3 & 0.25 & 1.92 & 0.88 & 0.42 & 0.03 & 3627.5 & 0.92 & 0.018 & 23 \\
\hline 16 & 31 & 9.45 & Unsaturated & 17 & SM & 3877.5 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 12.6 & 35 & 7.0 & 19.6 & 0.21 & 1.92 & 0.87 & 0.35 & 0.03 & 3877.5 & 0.91 & 0.018 & 20 \\
\hline 17 & 36 & 10.97 & Unsaturated & 65 & SM & 4502.5 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 44.6 & 35 & 7.0 & 51.6 & UL & 1.92 & 0.85 & UL & 0.03 & 4502.5 & 0.88 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices \(A\) and \(B\) for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 14 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{gathered}
\sigma_{\text {vo }}^{\prime} \\
(\mathrm{psf})
\end{gathered}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Ko & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {IIq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 12 & SM & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 35 & 7.0 & 25.0 & 0.29 & 1.92 & NA & 0.56 & 0.03 & 125 & 1.00 & 0.019 & 29 \\
\hline 2 & 3 & 0.91 & Unsaturated & 14 & CL & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 375 & 0.99 & 0.019 & 36 \\
\hline 2A & 4 & 1.22 & Unsaturated & 18 & CL & 500 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 27.0 & 50 & 7.0 & 34.0 & UL & 1.92 & NA & UL & 0.03 & 500 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 18 & CL & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 24.8 & 50 & 7.0 & 31.8 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 18 & CL & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 21.0 & 50 & 7.0 & 28.0 & 0.37 & 1.92 & NA & 0.71 & 0.03 & 875 & 0.99 & 0.019 & 37 \\
\hline 5 & 9 & 2.74 & Unsaturated & 19 & CL & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 19.5 & 50 & 7.0 & 26.5 & 0.33 & 1.92 & NA & 0.63 & 0.03 & 1125 & 0.98 & 0.019 & 33 \\
\hline 6 & 11 & 3.35 & Unsaturated & 47 & SM & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 44.3 & 35 & 7.0 & 51.3 & UL & 1.92 & NA & UL & 0.03 & 1375 & 0.98 & UL & UL \\
\hline 7 & 15 & 4.57 & Saturated & 23 & SP & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 20.3 & 1 & 0.0 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.03 & 1880 & 0.97 & 0.020 & 22 \\
\hline 8 & 20 & 6.10 & Saturated & 42 & SM & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 31.2 & 35 & 7.0 & 38.2 & UL & 1.92 & NA & UL & 0.03 & 2530 & 0.95 & UL & UL \\
\hline 9 & 24 & 7.32 & Saturated & 50 & SP & 2427 & 0.93 & 1.0 & 1.00 & 1.0 & 0.93 & 43.4 & 1 & 0.0 & 43.4 & UL & 1.92 & 0.92 & UL & 0.03 & 3050 & 0.94 & UL & UL \\
\hline 10 & 29 & 8.84 & Saturated & 52 & SP & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 45.0 & 1 & 0.0 & 45.0 & UL & 1.92 & 0.91 & UL & 0.03 & 3700 & 0.92 & UL & \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 35.6 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {'vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\text {R }}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & Kб & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 17 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 25.5 & 12.8 & 1.8 & 27.3 & 0.35 & 1.92 & NA & 0.67 & 0.03 & 125 & 1.00 & 0.019 & 34 \\
\hline 2 & 3 & 0.91 & Unsaturated & 12 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 18.0 & 12.8 & 1.8 & 19.8 & 0.21 & 1.92 & NA & 0.41 & 0.03 & 375 & 0.99 & 0.019 & 21 \\
\hline 3 & 5 & 1.52 & Unsaturated & 12 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 16.6 & 12.8 & 1.8 & 18.4 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 625 & 0.99 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 14 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 13.2 & 12.8 & 1.8 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1375 & 0.98 & 0.019 & 16 \\
\hline 8 & 14 & 4.27 & Unsaturated & 21 & sc & 1750 & 1.10 & 1.0 & 1.00 & 1.0 & 0.80 & 18.5 & 12.8 & 1.8 & 20.3 & 0.22 & 1.92 & NA & 0.42 & 0.03 & 1750 & 0.97 & 0.019 & 22 \\
\hline 9 & 17 & 5.18 & Unsaturated & 20 & sc & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.84 & 16.8 & 12.8 & 1.8 & 18.6 & 0.20 & 1.92 & 0.93 & 0.38 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 29 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.87 & 23.8 & 12.8 & 1.8 & 25.6 & 0.31 & 1.92 & 0.92 & 0.59 & 0.03 & 2375 & 0.96 & 0.019 & 31 \\
\hline 11 & 20 & 6.10 & Unsaturated & 16 & CL & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.88 & 13.0 & 50 & 7.0 & 20.0 & 0.22 & 1.92 & 0.92 & 0.41 & 0.03 & 2500 & 0.95 & 0.019 & 22 \\
\hline 11A & 21 & 6.40 & Unsaturated & 23 & CL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.89 & 18.4 & 50 & 7.0 & 25.4 & 0.30 & 1.92 & 0.91 & 0.58 & 0.03 & 2625 & 0.95 & 0.019 & 31 \\
\hline 12 & 22 & 6.71 & Unsaturated & 24 & CL & 2750 & 0.88 & 1.0 & 1.00 & 1.0 & 0.90 & 18.9 & 50 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2750 & 0.95 & 0.018 & 33 \\
\hline 12A & 23 & 7.01 & Unsaturated & 22 & CL & 2875 & 0.86 & 1.0 & 1.00 & 1.0 & 0.92 & 17.4 & 50 & 7.0 & 24.4 & 0.28 & 1.92 & 0.90 & 0.54 & 0.03 & 2875 & 0.94 & 0.018 & 29 \\
\hline 14 & 27 & 8.23 & Unsaturated & 25 & sc & 3375 & 0.79 & 1.0 & 1.00 & 1.0 & 0.97 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.89 & 0.61 & 0.03 & 3375 & 0.93 & 0.018 & 34 \\
\hline 15 & 29 & 8.84 & Unsaturated & 23 & sc & 3625 & 0.76 & 1.0 & 1.00 & 1.0 & 0.99 & 17.4 & 35 & 7.0 & 24.4 & 0.28 & 1.92 & 0.88 & 0.54 & 0.03 & 3625 & 0.92 & 0.018 & 30 \\
\hline 16 & 31 & 9.45 & Unsaturated & 26 & SM & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 1.0 & 19.2 & 35 & 7.0 & 26.2 & 0.32 & 1.92 & 0.87 & 0.61 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 34 & 10.36 & Unsaturated & 22 & CL & 4242 & 0.71 & 1.0 & 1.00 & 1.0 & 1.0 & 15.5 & 50 & 7.0 & 22.5 & 0.25 & 1.92 & 0.86 & 0.48 & 0.03 & 4242 & 0.89 & 0.017 & 28 \\
\hline 17A & 36 & 10.97 & Saturated & 28 & SP & 4477.08 & 0.69 & 1.0 & 1.00 & 1.0 & 1.0 & 19.3 & 1 & 0.0 & 19.3 & 0.21 & 1.92 & 0.85 & 0.40 & 0.03 & 4502 & 0.88 & 0.017 & 23 \\
\hline 18 & 41 & 12.50 & Saturated & 35 & SP & 4815.58 & 0.66 & 1.0 & 1.00 & 1.0 & 1.0 & 23.2 & 1 & 0.0 & 23.2 & 0.26 & 1.92 & 0.84 & 0.50 & 0.03 & 5152 & 0.85 & 0.018 & 28 \\
\hline 19 & 46 & 14.02 & Saturated & 35 & SP & 5154.08 & 0.64 & 1.0 & 1.00 & 1.0 & 1.0 & 22.4 & 1 & 0.0 & 22.4 & 0.25 & 1.92 & 0.83 & 0.48 & 0.03 & 5802 & 0.82 & 0.018 & 27 \\
\hline 20 & 51 & 15.54 & Unsaturated & 60 & SP & 6427 & 0.57 & 1.0 & 1.00 & 1.0 & 1.0 & 34.4 & 1 & 0.0 & 34.4 & UL & 1.92 & 0.79 & UL & 0.03 & 6427 & 0.78 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 14 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Type }
\end{aligned}
\] & \[
\begin{aligned}
& \sigma_{\text {voo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\text {B }}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\text {R }}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60}\)-cs & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{v o}\) & \(\mathrm{r}_{\text {d }}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 23 & SM & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 34.5 & 35 & 7.0 & 41.5 & ut & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & U \\
\hline 2 & 3 & 0.91 & Unsaturated & 33 & SM & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 49.5 & 35 & 7.0 & 56.5 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & U \\
\hline 3 & 5 & 1.52 & Unsaturated & 28 & ol & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 38.6 & 50 & 7.0 & 45.6 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & U \\
\hline 4 & 7 & 2.13 & Unsaturated & 22 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 25.7 & 35 & 7.0 & 32.7 & UL & 1.92 & NA & UL & 0.03 & 875 & 0.99 & UL & U \\
\hline 6 & 11 & 3.35 & Unsaturated & 12 & SM & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.76 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1375 & 0.98 & 0.019 & \\
\hline 7 & 15 & 4.57 & Saturated & 13 & SP & 1817.7 & 1.08 & 1.0 & 1.00 & 1.0 & 0.82 & 11.5 & 1 & 0.0 & 11.5 & 0.13 & 1.92 & NA & 0.24 & 0.03 & 1880 & 0.97 & 0.020 & 12 \\
\hline 8 & 20 & 6.10 & Saturated & 16 & SP & 2156.2 & 0.99 & 1.0 & 1.00 & 1.0 & 0.75 & 11.9 & 1 & 0.0 & 11.9 & 0.13 & 1.92 & 0.93 & 0.25 & 0.03 & 2530 & 0.95 & 0.022 & 1 \\
\hline 9 & 25 & 7.62 & Saturated & 29 & SP & 2494.7 & 0.92 & 1.0 & 1.00 & 1.0 & 0.94 & 25.1 & 1 & 0.0 & 25.1 & 0.29 & 1.92 & 0.92 & 0.57 & 0.03 & 3180 & 0.93 & 0.023 & \\
\hline 10 & 29 & 8.84 & Saturated & 12 & SM & 2765.5 & 0.87 & 1.0 & 1.00 & 1.0 & 0.99 & 10.4 & 35 & 7.0 & 17.4 & 0.19 & 1.92 & 0.91 & 0.36 & 0.03 & 3700 & 0.92 & 0.024 & \\
\hline 10A & 29.5 & 8.99 & Saturated & 43 & SP & 2799.35 & 0.87 & 1.0 & 1.00 & 1.0 & 1.00 & 37.4 & 1 & 0.0 & 37.4 & UL & 1.92 & 0.91 & UL & 0.03 & 3765 & 0.91 & UL & \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices A and B for boring logs and laboratory testing results)

\section*{LIQUEFACTION FACTOR OF SAFETY ASSESSMENT}

TEST BORING B-5-1 \({ }^{1}\)

\section*{Coleto Creek Power Plant}
\begin{tabular}{lrl}
Depth to Water \(=\) & 32 & ft \\
Average Unsaturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{d}}=\) & 125 & pcf \\
Average Saturated Soil Unit Weight, \(\mathrm{y}_{\mathrm{s}}=\) & 130 & pcf \\
Average Water Unit Weight, \(\mathrm{y}_{\mathrm{w}}=\) & 62.3 & pcf \\
Earthquake Magnitude, \(\mathrm{M}_{\mathrm{w}}=\) & 6.1 & \\
Borehole Diameter \(=\) & 3", to end of boring
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Note & \(\mathrm{N}_{\text {SPT }}\) & \begin{tabular}{l}
Soil \\
Type
\end{tabular} & \[
\begin{aligned}
& \sigma_{\text {vo }}^{\prime} \\
& \text { (psf) }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{N}}\) & \(\mathrm{C}_{\mathrm{E}}\) & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{\mathrm{R}}\) & \(\left(\mathrm{N}_{1}\right)_{60}\) & FC & \(\Delta\left(N_{1}\right)_{60}\) & \(\left(\mathrm{N}_{1}\right)_{60} \mathrm{CS}\) & \(\mathrm{CRR}_{\text {M } 7.5}\) & MSF & K \(\sigma\) & CRR & \(\mathrm{a}_{\text {max }} / \mathrm{g}\) & \(\sigma_{\text {vo }}\) & \(\mathrm{r}_{\mathrm{d}}\) & CSR & \(\mathrm{FS}_{\text {liq }}\) \\
\hline 1 & 1 & 0.30 & Unsaturated & 34 & sc & 125 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 51.0 & 35 & 7.0 & 58.0 & UL & 1.92 & NA & UL & 0.03 & 125 & 1.00 & UL & UL \\
\hline 2 & 3 & 0.91 & Unsaturated & 26 & sc & 375 & 2.00 & 1.0 & 1.00 & 1.0 & 0.75 & 39.0 & 35 & 7.0 & 46.0 & UL & 1.92 & NA & UL & 0.03 & 375 & 0.99 & UL & UL \\
\hline 3 & 5 & 1.52 & Unsaturated & 23 & sc & 625 & 1.84 & 1.0 & 1.00 & 1.0 & 0.75 & 31.7 & 35 & 7.0 & 38.7 & UL & 1.92 & NA & UL & 0.03 & 625 & 0.99 & UL & UL \\
\hline 4 & 7 & 2.13 & Unsaturated & 17 & sc & 875 & 1.56 & 1.0 & 1.00 & 1.0 & 0.75 & 19.8 & 35 & 7.0 & 26.8 & 0.33 & 1.92 & NA & 0.64 & 0.03 & 875 & 0.99 & 0.019 & 33 \\
\hline 5 & 9 & 2.74 & Unsaturated & 11 & SC & 1125 & 1.37 & 1.0 & 1.00 & 1.0 & 0.75 & 11.3 & 35 & 7.0 & 18.3 & 0.20 & 1.92 & NA & 0.38 & 0.03 & 1125 & 0.98 & 0.019 & 20 \\
\hline 6 & 11 & 3.35 & Unsaturated & 17 & sc & 1375 & 1.24 & 1.0 & 1.00 & 1.0 & 0.75 & 15.8 & 35 & 7.0 & 22.8 & 0.26 & 1.92 & NA & 0.49 & 0.03 & 1375 & 0.98 & 0.019 & 26 \\
\hline 7 & 12 & 3.66 & Unsaturated & 12 & sc & 1500 & 1.19 & 1.0 & 1.00 & 1.0 & 0.75 & 10.7 & 35 & 7.0 & 17.7 & 0.19 & 1.92 & NA & 0.36 & 0.03 & 1500 & 0.97 & 0.019 & 19 \\
\hline 7A & 13 & 3.96 & Unsaturated & 18 & sc & 1625 & 1.14 & 1.0 & 1.00 & 1.0 & 0.75 & 15.4 & 35 & 7.0 & 22.4 & 0.25 & 1.92 & NA & 0.48 & 0.03 & 1625 & 0.97 & 0.019 & 25 \\
\hline 8 & 15 & 4.57 & Unsaturated & 10 & SC & 1875 & 1.06 & 1.0 & 1.00 & 1.0 & 0.75 & 8.0 & 35 & 7.0 & 15.0 & 0.16 & 1.92 & NA & 0.31 & 0.03 & 1875 & 0.97 & 0.019 & 16 \\
\hline 9 & 17 & 5.18 & Unsaturated & 15 & sc & 2125 & 1.00 & 1.0 & 1.00 & 1.0 & 0.75 & 11.2 & 35 & 7.0 & 18.2 & 0.20 & 1.92 & 0.93 & 0.37 & 0.03 & 2125 & 0.96 & 0.019 & 20 \\
\hline 10 & 19 & 5.79 & Unsaturated & 32 & sc & 2375 & 0.94 & 1.0 & 1.00 & 1.0 & 0.75 & 22.7 & 35 & 7.0 & 29.7 & 0.44 & 1.92 & 0.92 & 0.85 & 0.03 & 2375 & 0.96 & 0.019 & 45 \\
\hline 11 & 20 & 6.10 & Unsaturated & 20 & sc & 2500 & 0.92 & 1.0 & 1.00 & 1.0 & 0.75 & 13.8 & 35 & 7.0 & 20.8 & 0.23 & 1.92 & 0.92 & 0.44 & 0.03 & 2500 & 0.95 & 0.019 & 23 \\
\hline 11A & 21 & 6.40 & Unsaturated & 28 & CL & 2625 & 0.90 & 1.0 & 1.00 & 1.0 & 0.75 & 18.9 & 83.9 & 7.0 & 25.9 & 0.31 & 1.92 & 0.91 & 0.60 & 0.03 & 2625 & 0.95 & 0.019 & 32 \\
\hline 16 & 31 & 9.45 & Unsaturated & 35 & CL & 3875 & 0.74 & 1.0 & 1.00 & 1.0 & 0.75 & 19.4 & 50 & 7.0 & 26.4 & 0.32 & 1.92 & 0.87 & 0.62 & 0.03 & 3875 & 0.91 & 0.018 & 35 \\
\hline 17 & 33 & 10.06 & Saturated & 33 & SM & 4067.7 & 0.72 & 1.0 & 1.00 & 1.0 & 0.75 & 17.9 & 35 & 7.0 & 24.9 & 0.29 & 1.92 & 0.86 & 0.56 & 0.03 & 4130 & 0.90 & 0.018 & 31 \\
\hline 18 & 36 & 10.97 & Saturated & 80 & SP & 4270.8 & 0.70 & 1.0 & 1.00 & 1.0 & 0.75 & 42.2 & 1 & 0.0 & 42.2 & uL & 1.92 & 0.86 & UL & 0.03 & 4520 & 0.88 & UL & UL \\
\hline 19 & 41 & 12.50 & Saturated & 77 & SP & 4609.3 & 0.68 & 1.0 & 1.00 & 1.0 & 0.75 & 39.1 & 1 & 0.0 & 39.1 & UL & 1.92 & 0.85 & UL & 0.03 & 5170 & 0.85 & UL & UL \\
\hline 20 & 46 & 14.02 & Saturated & 42 & SM & 4947.8 & 0.65 & 1.0 & 1.00 & 1.0 & 0.75 & 20.6 & 35 & 7.0 & 27.6 & 0.36 & 1.92 & 0.84 & 0.68 & 0.03 & 5820 & 0.82 & 0.019 & 36 \\
\hline 21 & 50 & 15.24 & Saturated & 50 & SM & 5218.6 & 0.64 & 1.0 & 1.00 & 1.0 & 0.75 & 23.9 & 35 & 7.0 & 30.9 & UL & 1.92 & 0.83 & UL & 0.03 & 6340 & 0.79 & UL & UL \\
\hline
\end{tabular}

Source: AECOM, 2012. (See Appendices \(A\) and \(B\) for boring logs and laboratory testing results)

\title{
APPENDIX E - GROUNDWATER MONITORING AND CORRECTIVE ACTION
}

\section*{Groundwater Hydrogeologic Monitoring Plan}

Groundwater Monitoring Plan
Statistical Analysis Plan
Statistical Method Certification
2020 Groundwater Monitoring and Corrective Action Report

\title{
Groundwater Hydrogeologic Monitoring Plan
}

\title{
Coleto Creek Power Station Fannin, Texas
}

October 17, 2017

Prepared for:
Coleto Creek Power, LP
Coleto Creek Power Station
Fannin, Texas

Prepared by:
Bullock, Bennett \& Associates, lLC
Engineering and Geoscience
Registrations: Engineering F-8542, Geoscience 50127
165 N. Lampasas Street
Bertram, Texas 78605
(512) 355-9198

BBA Project No. 17258

\section*{TABLE OF CONTENTS}
1 INTRODUCTION 1
1.1 Background 1
1.2 Site Location and Description 2
1.3 CCR Unit Description 2
1.4 Previous Investigations and Reports 3
2 GEOLOGY AND HYDROGEOLOGY 4
2.1 Geology 5
2.1.1 Regional Setting 5
2.1.2 Site Geology 5
2.2 Hydrogeology 6
2.2.1 Uppermost Aquifer 6
2.2.2 Lower Limit of Aquifer 7
2.2.3 Hydraulic Conductivity 7
2.2.4 Groundwater Elevations, Flow Direction, and Velocity 8
3 GROUNDWATER MONITORING 10
3.1 CCR Monitoring Well Network 10
3.2 Summary of Groundwater Monitoring Systems 10
4 REFERENCES 12

\section*{FIGURES}

Figure \(1 \quad\) Site Location Map
Figure 2 Monitoring Well Locations
Figure \(3 \quad\) Generalized Geologic Cross Sections A-A' and B-B'
Figure \(4 \quad\) May 9-11, 2017 Potentiometric Surface Map Uppermost Aquifer Unit
Figure \(5 \quad\) June 6-8, 2017 Potentiometric Surface Map Uppermost Aquifer Unit
Figure 6 June 26-28, 2017 Potentiometric Surface Map Uppermost Aquifer Unit
Figure \(7 \quad\) July 18-20, 2017 Potentiometric Surface Map Uppermost Aquifer Unit

\section*{TABLES}

Table \(1 \quad\) Hydraulic Conductivity Testing Results
Table \(2 \quad G r o u n d w a t e r ~ L e v e l s, ~ M a r c h ~-~ J u l y, ~ 2017 ~\)
Table 3 CCR Monitoring Well Construction Details

\section*{APPENDICES}

Appendix A: Monitoring Well System Certification by a Qualified Professional Engineer
Appendix B: CCR Groundwater Monitoring Well System Boring Logs

\section*{1 INTRODUCTION}

\subsection*{1.1 Background}

This Hydrogeologic Monitoring Plan (HMP) was prepared to provide background information necessary to support the selection of the groundwater monitoring system to be used to fulfill the groundwater sampling and analysis program requirements of the United States Environmental Protection Agency (USEPA) Final Rule to regulate the disposal of Coal Combustion Residuals (CCR) as solid waste under Subtitle D of the Resource Conservation and Recovery Act [40 CFR 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015, referred to hereafter as the CCR Rule] at Coleto Creek Power, LP's coal-fired power station.

The CCR Rule groundwater monitoring and corrective action criteria require an owner or operator of a CCR unit to install a system of monitoring wells and specify procedures for sampling these wells. The groundwater monitoring network must consist of wells that are installed at appropriate locations and depths to provide representative samples from the uppermost aquifer in the immediate vicinity of the CCR unit. The monitoring well network must include at least one (1) upgradient/background well and a minimum of three (3) downgradient wells that represent groundwater that passes the waste boundary of the CCR unit. The well configurations and locations are determined in consideration of site-specific technical information including potential contaminant pathways, and:
1. Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and
2. Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

This purpose of this HMP is to document the methodologies and rationale behind selection of the Coleto Creek Power Station Primary Ash Pond groundwater monitoring system. The remainder of Section 1 provides a description of the site and a summary of historical investigations. Section 2 details the site geology and hydrogeology. Section 3 provides a discussion of the selected groundwater monitoring network wells and how those wells meet the criteria established in the CCR rules. 40 CFR \(\S 257.91\) (f) requires that a qualified professional engineer (PE) certify the groundwater monitoring system. The PE certification is contained in Appendix A.

\subsection*{1.2 Site Location and Description}

The Coleto Creek Power Station is a pulverized coal-fired power generation plant commissioned in 1980. The facility is located near the city of Fannin, Goliad County, Texas which is approximately 15 miles southwest of Victoria, Texas (Figure 1). The Coleto Creek Power Station provides electric power to South Texas. A 3,100-acre reservoir was constructed by the Guadalupe-Blanco River Authority to provide cooling water for the plant. CCR, consisting of fly ash and bottom ash, are either shipped off-site for beneficial re-use or managed in an on-site surface impoundment named the Primary Ash Pond. The Primary Ash Pond is subject to the CCR rules codified in 40 CFR Part 257 and is the subject of the groundwater monitoring system discussed in this HMP.

\subsection*{1.3 CCR Unit Description}

The Primary Ash Pond is an above ground surface impoundment having an approximate surface area of 190 acres and storage capacity of approximately 2,700 acre-feet (S\&L, December 1978). Impoundment dikes range from four (4) to 56 feet high with a total length of approximately 12,855 lineal feet. Fly ash from the coal-fired boiler is pneumatically conveyed to storage silos where it is loaded into hopper trucks and transported off-site for beneficial re-use. Off-spec or excess fly ash is sluiced to the Primary Ash Pond. Bottom ash is sluiced directly to the Primary Ash Pond from the boiler. Accumulated bottom ash is then mined from the pond for off-site beneficial re-use.

In the event the water level in the Primary Ash Pond nears maximum operation levels, treated water can be transferred to the adjacent Secondary Pond where it is either allowed to evaporate or is discharged to the Coleto Creek Reservoir as authorized by the facility's Texas Pollutant Discharge Elimination System (TPDES) permit.

\subsection*{1.4 Previous Investigations and Reports}

Several groundwater monitoring wells have been installed at the Coleto Creek Power Station for the purpose of evaluating site hydrogeology. Reports that contain well construction details, subsurface geotechnical testing results, and groundwater monitoring data that were reviewed include:
- AECOM, November 2009. Groundwater Quality Assessment Plan, Coleto Creek Power Plant, Fannin, Goliad County, Texas.
- AECOM, March 2012. Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds, IPR-GDF SUEZ North America, Coleto Creek Energy Facility, Fannin, Texas.
- Bullock, Bennett \& Associates, LLC, October 16, 2017. Letter Report to Rick Coleman of Coleto Creek Power Plant regarding Pneumatic Slug Testing.
- Bullock, Bennett \& Associates, LLC, October 10, 2017. Coleto Creek Primary Ash Pond CCR Rule Groundwater Monitoring Sampling and Analysis Plan, Revision 0.
- Sargent \& Lundy Engineers, December 1, 1978. "Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1."

\section*{2 GEOLOGY AND HYDROGEOLOGY}

A comprehensive subsurface investigation was implemented prior to construction of the Primary Ash Pond and other industrial elements of the facility. A total of approximately 63 soil borings were advanced to depths ranging to approximately 100 ft below ground surface (bgs) at a relatively dense spacing (S\&L, December 1978). Soil boring logs and results of geotechnical sampling and analyses were reviewed to identify the site-specific characteristics of the underlying geological strata.

The pre-CCR rule groundwater monitoring network for the Coleto Creek Power Station consisted of eight (8) monitoring wells (MW-1 through MW-8) that were installed in the vicinity of the Primary Ash Pond as it was constructed in 1978. Subsequent investigations in other areas of the power station included installation of additional groundwater monitoring wells that were evaluated during development of this HMP. These additional wells include BV-1, BV-5, BV-10, BV-15, BV-19, BV-21, and BV-22. Construction details and historical groundwater analytical results from these existing wells were reviewed to establish the site's geologic and hydrogeologic setting. Upon review of this information, BBA determined that an additional three wells would be required to address specific requirements outlined in the CCR rules under 40 CFR \(\S 251.91\). Wells MW-9, MW-10, and MW-11 were installed along the downgradient edge of the Primary Ash Pond. The CCR monitoring well network is shown on Figure 2. Non-CCR monitoring wells used to assist in evaluating groundwater flow are shown on Figures 4 through 7.

Soil boring logs advanced as part of historical investigations are contained in their respective reports and available in the Coleto Creek Power Station Operating Record as required. Boring logs for wells MW-9, MW-10, and MW-11 are contained in Appendix B along with the boring logs for the other monitoring wells selected to be part of the CCR groundwater monitoring system as described in Section 3 of this report.

Geologic and hydrogeologic observations from previous and recent investigations are summarized below.

\subsection*{2.1 Geology}

\subsection*{2.1.1 Regional Setting}

The Coleto Creek Power Station is predominately located on an outcrop of the Lissie Formation (Geologic Atlas of Texas, Revised 1987). The Lissie Formation is approximately middle Pleistocene in age and the atlas describes the formation as "sand, silt, clay and minor amount of gravel; iron oxide and iron manganese nodules common in zone of weathering, in upper part locally calcareous, some concretions of calcium carbonate; surface fairly flat and featureless except for numerous rounded shallow depressions and pimple mounds, lower part very gently rolling."

The Lissie Formation is generally considered a part of the Houston Group. Within the central coastal plain of Texas, the Lissie Formation's outcrop is a belt ranging from approximately 10 to 20 miles wide (Solis, 1981). Located within the western region of the Gulf Coast Basin, Lissie sediments extend into the subsurface, dipping southeast at 5 to 20 ft per mile (Doering, 1935). Maximum outcrop thickness is estimated to be about 600 ft in East Texas and 400 ft in South Texas (Plummer, 1932).

\subsection*{2.1.2 Site Geology}

Subsurface investigations at the site identified the following three primary geologic units beneath the Primary Ash Pond surface impoundment. The following general unit descriptions are based on those presented in AECOM (2009).

Unit 1 - This lithologic stratum consists of cohesive, lower permeability soils, primarily sandy clay and clayey sand with intermittent layers of silty clay. Caliche and calcareous materials (nodules, streaks) are also present, generally in the lower portion of the unit. Unit 1 appears laterally continuous across the area and extends from the original ground surface to depths
of up to 25 ft . This unit varies in thickness depending on site location. Below the Primary Ash Pond, Unit 1 varies in thickness from approximately 11 to 25 ft .

Unit 2 - This unit is the uppermost, permeable water-bearing zone below the Coleto Creek Power Station. It also appears laterally continuous below the site, with a thickness that varies from about 40 to 54 ft . Unit 2 is comprised primarily of sand and silty sand, with intermittent layers of clay bearing soils with varying thickness. The cohesive layers appear discontinuous. The presence of varying silt and clay content within the sandy soils of Unit 2 likely creates variability in the hydraulic conductivity properties of this stratum. Mineralized zones containing caliche and calcareous nodules are prominent within Unit 2.

Unit 3 - Unit 3 underlies Unit 2 forming a basal clay stratum that appears laterally continuous below the area. The soils are primarily clay and silty clay, with some sandy clay zones. Unit 3 is at least 29 ft thick and was not completely penetrated by most geotechnical borings in the area. The thickness and clayey soils of this stratum likely restrict downward migration of groundwater from Unit 2.

The relative positions of the above-described geologic units are illustrated in the generalized geologic cross sections provided in Figure 3. The locations of these cross sections in relation to the Primary Ash Pond are shown on Figure 2.

\subsection*{2.2 Hydrogeology}

In order to supplement historical hydrogeologic data, BBA performed pneumatic slug testing at several monitoring wells across the site on June 21-22, 2017. Slug tests are single-well aquifer tests used to estimate horizontal hydraulic conductivity \(\left(\mathrm{K}_{\mathrm{r}}\right)\) and other characteristics of the uppermost aquifer beneath the Primary Ash Pond (Bennett, 2017). The results of that testing are summarized below.

\subsection*{2.2.1 Uppermost Aquifer}
\(40 C F R \$ 257.53\) defines an aquifer as "a geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs." The
uppermost aquifer at the site corresponds to geologic Unit 2. As noted above, Unit 2 is characterized as consisting mostly of sand and silty sand with intermittent discontinuous layers of clay. Mineralized zones containing caliche and calcareous nodules are also prominent throughout this unit. The top of the aquifer is approximately 11 to 25 ft bgs and is 40 to 54 ft thick.

\subsection*{2.2.2 Lower Limit of Aquifer}

The lower limit of the aquifer is confined by a stratum consisting primarily of clay and silty clay with periodic sandy clay zones corresponding to geologic Unit 3. Although none of the borings fully penetrated this unit, it is a minimum of 29 ft thick in the area of the Primary Ash Pond. The thickness and nature of this basal unit likely restrict potential downward migration of groundwater from the overlying aquifer.

\subsection*{2.2.3 Hydraulic Conductivity}

Pneumatic slug tests were performed on June 21-22, 2017 at six monitoring wells partially penetrating the uppermost aquifer surrounding the Primary Ash Pond. Groundwater in the uppermost aquifer flows to the east and southeast toward Sulphur Creek and the Coleto Creek Reservoir. Three monitoring wells (BV-5, BV-21, BV-22) upgradient or west of the Primary Ash Pond and three wells (MW-9, MW-10, MW-11) downgradient of the Primary Ash Pond were selected for testing. Results of the slug testing from each well are listed in Table 1 for different units of equivalency.

The geometric mean \(\mathrm{K}_{\mathrm{r}}\) value from all slug tests is \(9.46 \mathrm{ft} /\) day \(\left(3.35 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}\right)\). The overall minimum \(\mathrm{K}_{\mathrm{r}}\) of \(1.45 \mathrm{ft} /\) day (\(5.14 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}\)) was estimated for \(\mathrm{MW}-10\) and the overall maximum \(\mathrm{K}_{\mathrm{r}}\) of \(38.7 \mathrm{ft} /\) day (\(1.37 \times 10^{-2} \mathrm{~cm} / \mathrm{sec}\)) for \(\mathrm{BV}-22\). The \(\mathrm{K}_{r}\) values from wells upgradient and west of the primary ash pond are higher than the \(\mathrm{K}_{\mathrm{r}}\) values estimated downgradient of the primary ash pond. The variability in \(\mathrm{K}_{\mathrm{r}}\) values is likely due to discontinuous cohesive clay soils and varying silt and clay content within the sandy soils.

The hydraulic conductivities for each of the wells tested are within the expected range typical of unconsolidated sandy aquifers. According to Heath (1983), the expected total and effective porosities for a sandy aquifer are approximately \(25 \%\) and \(20 \%\), respectively.

\subsection*{2.2.4 Groundwater Elevations, Flow Direction, and Velocity}

Groundwater from wells MW-1 through MW-8 are monitored on a semi-annual basis and reflects seasonal variation of groundwater level and flow trends. Groundwater was originally measured at elevations ranging from 85 to 95 ft when wells MW-1 through MW-8 were first installed in the 1970s. After construction of the Coleto Creek Reservoir, the potentiometric surface rose to near current-day levels which ranged from approximately 100 ft to 115 ft NAVD88 during the most recent groundwater sampling event conducted in May 2017 (BBA, September 2017). The monitoring data indicate minimal seasonal variation of water levels; however, as would be expected water levels fluctuate based on drought conditions with levels ranging to approximately 5 ft lower. Current levels are approximately 2 ft to 5 ft lower than maximums observed in 2010.

The 40 CFR Part 257 monitoring well network consists of nine monitoring wells (MW-4, MW5, MW-6, MW-8, MW-9, MW-10, MW-11, BV-5, and BV-21) installed in the uppermost aquifer as shown on Figure 2. Water levels in the 40 CFR Part 257 monitoring well network were measured during eight events from March to July 2017 in order to evaluate seasonal water level fluctuations across the site. A summary of groundwater level measurements for the 40 CFR Part 257 monitoring well network is provided in Table 2.

Groundwater flow occurs to the east and southeast across the Primary Ash Pond toward the Coleto Creek Reservoir (Figures 4 through 7). The horizontal hydraulic gradient was determined between wells MW-4 and MW-10 near the northern boundary of the Primary Ash Pond and between wells MW-8 and MW-6 near the southern boundary. The slope of the potentiometric surface between these two well pairs has averaged \(0.0027 \mathrm{ft} / \mathrm{ft}\) and 0.0029 ft/ft, respectively from March 2017 through July 2017.

Groundwater velocity can be calculated using the following formula:
\[
\mathrm{V}=\mathrm{K}_{\mathrm{r}}(\mathrm{dh} / \mathrm{dl}) / \mathrm{n}_{\mathrm{e}}
\]
where V is velocity (ft/day), \(\mathrm{K}_{\mathrm{r}}\) is hydraulic conductivity (ft/day), \(\mathrm{dh} / \mathrm{dl}\) is the hydraulic gradient (ft/ft), and \(\mathrm{n}_{\mathrm{e}}\) is the effective porosity of the aquifer (Heath, 1983). An effective porosity of \(20 \%\) will be used in these calculations (based on typical values for clayey sand) and the calculated geometric mean hydraulic conductivity value as determined from monitoring wells surrounding the Primary Ash Pond (Bennett, 2017)

The average linear velocity through the uppermost aquifer between wells MW-4 and MW-10 is determined as follows:
\[
V=9.46 \mathrm{ft} / \mathrm{day}(0.0027 \mathrm{ft} / \mathrm{ft}) / 0.20
\]
\[
\mathrm{V}=0.13 \mathrm{ft} / \mathrm{day}
\]

The average linear velocity through the uppermost aquifer between wells MW-8 and MW-6 was calculated as follows:
\[
V=9.46 \mathrm{ft} / \text { day }(0.0029 \mathrm{ft} / \mathrm{ft}) / 0.20
\]
\[
\mathrm{V}=0.14 \mathrm{ft} / \mathrm{day}
\]

Groundwater potentiometric surface maps for the above-referenced sampling events are included in this report as Figures 4, 5, 6, and 7.

\section*{3 GROUNDWATER MONITORING}

In 2015, BBA began an assessment of the existing monitoring well networks at Coleto Creek Power Station with respect to the existing CCR units. Included in the assessment was a review of the current placement and number of monitoring wells with respect to the Primary Ash Pond as well as potential locations for new monitoring wells, as appropriate. The discussion below summarizes the results of the assessment and defines the CCR groundwater monitoring network.

\subsection*{3.1 CCR Monitoring Well Network}

The 40 CFR Part 257 monitoring well network consists of nine monitoring wells installed in the uppermost aquifer. These wells include three upgradient/background wells (BV-5, BV-21, and MW-8) and six downgradient wells (MW-4, MW-5, MW-6, MW-9, MW-10, and MW-11) as shown on Figure 2. Boring logs and monitoring well construction reports for the groundwater monitoring system are provided in Appendix B. Details regarding the procedures and techniques used to fulfill the groundwater sampling and analysis program requirements are found in the Sampling and Analysis Plan for the site (BBA, October 2017). Well depths, well screen intervals, depth to groundwater, and monitored units are summarized in Table 3.

\subsection*{3.2 Summary of Groundwater Monitoring Systems}

The groundwater monitoring system for the Coleto Creek Primary Ash Pond meets the performance standard set in \(\S 257.91\) of the Final Rule. Three existing monitoring wells (MW-8, BV-5, and BV-21) have been selected that are at appropriate locations and depths to yield groundwater samples from the uppermost aquifer that accurately represent groundwater that has not been affected by leakage from the CCR units or other aspects of plant operations. Use of three background monitoring wells exceeds the minimum of one upgradient/background well required by §257.91(c)(1).

The six downgradient monitoring wells (MW-4, MW-5, MW-6, MW-9, MW-10, and MW-11) are installed as close as possible to the perimeter of the Primary Ash Pond to ensure that samples reflect groundwater quality at the pond boundary. This number exceeds the three wells required in §257.91(c)(1).

All monitoring wells were installed with screens and casing that maintains the integrity of the borehole. Well screens were packed with sand and annular spaces above the screen between the borehole and casing were sealed to minimize potential for cross contamination of groundwater samples. Documentation of the design, installation, and development of monitoring wells included in the groundwater monitoring system are available in the operating record for the Coleto Creek Power Station. The monitoring system for the Primary Ash Pond has been certified by a qualified professional engineer (see Appendix A).

\section*{4 REFERENCES}

AECOM. (March 2012). Geotechnical Stability and Hydraulic Analysis of the Coleto Creek Energy Facility Primary and Secondary Ash Ponds IPR-GDF SUEZ North America Coleto Creek Energy Facility Fannin, TX. Green Bay, WI: AECOM Technical Services, Inc.

AECOM. (November 2009). Groundwater Quality Assessment Plan, Coleto Creek Power Plant, Fannin, Goliad County, Texas. Document No.: 12261-003. AECOM.

Bureau of Economic Geology. (1998). Geologic Atlas of Texas Beeville-Bay City Sheet, by S. Aronow, T. E. Brown, J. L. Brewton, D. H. Eargle, and V. E. Barnes. Alexander Deussen Memorial Edition. 1975; revised 1987; reprinted 1998.

BBA. (October 2017). Dynegy Coleto Creek Primary Ash Pond CCR Rule Groundwater Monitoring Sampling and Analysis Plan, Rev 0. Bullock, Bennett \& Associates, LLC. Retrieved October 17, 2017

BBA. (September 2017). 2017 Groundwater Monitoring Report Coleto Creek Power Station Dynegy Inc. Fannin, TX. Bullock, Bennett \& Associates, LLC.

Bennett, C. (2017, October 12). Letter to Mr. Rick Coleman of Dynegy RE Pneumatic Slug Testing of Select Primary Ash Pond Monitoring Wells, Coleto Creek Power Station, Fannin, Texas. Bullock, Bennett \& Associates.

Doering, J. A., 1935, Post-Fleming surface formations of coastal southeast Texas and southern Louisiana: American Association of Petroleum Geologists Bulletin, v.19, no.5, p. 651-688.

Heath, R.C., 1983. Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86p.

Coleto Creek Primary Ash Pond CCR Rule Hydrogeologic Monitoring Plan

Revision 0
October 17, 2017
Section 4 - References
Page 13 of 13

Plummer, F. B. (1932). Cenozoic Systems in Texas, Part 3, in The Geology of Texas:
University of Texas, Austin, Bulletin 3232, p.729-795.

S\&L. (1977, July 19). Drawing No. C-46 Rev. F.
S\&L. (December 1978). Design and Construction Summary for Coal Pile and Wastewater Pond Facilities, Coleto Creek Power Station Unit 1, Report SL-3689. Sargent \& Lundy Engineers.

Solis, Raul Fernando. (1981). Upper Tertiary and Quaternary Depositional Systems, Central Coastal Plain, Texas, University of Texas at Austin Bureau of Economic Geology Report of Investigations No. 108.

TWDB. (1957). Bulletin 5711, Ground-Water Resources of Goliad County, Texas, 1957. O. C. Dale, E. A. Moulder, and Ted Arnow.

TWDB. (1962). Bulletin 6202, Ground-Water Resources of Victoria and Calhoun Counties, Texas. R. F. Marvin, G. H. Shafer, and O. C. Dale.

\section*{TABLES}

Table 1. Hydraulic Conductivity Testing Results
Hydrogeologic Monitoring Plan
Coleto Creek Power, LP CCR Rule Groundwater Monitoring
CCR Unit Name: Coleto Creek Primary Ash Pond
Unit ID: 141
\begin{tabular}{|c|c|c|c|c|}
\hline Monitoring Well & \(\mathbf{K}_{\mathbf{r}}(\mathbf{f t / d a y})\) & \(\mathbf{K}_{\mathbf{r}}(\mathbf{m} / \mathbf{d a y})\) & \(\left.\mathbf{K}_{\mathbf{r}} \mathbf{(c m} / \mathbf{s e c}\right)\) & \(\mathbf{K}_{\mathbf{r}}(\mathbf{f t} / \mathbf{s e c})\) \\
\hline BV-5 & 24.6 & 7.49 & \(8.68 \mathrm{E}-03\) & \(2.84 \mathrm{E}-04\) \\
\hline BV-21 & 37.8 & 11.5 & \(1.34 \mathrm{E}-02\) & \(4.38 \mathrm{E}-04\) \\
\hline BV-22 & 38.7 & 11.8 & \(1.37 \mathrm{E}-02\) & \(4.48 \mathrm{E}-04\) \\
\hline MW-9 & 3.3 & 1.01 & \(1.17 \mathrm{E}-03\) & \(3.82 \mathrm{E}-05\) \\
\hline MW-10 & 1.45 & 0.443 & \(5.14 \mathrm{E}-04\) & \(1.68 \mathrm{E}-05\) \\
\hline MW-11 & 4.17 & 1.27 & \(1.47 \mathrm{E}-03\) & \(4.82 \mathrm{E}-05\) \\
\hline
\end{tabular}

Table 2. Groundwater Levels, March - July, 2017
Hydrogeologic Monitoring Plan
Coleto Creek Power, LP CCR Rule Groundwater Monitoring
CCR Unit Name: Coleto Creek Primary Ash Pond
Unit ID: 141
\begin{tabular}{|c|c|c|c|c|}
\hline Well ID & Top of Casing Well Elevation (ft) (1) & Date Measured & Depth to Water Below Top of Casing (ft) & Water Level Elevation \\
\hline MW-4 & 137.71 & \[
\begin{gathered}
\hline 3 / 28 / 2017 \\
5 / 9 / 2017 \\
5 / 15 / 2017 \\
6 / 6 / 2017 \\
6 / 20 / 2017 \\
6 / 22 / 2017 \\
7 / 10 / 2017 \\
7 / 18 / 2017
\end{gathered}
\] & \[
\begin{aligned}
& \hline 29.25 \\
& 28.94 \\
& 28.93 \\
& 28.83 \\
& 28.94 \\
& 29.02 \\
& 29.11 \\
& 29.15
\end{aligned}
\] & \\
\hline MW-5 & 122.31 & \[
\begin{gathered}
\hline 3 / 30 / 2017 \\
5 / 10 / 2017 \\
5 / 16 / 2017 \\
6 / 8 / 2017 \\
6 / 21 / 2017 \\
6 / 26 / 2017 \\
7 / 11 / 2017 \\
7 / 19 / 2017 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 20.94 \\
20.3 \\
20.37 \\
20.61 \\
20.87 \\
21 \\
21.21 \\
21.47 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
101.37 \\
102.01 \\
101.94 \\
101.7 \\
101.44 \\
101.31 \\
101.1 \\
100.84
\end{tabular} \\
\hline MW-6 & 119.22 & \[
\begin{gathered}
\hline 3 / 29 / 2017 \\
5 / 11 / 2017 \\
5 / 16 / 2017 \\
6 / 7 / 2017 \\
6 / 22 / 2017 \\
6 / 28 / 2017 \\
7 / 12 / 2017 \\
7 / 20 / 2017 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 15.76 \\
15.7 \\
15.68 \\
15.92 \\
16.34 \\
16.33 \\
16.76 \\
16.92 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
103.46 \\
103.52 \\
103.54 \\
103.3 \\
102.88 \\
102.89 \\
102.46 \\
102.3
\end{tabular} \\
\hline MW-8 & 134.72 & \[
\begin{gathered}
\hline 3 / 28 / 2017 \\
5 / 9 / 2017 \\
5 / 15 / 2017 \\
6 / 6 / 2017 \\
6 / 20 / 2017 \\
6 / 27 / 2017 \\
7 / 10 / 2017 \\
7 / 18 / 2017 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 22.6 \\
21.29 \\
21.3 \\
21.25 \\
22.08 \\
22.12 \\
22.5 \\
22.67 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
112.12 \\
113.43 \\
113.42 \\
113.47 \\
112.64 \\
112.6 \\
112.22 \\
112.05
\end{tabular} \\
\hline
\end{tabular}

Table 2. Groundwater Levels, March - July, 2017
Hydrogeologic Monitoring Plan
Coleto Creek Power, LP CCR Rule Groundwater Monitoring
CCR Unit Name: Coleto Creek Primary Ash Pond
Unit ID: 141
\begin{tabular}{|c|c|c|c|c|}
\hline Well ID & Top of Casing Well Elevation (ft) (1) & Date Measured & Depth to Water Below Top of Casing (ft) & Water Level Elevation \\
\hline \multirow[t]{8}{*}{MW-9} & \multirow[t]{8}{*}{132.3} & 3/30/2017 & 28.31 & 103.99 \\
\hline & & 5/10/2017 & 27.75 & 104.55 \\
\hline & & 5/17/2017 & 29.87 & 102.43 \\
\hline & & 6/7/2017 & 28.2 & 104.1 \\
\hline & & 6/21/2017 & 28.65 & 103.65 \\
\hline & & 6/26/2017 & 28.83 & 103.47 \\
\hline & & 7/11/2017 & 29.12 & 103.18 \\
\hline & & 7/19/2017 & 29.48 & 102.82 \\
\hline \multirow[t]{8}{*}{MW-10} & \multirow[t]{8}{*}{130.4} & 3/30/2017 & 27.9 & 102.5 \\
\hline & & 5/9/2017 & 27.5 & 102.9 \\
\hline & & 5/16/2017 & 27.57 & 102.83 \\
\hline & & 6/8/2017 & 27.68 & 102.72 \\
\hline & & 6/21/2017 & 27.84 & 102.56 \\
\hline & & 6/26/2017 & 27.97 & 102.43 \\
\hline & & 7/11/2017 & 28.14 & 102.26 \\
\hline & & 7/19/2017 & 28.26 & 102.14 \\
\hline \multirow[t]{7}{*}{MW-11} & \multirow[t]{7}{*}{118.66} & 5/10/2017 & 14.3 & 104.36 \\
\hline & & 5/16/2017 & 14.39 & 104.27 \\
\hline & & 6/7/2017 & 14.56 & 104.1 \\
\hline & & 6/21/2017 & 14.85 & 103.81 \\
\hline & & 6/26/2017 & 14.94 & 103.72 \\
\hline & & 7/11/2017 & 15.2 & 103.46 \\
\hline & & 7/19/2017 & 15.31 & 103.35 \\
\hline \multirow[t]{8}{*}{BV-5} & \multirow[t]{8}{*}{135.8} & 3/29/2017 & 29.35 & 106.45 \\
\hline & & 5/11/2017 & 29.11 & 106.69 \\
\hline & & 5/16/2017 & 29.1 & 106.7 \\
\hline & & 6/7/2017 & 29.92 & 105.88 \\
\hline & & 6/20/2017 & 29.18 & 106.62 \\
\hline & & 6/27/2017 & 29.25 & 106.55 \\
\hline & & 7/12/2017 & 29.32 & 106.48 \\
\hline & & 7/18/2017 & 29.41 & 106.39 \\
\hline
\end{tabular}

Table 2. Groundwater Levels, March - July, 2017
Hydrogeologic Monitoring Plan
Coleto Creek Power, LP CCR Rule Groundwater Monitoring CCR Unit Name: Coleto Creek Primary Ash Pond
Unit ID: 141
\begin{tabular}{|c|c|c|c|c|}
\hline Well ID & \begin{tabular}{c}
Top of Casing \\
Well Elevation (ft) \\
(1)
\end{tabular} & Date Measured & \begin{tabular}{c}
Depth to Water \\
Below Top of \\
Casing (ft)
\end{tabular} & \begin{tabular}{c}
Water Level \\
Elevation
\end{tabular} \\
\hline BV-21 & 131.17 & \(3 / 28 / 2017\) & 19.25 & 111.92 \\
& & \(5 / 9 / 2017\) & 18.54 & 112.63 \\
& & \(5 / 17 / 2017\) & 18.52 & 112.65 \\
& & \(6 / 6 / 2017\) & 18.44 & 112.73 \\
& & \(6 / 20 / 2017\) & 18.76 & 112.41 \\
& & \(6 / 27 / 2017\) & 18.71 & 112.46 \\
& & \(7 / 10 / 2017\) & 18.86 & 112.31 \\
& & \(7 / 18 / 2017\) & 18.9 & 112.27 \\
\hline
\end{tabular}

Notes:
\(\mathrm{ft}=\mathrm{feet}\)
1. Top of Casing Elevations are referenced to NAVD88.

Table 3. CCR Monitoring Well Construction Details
Hydrogeologic Monitoring Plan
Coleto Creek Power, LP CCR Rule Groundwater Monitoring
CCR Unit Name: Coleto Creek Primary Ash Pond
Unit ID: 141
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Well ID & MW-4 & MW-5 & MW-6 & MW-8 & MW-9 & MW-10 & MW-11 & BV-5 & BV-21 \\
\hline Well Location Latitude & \(28^{\circ} 43^{\prime} 17.29^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43^{\prime} 13.97{ }^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43^{\prime} 46.56{ }^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43{ }^{\prime} 49.07{ }^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43^{\prime} 26.90\) " N & 288 \(43{ }^{\prime} 07.64{ }^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43^{\prime} 37.01{ }^{\prime \prime} \mathrm{N}\) & \(28^{\circ} 43^{\prime} 16.89\) " N & 28 \({ }^{\circ} 43^{\prime} 31.90^{\prime \prime} \mathrm{N}\) \\
\hline Well Location Longitude & 97 \(12{ }^{\prime} 52.27{ }^{\prime \prime} \mathrm{W}\) & 970 \(12^{\prime} 17.38^{\prime \prime} \mathrm{W}\) & 97º \(12^{\prime} 17.38^{\prime \prime} \mathrm{W}\) & 970 \(12^{\prime} 54.39^{\prime \prime} \mathrm{W}\) & 970 \(12^{\prime} 19.18^{\prime \prime} \mathrm{W}\) & 970 \(12^{\prime}\) 28.54" W & 97* \(12^{\prime} 18.36^{\prime \prime} \mathrm{W}\) & 970 \(13^{\prime} 12.03^{\prime \prime} \mathrm{W}\) & 97 \(13{ }^{\prime} 00.55{ }^{\prime \prime} \mathrm{W}\) \\
\hline Well Construction Material & PVC \\
\hline Well Diameter (inches) & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 2 \\
\hline Top of Casing Well Elevation (ft) \({ }^{(1)}\) & 137.71 & 122.31 & 119.22 & 134.72 & 132.3 & 130.4 & 118.66 & 135.8 & 131.17 \\
\hline Well Depth Below Ground Surface (ft) \({ }^{(2)}\) & 70.1 & 59.27 & 61.15 & 56.88 & 60 & 60 & 49 & 40 & 40 \\
\hline Screen Length (ft) & 19.6 & 19.8 & 19.9 & 19.9 & 20 & 20 & 20 & 10 & 10 \\
\hline Top of Screen Elevation (ft) \({ }^{(3)}\) & 83.8 & 80.1 & 75.1 & 94.8 & 89.3 & 87.6 & 86.8 & 103 & 98.4 \\
\hline Bottom of Screen Elevation (ft) \({ }^{(3)}\) & 64.2 & 60.3 & 55.2 & 74.9 & 69.3 & 67.6 & 66.8 & 93 & 88.4 \\
\hline Well Stick-up Above Ground Surface (ft) & 3.41 & 2.74 & 2.87 & 2.94 & 3 & 2.8 & 2.86 & 2.8 & 2.77 \\
\hline Hydraulic Position of Well \({ }^{(4)}\) & D & D & D & U & D & D & D & B & U \\
\hline
\end{tabular}

Notes:
PVC = polyvinyl chloride
PVC = p
\(\mathrm{ft}=\mathrm{feet}\)
1. Top of Casing Elevations are referenced to NAVD88.
2. Well Depth Below Ground Surface referenced to ground surface at time of well construction.
3. Top and Bottom of Screen Elevations reported as listed on well construction forms
4. Background (B), upgradient (U), or downgradient (D)

\section*{FIGURES}

> APPENDIX A
> Monitoring Well System Certification By A Qualified Professional Engineer

\section*{40 CFR Part 257.91(f) Groundwater Monitoring System Certification CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond}

In accordance with Title 40 Code of Federal Regulations (40 CFR) Part 257, Subpart D, Section 257.91(f), the owner or operator of a coal combustion residual (CCR) unit must obtain a certification from a qualified professional engineer stating that the groundwater monitoring system at the CCR unit has been designed and constructed to meet the requirements of 40 CFR \(\S 257.91\). If the groundwater monitoring system includes the minimum number of monitoring wells specified in 40 CFR \(\S 257.91\) (c)(1), the certification must document the basis supporting use of the minimum number of monitoring wells. Further, in accordance with 40 CFR \(\S 257.91(e)(1)\), when completing the groundwater monitoring system certification, the qualified professional engineer must be given access to documentation regarding the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices.

The groundwater monitoring system designed and constructed for the Coleto Creek Primary Ash Pond includes more than the minimum number of monitoring wells specified in 40 CFR \(\S 257.91\) (c)(1). The undersigned has been given access to documentation regarding the design, installation, development, and decommissioning of monitoring wells, piezometers and other measurement, sampling, and analytical devices concerning the Coleto Creek Primary Ash Pond.

I, Daniel B. Bullock, a qualified professional engineer in good standing in the State of Texas, certify that the groundwater monitoring system at the Coleto Creek Primary Ash Pond has been designed and constructed to meet the requirements of 40 CFR \(\S 257.91\).

Daniel B. Bullock, P.E. Qualified Professional Engineer \#82596
Texas
October 17, 2017

I, Craig E. Bennett, a licensed professional geologist in good standing in the State of Texas, certify that the groundwater monitoring system at the Coleto Creek Primary Ash Pond has been designed and constructed to meet the requirements of 40 CFR § 257.91.

Craig E. Bennett, P.G.
Licensed Professional Geologist
\#1205
Texas
October 17, 2017

\section*{APPENDIX B}

CCR Groundwater Monitoring Well System Boring Logs

Appendix B: CCR Groundwater Monitoring Well System Boring Logs
Wells W-4 to W-6 and Well W-8
by Sargent \& Lundy Engineers (March and April 1978). These monitoring wells are also designated as MW-4 to MW-6 and MW-8, respectively.

Wells W-9 and W-10
by Bullock, Bennett \& Associates, LLC (May 2016). These monitoring wells are also designated as MW-9 and MW-10, respectively.

Well MW-11
by Bullock, Bennett \& Associates, LLC (April 2017)
Wells BV-5 and BV-21
by Black \& Veatch (August and September 2008)
13. 1N:

\begin{tabular}{|c|c|}
\hline OOT \\
\hline \(01-5\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Bullock, Be 165 N Ber & Associate asas Street X 78605 & \[
\mathrm{s}, \mathrm{LLC}
\] & \multicolumn{5}{|r|}{LOG OF BORING W-10} \\
\hline \multicolumn{2}{|l|}{COLETO CREEK POWER STATION
FANNIN, TX} & & & & & & \begin{tabular}{l}
EnviroCore \\
Craig Schena (Lic. \#4694) CME75 \\
Hollow Stem Auger - \(\mathbf{6}^{\text {" }}\)
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Project No. 15215} & Logger & EEF & & & & . Spili-Spoon \\
\hline & \multicolumn{2}{|l|}{DESCRIPTION} & -000 & & 迷 & \multicolumn{2}{|l|}{WELL DIAGRAM/REMARKS} \\
\hline
\end{tabular}

PROJECT
PROJECT NO.
\begin{tabular}{r}
Internat \\
\hline PROJECT LOCATION
\end{tabular}
Victoria, Texas
N \(3286597^{1}\) SURFACE CONDITIONS
Level, loose, silty sand
SOIL SAMPLING
\begin{tabular}{|c|}
\hline \begin{tabular}{c}
SAMPLE \\
TYPE
\end{tabular} \\
\hline \begin{tabular}{c}
SAMPLE \\
NUMBER
\end{tabular} \\
\hline
\end{tabular}
 | ROCK CORING
\begin{tabular}{l}
CORE \\
SIZE \\
\hline
\end{tabular}
RUN
\begin{tabular}{l}
RUN \\
ENGTH \\
\hline
\end{tabular}

T
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ROCK CORING} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \[
\underset{\sim}{\mathrm{O}}
\] & & \[
\begin{aligned}
& \stackrel{r}{w} \\
& \frac{1}{n} \\
& \stackrel{a}{c} \\
& e
\end{aligned}
\] & & & \\
\hline SPT & 1 & 1 & 2 & 5 & 7 & 0.9 & 0 & & & & \\
\hline
\end{tabular}

SAND; dark brown; loose; moist; fine grained; poorly
Boring advanced
Clayey SAND; light brown; medium dense; moist; fine
grained; poorly graded
\(1 / 4\)
hollow stem auger. SPT performed w/auto
grading light gray; some black motting \& trace roots
grading w/trace chalk nodules; roots grade out
grading w/frequent seams of chalk nodules hammer.

1/15/2009 4:19 PM Colelo Creek 2

\title{
COAL COMBUSTION RESIDUAL RULE
} GROUNDWATER MONITORING PLAN

\section*{COLETO CREEK POWER STATION PRIMARY ASH POND \\ FANNIN, TEXAS}

JANUARY 7, 2022

Prepared For:
Coleto Creek Power

Prepared By:
Golder Associates, Inc.
2201 Double Creek Drive, Suite 4004
Round Rock, Texas 78664

\section*{TABLE OF CONTENTS}
TABLE OF CONTENTS ii
LIST OF FIGURES iii
LIST OF APPENDICES iii
1.0 INTRODUCTION 1
1.1 CCR Unit Groundwater Monitoring Applicability 1
1.2 Groundwater Sampling and Analysis Requirements 2
1.2.1 Groundwater Elevations 2
1.2.2 General Groundwater Analytical Requirements 2
1.2.3 Background Groundwater Quality Determination 3
1.2.4 Detection Monitoring Requirements 3
1.2.5 Assessment Monitoring Requirements 4
1.3 Groundwater Statistical Evaluation Procedures 7
2.0 GROUNDWATER MONITORING PROCEDURES 9
2.1 Primary Ash Pond Groundwater Monitoring System 9
2.2 Groundwater Sampling Procedures 9
2.2.1 Equipment Assembly and Preparation 9
2.2.2 General Groundwater Sampling Procedures 10
2.2.3 Groundwater Level Measurements 10
2.2.4 Well Purging and Sampling 10
2.2.5 Container and Labels 11
2.2.6 Chain-of-Custody Control 12
2.3 Analytical Procedures 12
3.0 STATISTICAL EVALUATION PROCEDURES 13
4.0 DETECTION MONITORING DATA EVALUATION 15
4.1 No Statistically Significant Increase Over Background Concentrations 15
4.2 Statistically Significant Increase Over Background Concentrations 16
5.0 ASSESSMENT MONITORING DATA EVALUATION 17
5.1 No Statistically Significant Increase Over Groundwater Protection Standards 18
5.2 Statistically Significant Increase Over Groundwater Protection Standards 19
6.0 REPORTING REQUIREMENTS 20
7.0 REFERENCES 21

\section*{LIST OF FIGURES}

Figure No.

Title
Site Location Map
Site Plan

\section*{LIST OF APPENDICES}

Appendix
Title
A
CCR Monitoring Well Logs

\subsection*{1.0 INTRODUCTION}

Coleto Creek Power operates the Coleto Creek Power Station (Coleto Creek), a lignite-fired power plant located in Fannin, Goliad County, Texas (the Site) (Figure 1). CCRs including fly ash and bed ash are generated as part of power plant operations. The CCRs are managed/disposed in the Primary Ash Pond onsite or are transported offsite for disposal/beneficial reuse by third-parties.

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the EPA to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. The final CCR Rule was published in the Federal Register on April 17, 2015. The effective date of the CCR Rule is October 19, 2015. The CCR Rule establishes national minimum criteria for existing and new CCR landfills, existing and new CCR surface impoundments, and lateral expansions to landfills/impoundments.

\subsection*{1.1 CCR Unit Groundwater Monitoring Applicability}

Section 257.90 of the CCR Rule requires that existing CCR landfills and surface impoundments be in compliance with the following groundwater monitoring requirements no later than October 17, 2017:
- Install a groundwater monitoring system as required under Section 257.91;
- Develop a groundwater sampling and analysis program to include selection of the statistical procedures to be used for evaluating groundwater monitoring data as required under Section 257.93;
- Initiate a detection monitoring program to include obtaining a minimum of eight independent samples for each background and downgradient monitoring well as required under Section 257.94; and
- Begin evaluating the groundwater monitoring data for statistically significant increases over background levels for the constituents listed in Appendix III of this part as required under Section 257.94 .

Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action throughout the active life and post-closure care period of the CCR unit. In the event of a release from a CCR unit, the owner or operator must take all necessary measures to control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of contaminants
into the environment.

For existing CCR landfills and surface impoundments, the owner or operator must prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. The first annual report must be prepared no later than January 31, 2018.

\subsection*{1.2 Groundwater Sampling and Analysis Requirements}

The CCR Rule establishes groundwater sampling and analysis criteria that are designed to create consistency and ensure that monitoring results provide accurate representations of groundwater quality at the CCR groundwater monitoring wells. A sampling and analysis program must be developed for each unit that includes procedures and techniques for sample collection, sample preservation and shipment, analytical procedures, chain of custody control, and quality assurance and quality control. Depending on the constituents and concentrations detected, groundwater monitoring at each CCR unit may consist of detection monitoring (Section 257.94) only or a combination of detection monitoring and assessment monitoring (Section 257.95). Selected technical groundwater sampling and analysis criteria are described in detail below; however, the complete CCR Rule should be referenced for notification requirements and other criteria.

\subsection*{1.2.1 Groundwater Elevations}

Groundwater elevations must be measured in each well immediately prior to purging, each time groundwater is sampled.

\subsection*{1.2.2 General Groundwater Analytical Requirements}

The CCR groundwater monitoring program must include sampling and analytical methods that are appropriate for groundwater sampling and that accurately measure hazardous constituents and other monitoring parameters in groundwater samples. The EPA publication Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), is EPA'S official compendium of analytical and sampling methods that have been evaluated and approved for use in complying with the RCRA regulations (EPA, 2015).

Groundwater monitoring under the CCR Rule includes analyses for inorganic parameters and metals. All metals analyses must be reported as "total recoverable metals" to capture both the particulate fraction and dissolved fraction of metals in the groundwater. The CCR Rule stipulates that groundwater samples cannot be field filtered prior to analysis.

\subsection*{1.2.3 Background Groundwater Quality Determination}

Background groundwater quality must be established in a hydraulically upgradient or background well(s) for each of the groundwater constituents required in the detection monitoring or assessment monitoring program that applies to the CCR unit. Background groundwater quality may be established at wells that are not located hydraulically upgradient from the CCR unit if the samples accurately represent the quality of background groundwater that has not been affected by leakage from the CCR unit.

\subsection*{1.2.4 Detection Monitoring Requirements}

Groundwater detection monitoring must be performed at each CCR unit (CCR Rule Section 257.94). The following constituents must be included in the detection monitoring program (from Appendix III to the CCR Rule):
- Boron
- Calcium
- Chloride
- Fluoride
- pH
- Sulfate
- Total Dissolved Solids (TDS)

The monitoring frequency for these constituents must be at least semi-annual during the active life of the CCR unit and post-closure period. The reported concentrations of the detection monitoring constituents must be compared to the respective CCR unit background concentration developed for each constituent. If a statistically significant increase over background levels is determined for one or more of the constituents listed above at any monitoring well at the CCR unit waste boundary, within 90 days the owner or operator must:
- Establish an assessment monitoring program as described in Section 257.95 of the Rule, or
- Demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from
error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with the detection monitoring program.

\subsection*{1.2.5 Assessment Monitoring Requirements}

Assessment monitoring is required under the CCR Rule whenever a statistically significant increase over background levels has been detected for one or more of the detection monitoring constituents listed above (CCR Rule Section 257.95). The following constituents must be included in the assessment monitoring program (from Appendix IV to the CCR Rule):
- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Chromium
- Cobalt
- Fluoride
- Lead
- Lithium
- Mercury
- Molybdenum
- Selenium
- Thallium
- Radium 226 and 228 combined

Within 90 days of triggering an assessment monitoring program, and annually thereafter, the owner or operator of the CCR unit must sample and analyze the groundwater for all assessment monitoring constituents (Appendix IV) listed above. At least one sample must be collected from each well associated with the CCR unit.

Within 90 days of obtaining the results from the initial assessment monitoring sampling event, the owner or operator of the CCR unit must resample all wells associated with the CCR unit, conduct analyses for all detection monitoring parameters (Appendix III) and for those assessment monitoring constituents (Appendix IV) that have been detected as part of assessment monitoring. At least one sample must be collected from each well associated with the CCR unit. This monitoring must be performed on at least a semi-annual basis thereafter. The owner or operator of a CCR unit may demonstrate the need for an alternative monitoring frequency for repeated sampling and analysis for these constituents during the active life and the post-closure care period based on the availability of groundwater. If there is not
adequate groundwater flow to sample wells semi-annually, the alternative frequency shall be no less than annual.

Within 90 days of obtaining the results from the initial assessment monitoring sampling event, groundwater protection standards must be established for all assessment monitoring constituents (Appendix IV) detected in the CCR unit monitoring wells. The groundwater protection standard shall be:
- For constituents for which a federal maximum contaminant level (MCL) has been established under 40 CFR 141.62 and 141.66, the MCL for that constituent; or
- For constituents for which an MCL has not been established, the background concentration or approved regional screening level for the constituent established in accordance with CCR Rule Section 257.91; or
- For constituents for which the background level is higher than the MCL, the background concentration.

Following are the federal MCLs that have been established for the assessment monitoring constituents (Appendix IV) identified in the Rule:
\begin{tabular}{|c|c|}
\hline Constituent & \begin{tabular}{c}
MCL \\
\((\mathbf{m g} / \mathbf{L})\)
\end{tabular} \\
\hline \hline Antimony & 0.006 \\
\hline Arsenic & 0.01 \\
\hline Barium & 2.0 \\
\hline Beryllium & 0.004 \\
\hline Cadmium & 0.005 \\
\hline Chromium & 0.1 \\
\hline Cobalt & None \\
\hline Fluoride & 4.0 \\
\hline Lead & \(0.015^{*}\) \\
\hline Lithium & None \\
\hline Mercury & 0.002 \\
\hline Molybdenum & None \\
\hline Selenium & 0.05 \\
\hline Thallium & 0.002 \\
\hline Radium 226/228 Combined & \(5 \mathrm{pCi} / \mathrm{L}^{* *}\) \\
\hline
\end{tabular}

\footnotetext{
* The drinking water action level for lead is \(0.015 \mathrm{mg} / \mathrm{L}\).
** \(\mathrm{pCi} / \mathrm{L}=\) picocuries per liter
}

If the concentrations of all detection monitoring constituents (Appendix III) and assessment monitoring constituents (Appendix IV) are shown to be statistically at or below background values for two consecutive sampling events, the owner or operator may return to performing only detection monitoring of the CCR unit. If the concentrations of any detection monitoring constituents (Appendix III) and assessment monitoring constituents (Appendix IV) are shown to be statistically above background values, but all concentrations are below their respective groundwater protection standards, the owner or operator must continue assessment monitoring of the CCR Unit.

Within 90 days of finding that any of the assessment monitoring constituents (Appendix IV) have been detected at a statistically significant level exceeding their respective groundwater protection standards, the owner or operator of the CCR unit must either:
- Initiate an assessment of corrective measures for the CCR unit (CCR Rule Section 257.96); or
- Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. If a successful demonstration is made, the owner or operator must continue assessment monitoring. If a successful demonstration has not been made at the end of the 90 day period, the owner or operator of the CCR unit must initiate an assessment of corrective measures for the CCR unit.

If one or more assessment monitoring constituents (Appendix IV) are detected at statistically significant levels above their respective groundwater protection standards, the owner or operator of the CCR unit must characterize the nature and extent of the release. Characterization of the release includes the following minimum measures:
- Install additional monitoring wells necessary to define the contaminant plume(s);
- Collect data on the nature and estimated quantity of material released including specific information on the assessment monitoring constituents (Appendix IV) and the levels at which they are present in the material released;
- Install at least one additional monitoring well at the facility boundary in the direction of contaminant migration and sample this well for all detection monitoring parameters (Appendix III) and for those assessment monitoring constituents (Appendix IV) that have been detected as part of assessment monitoring. This monitoring must be performed on at least a semi-annual basis thereafter.
- Sample all CCR unit wells for all detection monitoring parameters (Appendix III) and for those assessment monitoring constituents (Appendix IV) that have been detected as part of assessment monitoring. This monitoring must be performed on at least a semi-annual basis thereafter.

If an assessment of corrective measures is required as a result of assessment monitoring, and if the CCR unit being monitored is considered an existing unlined CCR surface impoundment under the CCR Rule, then the CCR unit is required to retrofit or close in accordance with the applicable parts of the CCR Rule.

\subsection*{1.3 Groundwater Statistical Evaluation Procedures}

Statistical analysis of the groundwater monitoring data is required as part of detection monitoring and assessment monitoring under the CCR Rule. One of the following statistical methods must be used to evaluate groundwater monitoring data for each monitored constituent:
- A parametric analysis of variance followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's mean and the background mean levels for each constituent; or
- An analysis of variance based on ranks followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's median and the background median levels for each constituent; or
- A tolerance or prediction interval procedure in which an interval for each constituent is established from the distribution of the background data. The level of each constituent in each compliance well is compared to the upper tolerance or prediction limit established from the background data; or
- A control chart approach that gives control limits for each constituent; or
- Another statistical test method that meets the performance standards.

Any statistical method chosen must comply with the following performance standards:
- The statistical method used to evaluate groundwater monitoring data shall be appropriate for the distribution of constituents. Probability distributions of data values shall use parametric methods, and non-probability distributions of data values shall use non-parametric methods. If the distribution of the constituents is shown to be inappropriate for a probability theory test, the data must be transformed or a distribution-free (non-parametric) theory test must be used. If the distributions for the constituents differ, more than one statistical method may be needed;
- If an individual well comparison procedure is used to compare an individual compliance well constituent concentration with background constituent concentrations or a groundwater protection standard, the test shall be done at a Type I error level no less than 0.01 for each testing period. If a multiple comparison procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05 ; however, the Type I error of no less than 0.01 for individual well comparison must be maintained. This performance standard does not apply to tolerance intervals, prediction intervals, or control charts;
- If a control chart approach is used to evaluate groundwater monitoring data, the specific type of chart and its associated parameter values shall be such that this approach is at least as effective as any other approach in this section for evaluating groundwater data. The parameter values shall be determined after considering the number of samples in the background database, the data distribution, and the range of the concentration values for each constituent of concern;
- If a tolerance interval or a prediction interval is used to evaluate groundwater monitoring data, the levels of confidence and, for tolerance intervals, the percentage of the population that the interval must contain, shall be such that this approach is at least as effective as any other approach in this section for evaluating groundwater data. These parameters shall be determined after considering the number of samples in the background database, the data distribution, and the range of the concentration values for each constituent of concern;
- The statistical method must account for data below the limit of detection with one or more statistical procedures that shall be at least as effective as any other approach in this section for evaluating groundwater data. Any practical quantitation limit that is used in the statistical method shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions that are available to the facility; and
- If necessary, the statistical method must include procedures to control or correct for seasonal and spatial variability as well as temporal correlation in the data.

The owner/operator of the CCR unit must determine if there has been a statistically significant increase over background (detection monitoring) or MCLs/background (assessment monitoring) for each constituent required in the particular groundwater monitoring program that applies to the CCR unit. The determination of statistical increase over background/MCLs for each constituent at each monitoring well must be made within 90 days after completing sampling and analysis.

\subsection*{2.0 GROUNDWATER MONITORING PROCEDURES}

This section describes groundwater sampling and analysis procedures for monitoring the CCR unit wells to comply with the requirements of 40 CFR 257.90-257.95 of the CCR Rule.

\subsection*{2.1 Primary Ash Pond Groundwater Monitoring System}

The CCR groundwater monitoring system at the Primary Ash Pond consists of the following monitoring wells:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Upgradient/Background \\
Wells
\end{tabular} & Downgradient Wells \\
\hline BV-5 & MW-4 \\
BV-8 & MW-5 \\
BV-21 & MW-6 \\
& MW-9 \\
& MW-10 \\
& MW-11 \\
\hline
\end{tabular}

A detailed Site Plan showing the locations of the CCR monitoring wells is provided on Figure 2. Boring logs for the wells are provided in Appendix A.

\subsection*{2.2 Groundwater Sampling Procedures}

\subsection*{2.2.1 Equipment Assembly and Preparation}

Activities that occur during groundwater sampling are summarized as follows:
- pre-arrangement of sample analytical requests with analytical testing laboratory;
- assembly and preparation of sampling equipment and supplies;
- groundwater sampling;
- water-level measurements;
- well purging;
- field parameter measurements;
- sample collection;
- sample preservation;
- sample labeling;
- completion of sample records;
- completion of chain-of-custody records; and
- sample shipment.

Prior to each sampling event, equipment to be used is assembled, properly cleaned and its operating condition verified. In addition, all record-keeping materials are prepared. Sampling procedures are conducted in general accordance with EPA SW-846 methods.

Decontamination of all non-disposable or non-dedicated field measurement, purging, and sampling equipment are performed for each sampling event before any purging/sampling activities begin, after each well is sampled, and at the end of the sampling event. Decontamination procedures are summarized below:
(1) Wash equipment with low-residue soap and/or detergent solution.
(2) Rinse with distilled water; and
(3) Repeat steps (1) and (2) above, as necessary.

\subsection*{2.2.2 General Groundwater Sampling Procedures}

Prior to collecting samples, each well is inspected for signs of damage to the well protective casing and well pad. Each field instrument is calibrated according to the manufacturer's instructions prior to use.

Special care should be exercised to prevent contamination of the groundwater and extracted samples during the sampling activities. The primary way in which such contamination can occur is contact with improperly cleaned equipment. To prevent such contamination, all non-dedicated sampling equipment is thoroughly cleaned before and between uses at different sampling locations. In addition to the use of properly cleaned equipment, a new pair of disposable latex (or similar) gloves is worn for each well.

\subsection*{2.2.3 Groundwater Level Measurements}

Groundwater levels are measured prior to purging the wells. Using a pre-cleaned water level meter, the groundwater surface is measured from the casing datum to the nearest 0.01 -foot. Total depth measurements are also collected on, at least, an annual basis.

\subsection*{2.2.4 Well Purging and Sampling}

Well purging and sampling is conducted using either a submersible pump or peristaltic pump in accordance with standard low flow sampling procedures. The sampler withdraws water in a manner that minimized stress (drawdown) to the system to the extent practicable. When the pump intake is located within the screened interval, the water pumped is drawn in directly from the formation with little mixing
of casing water or disturbance to the sampling zone. Thus, sample results are more representative of the constituents present in the groundwater.

Purging rates during sample collection are generally performed at 0.5 liters per minute (\(\mathrm{L} / \mathrm{min}\)) or less. Field parameters (pH , temperature, conductivity and turbidity) are measured to evaluate when the well is adequately purged. Turbidity in the samples should be minimized as much as possible. By using minimal pumping rates, dedicated equipment whenever possible, and positioning the intake for the sample tubing or submersible pump off of the bottom of the well.

For groundwater samples, at least three field measurements should be taken during the course of purging the well. If the parameters have not stabilized at that time, field measurements and purging will continue until two consecutive readings have stabilized to within the following limits:
- Temperature: \(+/-1^{\circ} \mathrm{C}\)
- \(\mathrm{pH}: \quad+/-0.1 \mathrm{pH}\) units
- Specific conductance: \(+/-10 \%\)
- Turbidity: +/- 10\%

Sample extraction is accomplished by using the pump that was previously used to purge the well. The sample bottle is filled directly from the pump line. The pumping rate and parameter measurements are recorded on groundwater sampling forms in the field. If a well goes dry during purging, sampling is performed after the well has sufficiently recharged to allow sample collection.

Groundwater samples will not be filtered in the field prior to collection in accordance with Section 257.93(i) of the CCR Rule.

\subsection*{2.2.5 Container and Labels}

Samples are collected in laboratory-supplied containers. The following information is legibly and indelibly written on the label:
- project identification;
- sample identification;
- name or initials of collector;
- date and time of collection;
- analysis requested; and
- sample preservative, if applicable.

\subsection*{2.2.6 Chain-of-Custody Control}

After samples are collected, chain-of-custody procedures are followed to establish a written record concerning sample movement between the sampling site and the testing laboratory. Each shipping container has a chain-of-custody form completed by the sampling personnel packing the samples. The chain-of-custody form for each container is completed and sealed in the shipping container.

\subsection*{2.3 Analytical Procedures}

The laboratory analytical methods utilized for the analysis of detection monitoring and assessment monitoring programs are appropriate and commonly utilized EPA methodologies, or other similar standard methodologies. Typical methodologies used to analyze the detection and assessment program constituents are presented below:

\section*{Detection Monitoring Program (Appendix III Constituents)}
- Boron and calcium by EPA Method SW6020;
- Chloride, fluoride, and sulfate by EPA Method E300;
- pH by Standard Method M4500-H + B (field measurement); and
- TDS by Standard Method M2540.

Assessment Monitoring Program (Appendix IV Constituents)
- Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, lithium, molybdenum, selenium, and thallium by EPA Method SW6020;
- Fluoride EPA Method E300;
- Mercury by EPA Method SW7470; and
- Radium 226 and 228 by EPA Methods 904.0/SW9320 Modified and 903.1 Modified.

All metals analyses shall be reported as "total recoverable metals" in accordance with Section 257.93(1) of the CCR Rule. Filtering of samples prior to analysis is not permitted.

\subsection*{3.0 STATISTICAL EVALUATION PROCEDURES}

Statistical analysis of groundwater monitoring data is required as part of detection monitoring and assessment monitoring under Section 257.93 of the CCR Rule. Section 257.93 of the CCR Rule provides several options for statistically evaluating the groundwater data. The owner or operator of the CCR unit must select one of the following statistical methods specified in paragraphs (f)(1) through (5) of Section 257.93 to be use in evaluating groundwater monitoring data for each specified constituent:
(1) A parametric analysis of variance followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's mean and the background mean levels for each constituent.
(2) An analysis of variance based on ranks followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's median and the background median levels for each constituent.
(3) A tolerance or prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data and the level of each constituent in each compliance well is compared to the upper tolerance or prediction limit.
(4) A control chart approach that gives control limits for each constituent.
(5) Another statistical test method that meets the performance standards of paragraph (g) of this section.

The following statistical evaluation approaches were selected to demonstrate groundwater compliance under the CCR Rule:
- Use of interwell data evaluations, which compare new sample data to data from upgradient or background monitoring wells.
- Use of prediction limits for data comparisons. This approach is a common statistical method used to evaluate groundwater compliance for Subtitle D landfill facilities and is one of the approved options for groundwater quality data statistical evaluation under the CCR Rule.

The statistical evaluation procedures proposed for the groundwater data conforms with the Rule requirements shown above, as well as EPA's Unified Guidance: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (EPA, 2009) and the American Society for Testing and Materials (ASTM) standard D6312-17, Developing Appropriate Statistical Approaches for Groundwater Detection Monitoring Programs at waste Disposal Facilities (ASTM, 2017).

Eight independent groundwater samples were evaluated for each Appendix III parameter at each well to statistically establish detection monitoring prediction limits. Eight independent groundwater samples were also evaluated for each Appendix IV parameter at each well to establish assessment monitoring groundwater protection standards.
- For constituents for which a federal maximum contaminant level (MCL) has been established, the MCL for that constituent; or
- For constituents for which an MCL has not been established, the background concentration (prediction limit) or approved regional screening standard for the constituent; or
- For constituents for which the background level (prediction limit) is higher than the MCL, the background concentration (prediction limit) for the constituent.

\subsection*{4.0 DETECTION MONITORING DATA EVALUATION}

CCR groundwater detection monitoring will be performed on a semi-annual basis during the active life of the CCR units and during the post-closure period. Each CCR monitoring well will be sampled for the following Appendix III constituents as part of the detection monitoring program:
- Boron
- Calcium
- Chloride
- Fluoride
- pH
- Sulfate
- Total Dissolved Solids (TDS)

Sampling and analytical procedures will be as described in previous sections of this plan.

After each detection monitoring event, the reported concentrations of the detection monitoring constituents at each well will be compared to the background concentration prediction limits developed for each constituent as described in Section 3 of this plan to ascertain if a statistically significant increase above background concentrations does or no does not exist. Possible outcomes from comparing the detection monitoring constituent concentrations in each well to their respective background concentration prediction limits are as follows:
- All detection monitoring constituent concentrations in each well are less than or equal to their respective background concentration prediction limits in the well; or
- One or more detection monitoring constituent concentrations in each well are above their respective background concentration prediction limits in the well.

\subsection*{4.1 No Statistically Significant Increase Over Background Concentrations}

The background concentration prediction limits were developed based on a one-of-two resampling approach, meaning that if concentrations in at least one sample in a series of two independent samples collected from a well do not exceed their prediction limits, then a statistically significant increase over background concentrations has not occurred. This conclusion will be reached if the data indicate either of the following:
- All detection monitoring constituent concentrations in each well are less than or equal to their respective background concentration prediction limits; or
- One or more detection monitoring constituent concentration in any well is above the respective background concentration prediction limits. If this occurs, the well or wells with concentrations above the prediction limits will be resampled and analyzed for the detection monitoring constituent or constituents that exceed the prediction limits. If the resample indicates that the target detection monitoring constituent concentrations in the well or wells are less than or equal to their respective background concentration prediction limits, then it can be concluded that a statistically significant increase over background concentrations for all detection monitoring constituents does not exist, since concentrations in one sample of the two independent samples do not exceed their prediction limits.

If the groundwater monitoring data indicate that a statistically significant increase over background does not exist at the CCR wells, detection monitoring at all CCR wells will continue on a semi-annual basis.

\subsection*{4.2 Statistically Significant Increase Over Background Concentrations}

If one or more detection monitoring constituent concentrations in any well is above the respective background concentration prediction limit in both the original detection monitoring sample and the resample, then a statistically significant increase over background concentrations for the target detection monitoring constituents can be concluded. If a statistically significant increase is indicated, within 90 days the owner/operator must:
- Establish an assessment monitoring program as described in this plan, or
- Demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with the detection monitoring program.

\subsection*{5.0 ASSESSMENT MONITORING DATA EVALUATION}

CCR groundwater assessment monitoring will be performed at the groundwater monitoring system whenever a statistically significant increase over background levels has been confirmed for one or more of the detection monitoring constituents listed in this plan. Within 90 days of triggering the assessment monitoring program, and annually thereafter, each CCR monitoring well in the groundwater monitoring system will be sampled for the following Appendix IV parameters as part of the assessment monitoring program:
- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Chromium
- Cobalt
- Fluoride
- Lead
- Lithium
- Mercury
- Molybdenum
- Selenium
- Thallium
- Radium 226 and 228 combined

Sampling and analytical procedures will be as described in previous sections of this plan.

Within 90 days of obtaining the results from the initial assessment monitoring sampling event, all wells in the groundwater monitoring system will be resampled and analyzed for:
- All Appendix III detection monitoring parameters; and
- The Appendix IV assessment monitoring parameters that were detected as part of the assessment monitoring event.

This monitoring will be performed on at least a semi-annual basis thereafter, unless the owner/operator can demonstrate the need for an alternative monitoring frequency for repeated sampling and analysis for these constituents during the active life and the post-closure care period based on the availability of groundwater. If there is not adequate groundwater flow to sample wells semi-annually, the alternative frequency shall be no less than annual.

Within 90 days of obtaining the results from the initial assessment monitoring sampling event, groundwater protection standards will be established for all Appendix IV assessment monitoring constituents that were detected in the groundwater monitoring system wells as follows:
- For constituents for which a federal maximum contaminant level (MCL) has been established, the MCL for that constituent; or
- For constituents for which an MCL has not been established, the background concentration or approved regional background levels for the constituent; or
- For constituents for which the background level is higher than the MCL, the background concentration for the constituent.

The reported concentrations of the assessment monitoring constituents at each well will be compared to the groundwater protection standards established for each constituent to ascertain if a statistically significant increase above the groundwater protection standards does or does not exist. Compliance with the groundwater protection standards will be evaluated based on a one-of-two resampling approach.

\subsection*{5.1 No Statistically Significant Increase Over Groundwater Protection Standards}

If the groundwater monitoring data indicate that a statistically significant increase over groundwater protection standards does not exist at the CCR wells, all wells in the groundwater monitoring system will be sampled on a semi-annual basis and analyzed for:
- All Appendix III detection monitoring parameters; and
- The Appendix IV assessment monitoring parameters that were detected as part of the initial assessment monitoring event.

This monitoring will be performed on at least a semi-annual basis unless the owner/operator can demonstrate the need for an alternative monitoring frequency for repeated sampling and analysis for these constituents during the active life and the post-closure care period based on the availability of groundwater.

If the concentrations of all Appendix III detection monitoring constituents and Appendix IV assessment monitoring constituents are shown to be statistically at or below background values for two consecutive assessment monitoring sampling events, assessment monitoring will be terminated and detection monitoring as described in this plan will resume. If the concentrations of any Appendix III detection monitoring constituents and Appendix IV assessment monitoring constituents are shown to be statistically
above background values, but all concentrations are below their respective groundwater protection standards, assessment monitoring will continue.

\subsection*{5.2 Statistically Significant Increase Over Groundwater Protection Standards}

If a statistically significant increase over groundwater protection standards for any Appendix IV assessment monitoring constituent is confirmed, within 90 days of the initial assessment monitoring event, the owner/operator will either:
- Initiate an assessment of corrective measures for the CCR unit in accordance with CCR Rule Section 257.96; or
- Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. If a successful demonstration is made, the owner or operator must continue assessment monitoring. If a successful demonstration has not been made at the end of the 90 day period, the owner or operator of the CCR unit must initiate an assessment of corrective measures for the CCR unit.

If one or more Appendix IV assessment monitoring constituents are detected at statistically significant levels above their respective groundwater protection standards in any sampling event, and if a source other than the CCR unit cannot be demonstrated to have caused the contamination, a release from the CCR unit is likely and the nature and extent of the release will be further characterized as follows:
- Install additional monitoring wells necessary to define the contaminant plume(s);
- Collect data on the nature and estimated quantity of material released including specific information on the Appendix IV assessment monitoring constituents and the levels at which they are present in the material released;
- Install at least one additional monitoring well at the facility boundary in the direction of contaminant migration and sample this well for all Appendix III detection monitoring parameters and for those Appendix IV assessment monitoring constituents that have been detected as part of assessment monitoring. This monitoring must be performed on at least a semi-annual basis thereafter.
- Sample all CCR unit wells for all Appendix III detection monitoring parameters and for those Appendix IV assessment monitoring constituents hat have been detected as part of assessment monitoring. This monitoring must be performed on at least a semi-annual basis thereafter.

\subsection*{6.0 REPORTING REQUIREMENTS}

The results of the CCR groundwater monitoring program will be reported each year in an Annual Groundwater Monitoring and Corrective Action Report. The annual report will document the status of the groundwater monitoring and corrective action program, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. At a minimum, the Annual Groundwater Monitoring and Corrective Action Report will contain the following information:
- A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under CCR Rule Sections 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Other information required to be included in the annual report as specified in CCR Rule Sections 257.90 through 257.98 .

The Groundwater Monitoring and Corrective Action Report for the 2017 monitoring program must be placed in the facility operating record no later than January 31, 2018. Subsequent reports must be placed in the facility operating record no later than January 31 of the year following completion of the groundwater monitoring program from the preceding calendar year.

\subsection*{7.0 REFERENCES}

ASTM, 2017. Standard Guide for Developing Appropriate Statistical Approaches for Groundwater Detection Monitoring Programs at Waste Disposal Facilities - D6312-17.

EPA, 2017. ProUCL Version 5.1 User Guide, https://www.epa.gov/sites/production/files/2016-05/documents/proucl_5.1_user-guide.pdf. February 1.

EPA, 2015. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). On-Line.
EPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530/R-09-007, March.

SWDIV and EFA West of Naval Facilities Engineering Command, 1998. Procedural Guidance for Statistically Analyzing Environmental Background Data. September.

Figures

Appendix A

CCR Monitoring Well Logs

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Bullock, Bennett \& Associates, LLC 165 N. Lampasas Street Bertram, TX 78605} & \multicolumn{5}{|r|}{\begin{tabular}{l}
LOG OF BORING MW-11 \\
(Page 1 of 1)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{COLETO CREEK POWER STATION FANNIN, TX} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Drilling Company \\
Driller \\
Drill Rig \\
Drilling Method \\
Sampling Method
\end{tabular}}} & \begin{tabular}{l}
EnviroCore \\
Craig Schena (Lic. \#4694) CME75 \\
Hollow Stem Auger - 6" \\
Split-Spoon
\end{tabular} \\
\hline \multicolumn{3}{|c|}{Project No. 17252} & & & & & & \\
\hline & & \multicolumn{2}{|l|}{DESCRIPTION} & O-8 & & & & DIAGRAM/REMARKS \\
\hline
\end{tabular}

Figures

\section*{OBG}

\title{
Statistical Analysis Plan
}

Coleto Creek Power Station

Coleto Creek Power, LP

October 17, 2017

Natural Resource Technology
AN OBG COMPANY

\section*{TABLE OF CONTENTS}
List of Tables ii
Acronyms and Abbreviations iii
1. Introduction 1
1.1 Statistical Analysis Objectives 1
1.2 Statistical Analysis Plan Approach 1
2. Background Monitoring and Data Preparation. 3
2.1 Sample Independence 3
2.2 Non-Detect Data Processing 3
2.3 Testing for Normality 4
2.4 Testing for Outliers 4
2.5 Trend Analysis 4
2.6 Spatial Variation 4
2.7 Updating Background 5
3. Detection Monitoring Program 6
3.1 SSI Determination 6
3.1.1 The Parametric Upper Prediction Limit for Future Values 6
3.1.2 The Parametric Shewhart-CUSUM Control Chart.7
3.1.3 The Non-Parametric Upper Prediction Limit for Future Values 8
3.1.4 The Trend Comparison Test 8
4. Assessment Monitoring Program 10
4.1 GWPS Establishment and SSL Determination 10
4.1.1 The Upper Tolerance Limit 10
4.1.2 Parametric Confidence Intervals around a Mean 11
4.1.3 Non-Parametric Confidence Intervals around a Median 12
4.1.4 The Upper Prediction Limit for a Future Mean 13
4.1.5 The Non-Parametric Upper Prediction Limit for a Future Median 13
4.1.6 Parametric Linear Regression and Confidence Band 14
4.1.7 Non-Parametric Thiel-Sen Trend Line and Confidence Band 15
4.3 Alternative Source Demonstration 16
4.4 Required Response Action 16
5. Corrective Action Monitoring Program 18
6. Summary and Reporting Requirements 20
6.1 Prior to Detection Monitoring 20
6.2 All Monitoring Phases 20
6.3 Detection Monitoring 20
6.4 Assessment Monitoring 21
6.5 Corrective Action Monitoring 21
7. References 22

\section*{LIST OF TABLES}

Table 1
Table 2
Table 3

Statistical Methods for Detection Monitoring
Statistical Methods for Assessment Monitoring
Statistical Methods for Corrective Action Monitoring

\section*{ACRONYMS AND ABBREVIATIONS}
\begin{tabular}{|c|c|}
\hline Annual Report & Annual Groundwater Monitoring and Corrective Action Report \\
\hline ANOVA & analysis of variance \\
\hline ASD & alternative source demonstration \\
\hline CCR & Coal Combustion Residuals \\
\hline CUSUM & cumulative sum \\
\hline COCs & constituents of concern \\
\hline GWPS & groundwater protection standard \\
\hline LCL & lower confidence limit \\
\hline LPL & lower prediction limit \\
\hline MCL & maximum contaminant level \\
\hline MSE & mean squared error \\
\hline RCRA & Resource Conservation and Recovery Act \\
\hline RL & reporting limit \\
\hline ROS & regression on order statistics \\
\hline SSI & statistically significant increase \\
\hline SSL & statistically significant level \\
\hline SWFPR & site-wide false positive rate \\
\hline Unified Guidance & Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (USEPA, 2009) \\
\hline UPL & upper prediction limit \\
\hline USEPA & United States Environmental Protection Agency \\
\hline UTL & upper tolerance limit \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

In April 2015, the United States Environmental Protection Agency (USEPA) issued a final rule for the regulation and management of Coal Combustion Residuals (CCR) in certain landfills and impoundments under Subtitle D of the Resource Conservation and Recovery Act (RCRA) [40 CFR 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015, referred to hereafter as the CCR Rule]. Facilities regulated under the CCR Rule are required to develop and sample a groundwater monitoring well network to evaluate if landfilled (including within an impoundment) CCR materials are impacting downgradient groundwater quality. The groundwater quality evaluation must include selection and certification by a qualified professional engineer of the statistical procedures to be used by a qualified professional engineer. The procedures described in the evaluation will be used to establish background conditions and implement detection, assessment, and corrective action monitoring as necessary and required by 40 CFR \(\S 257.93-257.95\). This Statistical Analysis Plan was prepared in accordance with the requirements of 40 CFR §257.93, with reference to the acceptable statistical procedures provided in USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (March 2009), and is intended to provide a logical process and framework for conducting the statistical analysis of the data obtained during groundwater monitoring.

This Statistical Analysis Plan does not include procedures for groundwater sample collection and analysis, as these activities are conducted in accordance with the Sampling and Analysis Plan prepared for each CCR unit in accordance with 40CFR 257.93. This Statistical Analysis Plan will be used as the primary reference for evaluating groundwater quality before and after closure of CCR landfills and surface impoundments.

\subsection*{1.1 STATISTICAL ANALYSIS OBJECTIVES}

This Statistical Analysis Plan is intended to provide a framework for conducting the statistical analyses of data obtained during groundwater monitoring conducted in accordance with the Sampling and Analysis Plan for each CCR unit. The Statistical Analysis Plan will enable a qualified professional engineer to certify that the selected statistical methods are appropriate for evaluating the groundwater monitoring data for CCR management areas.

\subsection*{1.2 STATISTICAL ANALYSIS PLAN APPROACH}

The main sections of this Statistical Analysis Plan should be viewed as a "generic" outline of statistical methods for each CCR unit and required constituent. The statistical analysis of the groundwater monitoring data however, will be conducted on an individual-constituent basis, and may involve the use of appropriate statistical procedures depending on multiple factors such as detection frequency and normality distributions.

The CCR Rule outlines four phases of groundwater monitoring:
- Background Monitoring in accordance with 40 CFR 257.90(b)(iii) and 257.94 (b)
- Detection Monitoring in accordance with 40 CFR 257.94
- Assessment Monitoring in accordance with 40 CFR 257.95
- Corrective Action Monitoring in accordance with 40 CFR 257.95(g) and 257.98.

Each phase of the groundwater monitoring program requires specific statistical procedures to accomplish the intended purpose. During the first phase, background groundwater quality will be established, utilizing upgradient and background wells. Detection Monitoring is then initiated through the evaluation of the downgradient groundwater monitoring data for statistically significant increases (SSI) over background levels for seven selected constituents. If an SSI is confirmed for any constituent at any downgradient well, Assessment Monitoring must be conducted. In addition to continued monitoring of the seven constituents used in Detection Monitoring, Assessment Monitoring will then evaluate whether exceedances occur for 15 additional constituents relative to the groundwater protection standard (GWPS). If an exceedance is confirmed, Corrective Action
an obg company

Monitoring will then be initiated to respond to and control a release. The developed statistical analysis plan will be implemented for each monitoring phase, following the requirements of the CCR Rule, and in accordance with the statistical procedures.

\section*{2. BACKGROUND MONITORING AND DATA PREPARATION}

At least one upgradient or background monitoring well, and three downgradient monitoring wells (located at the edge of the CCR unit boundary) were sampled and analyzed for constituents, as listed in Appendix III (boron, calcium, chloride, fluoride, pH , sulfate and total dissolved solids) and Appendix IV (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, radium 226 and 228 combined) of Part 257, during the first phase of the groundwater monitoring program.

The upgradient or background monitoring well(s) were placed upgradient of the CCR unit, or at an alternative background location, where they are not affected by potential leakage from the CCR unit. Downgradient monitoring wells were placed at the waste boundary of the CCR unit, along the same groundwater flow path. As the CCR Rule 257.91(a)(2) specifies, the location of these wells ensures that wells in the uppermost aquifer accurately represent the quality of groundwater, while downgradient wells monitor potential contaminant pathways.

To account for both seasonal and spatial variability in groundwater quality, eight independent sampling events were completed on a quarterly or greater frequency between November 2015 and August 2017. As outlined, groundwater sampling procedures included sampling of the upgradient, background, and downgradient wells using low-flow sampling methods, the collection of one field quality control sample per event, and groundwater samples that were not field-filtered before laboratory analysis of total recoverable metals.

Following completion of the eight baseline (quarterly) sampling events, background groundwater quality will be established for Appendix III and IV constituents. Groundwater monitoring will then be conducted at least semiannually for the life of the facility unless there is inadequate groundwater flow and a longer interval is required between sample events.

The following subsections outline the statistical tests and procedures (methods) that will be utilized to evaluate data collected for each constituent in both background and downgradient wells for Background, Detection, Assessment, and Corrective Action Monitoring. When necessary and contingent upon equivalent statistical power, an alternative test not included in this Statistical Analysis Plan may be chosen due to site-specific data requirements.

\subsection*{2.1 SAMPLE INDEPENDENCE}

Independence of sample results is a major assumption for most statistical analyses. To ensure physical independence of groundwater sampling results, the minimum time between sampling events must be longer than the time required for groundwater to move through the monitoring well. Therefore, the minimum time interval between sampling events is a function of the groundwater velocity and well bore volume (diameter of the well and surrounding filter pack).

\subsection*{2.2 NON-DETECT DATA PROCESSING}

The reporting limit (RL) will be used as the lower level for the reporting of non-detected groundwater quality data. For all statistical test procedures, if the frequency of non-detect data are less than or equal to \(15 \%\), half of the RL will be substituted for these data. If the non-detect frequency is greater than \(15 \%\), up to \(50 \%\) non-detect, either the Kaplan-Meier or robust regression on order statistics (ROS) will be used to estimate the mean and standard deviation adjusted for the presence of left-censored values. However, the Kaplan-Meier method will not be utilized if the RL is identical for all non-detects, as no variance in the data would result in simply RL substitution for each non-detect result. In this case, half the RL will be substituted for the non-detects. If the detection frequency is greater than \(50 \%\), a non-parametric test will be used. If only one background result is detected, that value will be used as the non-parametric upper prediction limit (UPL).

\subsection*{2.3 TESTING FOR NORMALITY}

Many statistical analyses assume that sample data are normally distributed (parametric). However, environmental data are frequently non-normally distributed (nonparametric). The CCR Rule requires the knowledge of the background data distribution for comparison to downgradient results. The Unified Guidance document recommends the Shapiro-Wilk normality test for sample sizes of 50 or less, and the Shapiro-Francia normality test for sample sizes greater than 50 . When possible, transformation of datasets to achieve normal distributions is preferred. Control charts (with the exception of XmR-charts) produced under the assumption of normality are also a valuable tool when datasets are parametric. They are used for detection monitoring and typically used for intrawell testing, though they can be structured for interwell. There is no non-parametric version of control charts.

\subsection*{2.4 TESTING FOR OUTLIERS}

Appendix III and IV constituents will be screened for the existence of outliers using a method described by the Unified Guidance. Outliers are extreme data points that may represent an anomaly or erroneous data point. To test for outliers, one or more of the following outlier tests will be utilized:
- Dixon's test, for well-constituent pairs with less than 25 samples, assumes normally distributed data.
- Grubb's test for well-constituent pairs with seven or more samples, assumes normally distributed data.
- Time series, box-whisker plots, and probability plots provide visual tools to identify potential outliers, and evaluation of seasonal, spatial, or temporal variability for both normally and non-normally distributed data.

When necessary, a confirmatory sample will be collected to allow the facility to distinguish between an outlier and a true release from the facility. If re-sampling is necessary, this sample will be collected within 60 days following outlier identification. If the confirmatory sample indicates the original result as an outlier, it will be reported as such, and not as a release from the CCR unit. Data quality control, groundwater geochemistry, and sampling procedures will be evaluated as potential sources of error leading to an outlier result. Professional judgement will be used to exclude extreme outliers from further statistical analyses.

\subsection*{2.5 TREND ANALYSIS}

Statistical analyses confirming the lack of trend are a fundamental step to confirm the assumption that groundwater quality values (constituent means) are stationary or constant over time at a CCR unit. These analyses allow for evaluation of variation in the background and downgradient data for each constituent over time. A statistically significant increasing trend in background data could indicate an existing release from the CCR unit or alternate source, requiring further investigation. In addition, statistically significant trending background data can result in increased standard deviation and, therefore, greater prediction or control limits. Consequently, the increased prediction or control limit will have less power or ability to identify a release from a CCR unit.

A linear regression, coupled with a t-test for slope significance, may be used on datasets for each constituent with few non-detects and a normally distributed variance of the mean to evaluate time trends. The Theil-Sen trend line, coupled with the Mann-Kendall test for slope significance, will be used for datasets with frequent non-detects or non-normal variance. Similarly, trend analyses could also be used on downgradient data to evaluate a possible release from the CCR unit.

\subsection*{2.6 SPATIAL VARIATION}

Assuming no significant spatial trends exist, sample results may be compared between background wells for each constituent to confirm a lack of spatial variation. Box-and-whisker plots or an analytical evaluation, such as

Levene's test (\(\alpha=0.01\)), will be used to assure equality of variances across background wells. If variances are equal, a one-way analysis of variance (ANOVA, \(\alpha=0.05\)) will be computed across background wells. The Kruskall-Wallis test may be used to determine spatial variability for those constituents where at least \(50 \%\) of the background data are non-detects. Similar to spatial trends, the occurrence of statistically significant spatial variation between background wells could indicate an existing release from a CCR unit. If the spatial variability is not due to an existing release, intrawell comparisons in downgradient wells may be used to more appropriately determine the occurrence of a future release from a CCR unit. Analyses may differ by constituents and wells, depending on spatial variability. For example, if spatial variability exists between background wells for boron but not for calcium, then intrawell comparisons may be used for boron and interwell comparisons may be used for calcium. Intrawell comparisons may be used as an appropriate alternative for existing CCR units that have not been in operation or for new CCR units that are being designed to put into service.

\subsection*{2.7 UPDATING BACKGROUND}

Updating the background dataset periodically by adding recent results to an existing background dataset can improve the statistical power and accuracy of the statistical analysis, especially for non-parametric prediction intervals. The Unified Guidance recommends updating statistical limits (background) when at least four to eight new measurements (every 2 to 4 years under a semi-annual monitoring program), are available for comparison to historical data. Professional judgement will be used to evaluate whether any background data appear to be affected by a release and need to be excluded from a background update. A t-test for equal means (if normal data distribution) or medians (if non-normal data distribution) such as a Mann-Whitney (or Wilcoxon) rank-sum or box-whisker plots, will be conducted to verify that the two groups of background sample populations are statistically different prior to updating any background datasets. A 0.05 significance level will be utilized when evaluating the two populations, with the assumption that they have equal means or medians. In addition, time series graphs or other trend evaluation statistics will be conducted on the new background dataset to verify the absence of a release, or changing groundwater quality. If the tests indicate that there are no statistical differences between the two background populations, the new data will be combined with the existing dataset. If the two populations are found to be different, the data will be reviewed to evaluate the cause of the difference. If the differences appear to be caused by a release (if the new data are significantly higher, or lower for pH), then the previous background dataset may continue to be used. Furthermore, verified outliers will not be added to an existing background dataset. In accordance with the Unified Guidance, continual background updates will not be conducted due to the lack of sufficient samples for a statistical comparison. Spatial variability among background wells will also be assessed when background datasets are updated to whether pooling data and interwell comparisons are appropriate.

For intrawell evaluations, once an SSI has been identified for a constituent at a particular well, no additional updates of the baseline (background) datasets (for any parameter) will be allowed, unless the SSI is determined to be caused by something other than a release from the CCR unit. The baseline (background) dataset can only be updated with new data if the SSI is proven to be from the result of an alternate source.

\section*{3. DETECTION MONITORING PROGRAM}

The second phase of the groundwater monitoring program is Detection Monitoring. Detection Monitoring is designed to monitor groundwater for evidence of a release by comparing Appendix III constituents in downgradient wells to background data to evaluate the possible occurrence of SSIs. Following initial monitoring to evaluate background groundwater quality, Detection Monitoring will begin with the collection of eight independent samples from each background and downgradient well. These samples will be analyzed for Appendix III constituents. Thereafter, samples will be collected and evaluated semi-annually. The selected Detection Monitoring statistical method used to evaluate groundwater data for each constituent, in comparison to the background data, will provide for adequate statistical power, limit the site-wide false positive rate (SWFPR), and be appropriate for the distribution and detection frequency of the background dataset.

Statistical power is the ability of a statistical test to detect a true SSI. For normalized background data, the Unified Guidance recommends that a test have at least 55 to \(60 \%\) power to detect an increase of three standard deviations over background, or \(80 \%\) power to detect a four standard deviation increase. Power curves can be used to measure statistical power of the selected statistical method. For Detection Monitoring, the power curve displays the probability of an individual comparison detecting a concentration increase relative to background.

Multiple comparisons inevitably occur during Detection Monitoring due to the seven constituents evaluated at three or more downgradient monitoring wells. This can lead to complications, as each individual comparison increases the SWFPR, or the potential that a statistical test will incorrectly identify an SSI on a site-wide scale. Although decreasing the false positive rate is desirable, all other things being equal, this also decreases the statistical power, which is undesirable. Therefore, the Unified Guidance recommends a statistical program have a SWFPR of \(10 \%\) or less per year (\(5 \%\) per semi-annual sample event) to limit the occurrence of false positives, while maintaining sufficient statistical power to detect a true release from a CCR unit.

Detection Monitoring statistical analyses will begin within 60 days of receiving laboratory analytical results, and completed within 90 days. Prediction intervals will be calculated using background data for each constituent, unless an alternative site-specific method is utilized to provide increased power or to reduce the SWFPR.

The Double Quantification Rule will be used when all background data are non-detects for a particular constituent. This rule determines an SSI if any constituent in a sample and a verification resample are in exceedance, or two consecutive sampling events are in exceedance. This method reduces SWFPR, and enhances statistical power as downgradient well-constituent pairs analyzed using this rule are not included in comparisons for SWFPR calculations.

\subsection*{3.1 SSI DETERMINATION}

One-sided upper prediction limits (UPL) will be calculated for each Appendix III constituent using the pooled background samples collected during the initial monitoring samples events. Individual values for each constituent detected in the downgradient monitoring wells will then be compared to the background UPL. An exceedance of the UPL for any constituent measured at any downgradient well constitutes an SSI. An exception to this method is pH , where two-sided (upper and lower) prediction intervals are established from the distribution of the background groundwater quality data. An exceedance of either the UPL or lower prediction limit (LPL) would constitute an SSI for pH .

\subsection*{3.1.1 The Parametric Upper Prediction Limit for Future Values}

Parametric UPLs for future values will be utilized when background data contains less than \(50 \%\) non-detects, and can be normalized. Parametric UPL for individual future values will be calculated from normally-distributed background data as follows:
\[
U P L_{1-\alpha}=\bar{x}+\kappa s
\]
\(\bar{X}=\) sample mean of background data
\(s=\) standard deviation of background data
\(\kappa=\) multiplier based on the number of downgradient compliance wells to be tested (\(w\)), the background sample size (\(n\)) the number (\(c\)) of constituents of concern (COCs), the " 1 -of- \(-m\) " retesting scheme, and the evaluation schedule (annual, semi-annual, quarterly). Tabulated in Table 19-1 in Appendix D of the Unified Guidance.

The number of downgradient compliance wells to be tested (\(w\)) will vary by CCR unit, with a minimum of three wells. The background sample size (\(n\)) will equate to 8 multiplied by the number of upgradient or background wells at each CCR unit. The number of constituents of concern (c) will be seven, as stated in the Appendix III parameters list. The retesting scheme will be a 1 -of-2, whereby an SSI is confirmed if the original sample and the retest or optional verification sample(s) exceed the UPL. Lastly, the evaluation schedule will be semi-annual. When exact \(\kappa\) multiplier values are not specified in Table 19-1 of the Unified Guidance, the desired input points (\(w^{*}\) and \(n^{*}\)) that lie between the closest table entries as \(\mathrm{w}_{1}<\mathrm{w}^{*}<\mathrm{w}_{2}\) and \(\mathrm{n}_{1}<\mathrm{n}^{*}<\mathrm{n}_{2}\), will first be calculated as fractional terms.
\[
f_{w}=\frac{\left(w^{*}-w_{1}\right)}{\left(w_{2}-w_{1}\right)} \text { and } f_{n}=\frac{\left(n^{*}-n_{1}\right)}{\left(n_{2}-n_{1}\right)}
\]

The interpolated \(\kappa\) multiplier will then be computed as:
\[
\kappa_{w^{*}, n^{*}}=\left(1-f_{w}\right)\left(1-f_{n}\right) \cdot \kappa_{w_{1}, n_{1}}+f_{w}\left(1-f_{n}\right) \cdot \kappa_{w_{2}, n_{1}}+\left(1-f_{w}\right) \cdot f_{n} \cdot \kappa_{w_{1}, n_{2}}+f_{w} \cdot f_{n} \cdot \kappa_{w_{2}, n_{2}}
\]

\subsection*{3.1.2 The Parametric Shewhart-CUSUM Control Chart}

Combined Shewhart-CUSUM control charts may also be used when pooled background data contains less than \(50 \%\) non-detects, and can be normalized. This method can be used to determine whether downgradient data plotted on the control chart follow the same distribution as the background data used to compute the baseline control limit. Combined control charts use both the new individual measurement, and the cumulative sum (CUSUM) of past and current measurements at every sampling event. This technique gives control charts increased sensitivity to detect trends and shifts in concentration levels. The Shewhart portion of the chart is ideal for detecting sudden concentration increases, and the CUSUM portion is preferred for detecting slower, steady increases. Shewhart-CUSUM control charts will be constructed by first computing the standardized concentration \(\left(Z_{i}\right)\) based on compliance point measurement \(\left(x_{i}\right)\) collected on sampling event (\(T_{i}\)):
\[
Z_{i}=\left(x_{i}-\bar{x}_{B}\right) / s_{B}
\]
\(\bar{x}_{B}=\) sample mean calculated from \(n\) background measurements
\(s_{B}=\) sample standard deviation calculated from \(n\) background measurements
The standardized CUSUM \(\left(S_{i}\right)\) will then be computed for each sampling event (\(T_{i}\)) as:
\[
S_{i}=\max \left[0,\left(Z_{i}-k\right)+S_{i-1}\right]
\]
\(k=\) half displacement or shift in standard deviations to be detected on the control chart. Will be set to 1 to rapidly detect upward concentration shifts of at least 2 standard deviations.

To plot the control chart in concentration units, compute the non-standardized CUSUMS (\(S_{i}^{c}\)) as:
\[
S_{i}^{c}=\bar{x}_{B}+S_{i} \cdot s_{B}
\]

The non-standardized control limit \(\left(h_{c}\right)\) will be computed to assess compliance of both future measurements (\(x_{i}\)) and non-standardized CUSUMS \(\left(U_{i}\right)\) as follows:
\[
h_{c}=\bar{x}_{B}+h \cdot s_{B}
\]

Control charts will be constructed by plotting both the compliance measurements (\(x_{i}\)) and the non-standardized CUSUMs (\(S_{i}^{c}\)) on the y-axis, and sampling events (\(T_{i}\)) along the x -axis. From the first plotted sampling event \(T_{1}\), the control chart will be out-of-control if the trace of the non-standardized concentration exceeds \(h_{c}\).

\subsection*{3.1.3 The Non-Parametric Upper Prediction Limit for Future Values}

Non-parametric UPLs for future values will be utilized when background data cannot be normalized, or contains a large percentage of non-detects. To calculate the non-parametric UPL on a future value, the target perconstituent false positive rate (\(\alpha_{\text {const }}\)) will be determined as follows:
\[
\alpha_{\text {const }}=1-(1-\alpha)^{1 / c}
\]
\(\alpha=\) the SWFPR of 0.10
\(c=\) the number of monitoring constituents
For a target SWFPR of \(10 \%\), and seven monitoring constituents, the target per-constituent false positive rate (\(\alpha_{\text {const }}\)) will be \(0.015 \%\).

The number of yearly statistical evaluation (\(n_{\mathrm{E}}\)) will be multiplied by the number of compliance wells \((w)\) to calculate the look-up table entry, \(w^{*}\). The background sample size (\(n\)) and \(w^{*}\) will be used to select an achievable per-constituent false positive rate value in Table 19-19 of Appendix D in the Unified Guidance that is no greater than the target per-constituent false positive rate (\(0.015 \%\)). The chosen achievable per-constituent false positive rate value will determine the type of non-parametric prediction limit (maximum or \(2^{\text {nd }}\) highest value in background) and a retesting scheme for individual observations. The background data will be sorted in ascending order, and the upper prediction limit will be set to the appropriate order statistic previously determined by the achievable per-constituent false positive rate value in Table 19-19. If all constituent measurements in a background sample are non-detect, the Double Quantification rule will be used.

Each initial measurement per compliance well will be compared to the UPL. One to three additional samples will be collected, depending on the retesting scheme chosen, for any constituent that exceeds the UPL. Again, SSI is confirmed if the original sample and the retest or verification sample(s) exceed the UPL.

When a mixture of test methods is needed (e.g., parametric prediction limits for some constituents, and nonparametric limits for other constituents), an annual SWFPR of 10\% (equivalent to a semiannual SWFPR of 5\%) will be maintained using a target SWFPR that is evenly proportioned across the list of constituents.

\subsection*{3.1.4 The Trend Comparison Test}

If a significant trend is detected in pooled background data for a given constituent, a trend comparison test will be performed to determine whether the downgradient trend (if present) significantly differs from the trending pooled background data. A linear regression, coupled with a t-test for slope significance will be used to determine slope significance on datasets for each constituent with few non-detects and a normally distributed variance of the mean to evaluate time trends. The Theil-Sen trend line, coupled with the Mann-Kendall test will be used to determine slope significance for datasets with frequent non-detects or non-normal variance. An SSI will be confirmed if the slope is significantly greater in downgradient data.

In the event that statistical analyses identify a SSI for one or more parameters, the constituent-well pairs of concern may be re-sampled within the required timeframe (90 days from receipt of laboratory data). Detection Monitoring statistics will be updated using the downgradient verification resample results within 90 days of receiving laboratory analytical reports. If verification sample(s) confirm a SSI, results will be reported to the state director (and/or appropriate tribal authority, if applicable) and Assessment Monitoring will be initiated in the next scheduled semi-annual event. If applicable, an alternative source demonstration (ASD) indicating that the confirmed SSI was due to natural variability or an alternative release source other than the CCR unit facility
will be completed within 90 days of the SSI confirmation. The ASD report must be certified by a qualified professional engineer and included with the annual groundwater monitoring report required by CCR Rule Part 257.90 (e). If the ASD for a parameter is successful and there are no other SSIs, Detection Monitoring will continue; otherwise Assessment Monitoring will be initiated, as required by the CCR Rule Part 257.95. If the verification sample(s) do not confirm a SSI however, Detection Monitoring will continue. If an SSI is not identified for any Appendix III constituents in downgradient wells, Detection Monitoring will continue until the post-closure monitoring period. Table 1 below lists the statistical methods for Detection Monitoring.

Table 1. Statistical Methods for Detection Monitoring

\section*{4. ASSESSMENT MONITORING PROGRAM}

The third phase of the groundwater monitoring program is Assessment Monitoring. Assessment Monitoring is performed after the confirmation of an SSI to evaluate whether downgradient concentrations are at statistically significant levels (SSL) relative to a GWPS. Groundwater sampling for all Appendix IV constituents will be conducted in the existing monitoring well network within 90 days of an SSI identification. Appendix III constituents, and those Appendix IV that were detected in groundwater will be sampled within 90 days of receiving laboratory results, and semi-annually thereafter. In addition, all Appendix IV constituents will be sampled on an annual basis. This annual sampling will likely coincide with the required semiannual sampling of Appendix III and detected Appendix IV constituents. Additional monitoring wells will be installed if an SSL is identified for any Appendix IV constituent at any downgradient well to evaluate the nature and extent of the plume. All Appendix III and Appendix IV constituents must be at or below background levels for two consecutive semi-annual sampling events for a CCR facility to return from Assessment to Detection Monitoring. If some Appendix III or Appendix IV constituents are at concentrations above background levels, but not statistically exceeding the GWPS, then the CCR facility must remain in Assessment Monitoring.

\subsection*{4.1 GWPS ESTABLISHMENT AND SSL DETERMINATION}

A GWPS will be established for Appendix IV constituents detected in the downgradient monitoring wells. The GWPS will be the risk-based maximum contaminant level (MCL) established by the USEPA for each constituent. The first exception to this is when the background concentration is greater than the established MCL. The second exception occurs when the constituent does not have an MCL, such as for cobalt, lithium, molybdenum, and lead. For both of these exceptions, the background concentrations will be used to define the GWPS. The GWPS will be calculated using a parametric Upper Tolerance Limit (UTL), a parametric UPL for a future mean, or a non-parametric UPL for a future median.

\subsection*{4.1.1 The Upper Tolerance Limit}

The UTL will be used to calculate the GWPS when pooled background data are normally distributed, with a nondetect frequency of \(15 \%\) or less. When non-detect frequency is \(15 \%\) or less, half the RL will be substituted for non-detects. The Unified Guidance recommends \(95 \%\) confidence level and \(95 \%\) coverage (\(95 / 95\) tolerance interval). The non-detect data will be replaced with half the RL (simple substitution), and the normal mean and standard deviation will be calculated.

The Kaplan-Meier, or the ROS method, will be used when the detection frequency is between \(15 \%\) and \(50 \%\). The Kaplan-Meier method assesses the linearity of a censored probability plot to determine whether the background sample can be approximately normalized. If so, then the Kaplan-Meier method will be used to compute estimates of the mean and standard deviation adjusted for the presence of left-censored values. The Kaplan-Meier or ROS estimate of the mean and standard deviation will be substituted for the sample mean and standard deviation. If background normality cannot be achieved, non-parametric UTLs will not be calculated until a minimum of 60 background samples have been collected (to achieve 95\% coverage).

The Kaplan-Meier method will not be utilized if the RL are identical for all non-detects as there is no standard deviation (variance), resulting in simply substitution of the RL for each non-detect result. In this case, half the RL should be substituted for the non-detects.

The parametric UTL on a future mean will be calculated from the background dataset as follows:
\[
U T L=\bar{x}+\kappa(n, \gamma, \alpha-1) \cdot s
\]
\[
\begin{aligned}
& \bar{x}=\text { background sample mean } \\
& s=\text { background sample standard deviation }
\end{aligned}
\]
\(\kappa(n, \gamma, \alpha-1)=\) one-sided normal tolerance factor based on the chosen coverage \((\gamma)\) and confidence level (\(\alpha-1\)) and the size of the background dataset (\(n\)). Values are tabulated in Table 17-3 in Appendix D of the Unified Guidance. If exact values are not provided, then \(\kappa\) values can be estimated by linear interpolation similar to the method described in Section 3.

If the UTL is constructed on the logarithms of original observations to achieve normality, where \(\bar{y}\) and \(s_{y}\) are the log-mean and log-standard deviation, the limit will be exponentiated for back-transformation to the concentration scale as follows:
\[
T L=\exp \left[\bar{y}+\kappa(n, \gamma, \alpha-1) \cdot s_{y}\right]
\]
\(\bar{y}=\) background sample log-mean
\(s_{y}=\) background sample log-standard deviation
When the GWPS is based on the MCL or a UTL derived from the background dataset, the confirmation of a SSL in downgradient compliance wells relative to the GWPS will be evaluated using confidence intervals. A confidence interval defines the upper and lower bound of the true mean of a constituent concentration in groundwater within a specified confidence range. Non-detects in downgradient data will be handled similarly to upgradient analyses, with half the RL substituted for non-detects when the frequency is \(15 \%\) or less. The Kaplan-Meier, or the ROS method, will be used when the detection frequency is between \(15 \%\) and \(50 \%\) to compute estimates of the mean and standard deviation adjusted for the presence of left-censored values. These estimates will then be substituted for the sample mean and standard deviation. Once the GWPS is established for pooled background data using the UTL, either parametric or non-parametric confidence intervals will be computed for each constituent in downgradient wells to determine the occurrence of an SSL.

\subsection*{4.1.2 Parametric Confidence Intervals around a Mean}

If downgradient data are approximately normal, one-sided parametric confidence intervals around a sample mean will be constructed for each constituent and well pair. The lower confidence limit (LCL) will be calculated as:
\[
L C L_{1-\alpha}=\bar{x}-t_{1-\alpha, \mathrm{n}-1} \cdot \frac{s}{\sqrt{n}}
\]

The upper confidence limit (UCL) will be calculated as:
\[
U C L_{1-\alpha}=\bar{x}+t_{1-\alpha, \mathrm{n}-1} \cdot \frac{s}{\sqrt{n}}
\]
\(\bar{x}=\) downgradient sample mean
\(s=\) downgradient sample standard deviation
\(n=\) downgradient sample size
\(t_{1-\alpha, \mathrm{n}-1}=\) obtained from a Student's \(t\)-table with (\(n-1\)) degrees of freedom (Table 16-1 in Appendix D of the Unified Guidance)

The chosen \(t\) value will aim to achieve both a low false-positive rate, and high statistical power. Minimum \(\alpha\) values are tabulated in Table 22-2 of Appendix D of the Unified Guidance. The selected minimum \(\alpha\) value, from which the \(t\) value will be derived, will have at least \(80 \%\) power (\(1-\beta=0.8\)) when the underlying mean concentration is twice the MCL.

If downgradient data are distributionally lognormal, the LCL will be computed around the lognormal geometric mean as:
\[
L C L_{1-\alpha}=\exp \left(\bar{y}+.5 s_{y}^{2}+\frac{s_{y} H_{\alpha}}{\sqrt{n-1}}\right)
\]

The UCL will be computed around the lognormal geometric mean as:
\[
U C L_{1-\alpha}=\exp \left(\bar{y}+.5 s_{y}^{2}+\frac{s_{y} H_{1-\alpha}}{\sqrt{n-1}}\right)
\]
\(\bar{y}=\) downgradient sample log-mean
\(s_{y}=\) downgradient sample log-standard deviation
\(H_{\alpha} / H_{1-\alpha}=\) bias-correction factor(s) found in Tables 21-1 through 21-8 in Appendix D of the Unified Guidance

\subsection*{4.1.3 Non-Parametric Confidence Intervals around a Median}

Non-parametric confidence intervals around the median will be computed if the downgradient data contain greater than \(50 \%\) non-detects or are non-normally distributed. The mathematical algorithm used to construct non-parametric confidence intervals is based on the probability \(P\) that any randomly-selected measurement in a sample of \(n\) concentration measurements will be less than an unknown \(P \times 100^{\text {th }}\) percentile of interest (where \(P\) is between 0 and 1). Then the probability that the measurement will exceed the \(P \times 100^{\text {th }}\) percentile is (1-P). The number of sample values falling below the \(P \times 100^{\text {th }}\) percentile out of a set of \(n\) should follow a binomial distribution with parameters \(n\) and success probability \(P\), where 'success' is defined as the event that a sample measurement is below the \(P \times 100^{\text {th }}\) percentile. The probability that the interval formed by a given pair of order statistics will contain the percentile of interest will then be determined by a cumulative binomial distribution \(\operatorname{Bin}(x ; n, p)\), representing the probability of \(x\) or fewer successes occurring in \(n\) trials with success probability \(p\). \(P\) will be set to 0.50 for an interval around the median.

The sample size \(n\) will be ordered from least to greatest. Given \(P=0.50\), candidate interval endpoints will be chosen by ordered data values with ranks as close to product of \((n+1) \times 0.50\). If the result of \((n+1) \times 0.50\) is a fraction (for even-numbered sample sizes), the rank values immediately above and below will be selected as possible candidate endpoints. If the result of \((n+1) \times 0.50\) is an integer (for odd-numbered sample sizes), one will be added and subtracted one to get the upper and lower candidate endpoints. The ranks of the endpoints will be denoted \(L^{*}\) and \(U^{*}\). For a one-sided LCL, the confidence level associated with endpoint \(L^{*}\) will be computed as:
\[
1-\alpha=\operatorname{Bin}\left(L^{*}-1 ; n, .50\right)=\sum_{x=L^{*}}^{n}\binom{n}{x}\left(\frac{1}{2}\right)^{n}
\]

For a one-sided UCL, the confidence level associated with the endpoint \(U^{*}\) will be computed as:
\[
1-\alpha=\operatorname{Bin}\left(U^{*}-1 ; n, .50\right)=\sum_{x=0}^{U^{*}-1}\binom{n}{x}\left(\frac{1}{2}\right)^{n}
\]

If the candidate endpoint(s) do not achieve the desired confidence level, new candidate endpoints (\(L^{*}-1\)) and \(\left(U^{*}+1\right)\) and achieved confidence levels will be calculated. If one candidate endpoint equals the data minimum or maximum, only the rank of the other endpoint will be changed. Achievable confidence levels are tabulated using these equations in Table 21-11 in Appendix D of the Unified Guidance.

Both parametric and non-parametric confidence limits will then be compared to the GWPS (MCL or UTL if MCL is not available or background concentrations are above the MCL). The CCR site is considered to be in
compliance if the LCL is equal to or lower than the GWPS for all detected Appendix IV constituents at all downgradient wells. An SSL is confirmed if the LCL exceeds the GWPS.

\subsection*{4.1.4 The Upper Prediction Limit for a Future Mean}

The parametric UPL for a future mean will be used to calculate the GWPS if the pooled background data contain \(50-70 \%\) non-detects and normality can be achieved. The Kaplan-Meier or ROS methods to estimate the mean and standard deviation. The non-parametric UPL for a future median will be calculated as the GWPS if background samples cannot be normalized, or contain greater than \(70 \%\) non-detects. The background, requirements, and assumptions for a prediction limit on future means of order \(p\) are essentially identical to those for prediction limits for future individual values used in Detection Monitoring. An order of \(2 p\) independent samples will be collected during each evaluation period to use a 1-of-2 retesting scheme. The parametric UPL for a future mean will be calculated from the background dataset at follows:
\[
U P L_{1-\alpha}=\bar{x}+\kappa s
\]
\(\bar{X}=\) background sample mean
\(s=\) background standard deviation
\(\kappa=\) multiplier based on the order \((p)\) of the future mean to be predicted, the number of
downgradient compliance wells to be tested \((w)\), the background sample size \((n)\) the number \((c)\)
of constituents of concern (COCs), the " \(1-\) of- \(m\) " retesting scheme, and the evaluation schedule
(annual, semi-annual, quarterly). Tabulated in \(19-5\) to \(19-9\) in Appendix D of the Unified
Guidance.

The mean of order \(p\) will be computed for each well and compared against the UPL. For any compliance point mean that exceeds the limit, \(p\) additional resamples will be collected at that well for a 1-of-2 retesting scheme. Resample means will then be compared to the UPL. A SSL has been deemed to occur at a compliance well when the initial mean and all resample means exceed the UPL.

\subsection*{4.1.5 The Non-Parametric Upper Prediction Limit for a Future Median}

The non-parametric UPL for a future median will be used to calculate the GWPS if the pooled background data contain greater than \(70 \%\) non-detects and normality cannot be achieved. This approach is very similar to the method used non-parametric UPL for future values. The number of yearly statistical evaluation (\(n_{E}\)) will be multiplied by the number of compliance wells (\(w\)) to determine the look-up table entry, \(w^{*}\). The background sample size (\(n\)) and \(w^{*}\) will be used to select an achievable per-constituent false positive rate value in Table 1924 of Appendix D in the Unified Guidance that is no greater than the Appendix IV target per-constituent false positive rate (0.007 for 15 constituents). The chosen achievable per-constituent false positive rate value will determine the type of non-parametric prediction limit (maximum or 2nd highest value in background) and a retesting scheme for a future median. The background data will be sorted in ascending order, and the upper prediction limit will be set to the appropriate order statistic previously determined by the achievable perconstituent false positive rate value in Table 19-24. If all constituent measurements in a background sample are non-detect, the Double Quantification rule will be used (the RL becomes the GWPS if no MCL exists). The constituent will also be removed from calculations identifying the target false positive rate.

Two initial measurements per compliance well will be collected. If both do not exceed the upper prediction limit, a third initial measurement will not be collected since the median of order 3 will also not exceed the limit. If both exceed the prediction limit, a third initial measurement will not be collected since the median will also exceed the limit. If one initial measurement is above and one below the limit, a third initial observation may be collected to determine the position of the median relative to the UPL. Up to three resamples will be collected in order to assess the resample median. In all cases, if two or more of the compliance point observations are nondetect, the median will be set equal to the RL. The median value for each compliance well will be compared to
the UPL. For the 1-of-2 retesting scheme, if any compliance point median exceeds the limit, up to three additional resamples will be collected from that well. The resample median will be computed and compared to the UPL. A SSL has been deemed to occur at a compliance well when either the initial median, or both the initial median and resample median exceed the UPL.

If all Appendix III and IV constituents are below the GWPS for two consecutive sampling events, the facility will return to Detection Monitoring. If the concentrations of detected constituents in Appendices III and IV are above background, but below the established GWPS, Assessment Monitoring will continue.

\subsection*{4.1.6 Parametric Linear Regression and Confidence Band}

If the t-test detects a significant trend in the parametric linear regression line using either background or downgradient data for a particular constituent, confidence bands accounting for trends will be constructed to account for the trend-induced variation. If this is not accounted for, a wider confidence interval will inevitably be calculated for a given confidence level and sample size (\(n\)). A wider confidence interval will result in less statistical power, or ability to demonstrate an exceedance or return to compliance. When a linear trend line has been estimated, a series of confidence intervals is estimated at each point along the trend. This creates a simultaneous confidence band that follows the trend line. As the underlying population mean increases or decreases, the confidence band does also to reflect this change at that point in time.

Linear regression will be used when background or downgradient data are approximately normally distributed, with a constant sample variance around the mean, and the frequency of non-detects is low. The linear regression of concentration against sampling date (time) will be computed as follows:
\[
\hat{b}=\sum_{i=1}^{n}\left(t_{i}-\bar{t}\right) \cdot x_{i} /(n-1) \cdot s_{t}^{2}
\]
\(x_{i}=i^{\text {th }}\) concentration value and
\(t_{\mathrm{i}}=i^{\text {th }}\) sampling date
\(\bar{t}=\) sampling mean date
\(s_{t}^{2}=\) variance of the sampling dates
This estimate leads to the following regression equation:
\[
\hat{x}=\bar{x}+\hat{b} \cdot(\mathrm{t}-\bar{t})
\]
\(\bar{x}=\) mean concentration level
\(\hat{x}=\) estimated mean concentration at time \(t\)
The regression residuals will also be computed at each sampling event to ensure uniformity and lack of significant skewness. Regression residuals will be computed at each sampling event as follows:
\[
r_{i}=x_{i}-\hat{x}_{i}
\]

The estimated variance around the regression line, or mean squared error (MSE) will be computed as follows:
\[
s_{e}^{2}=\frac{1}{n-2} \sum_{i=1}^{n} r_{i}^{2}
\]

The confidence intervals around a linear regression trend line given confidence level (1- \(\alpha\)) and a point in time (\(t_{0}\)), will be computed as follows:
\[
\begin{aligned}
& L C L_{1-\alpha}=\hat{x}_{0}-\sqrt{2 s_{e}^{2} \cdot F_{1-2 \alpha, 2, \mathrm{n}-1} \cdot\left[\frac{1}{n}+\frac{\left(t_{0}-\bar{t}\right)^{2}}{(n-1) \cdot s_{t}^{2}}\right]} \\
& U C L_{1-\alpha}=\hat{x}_{0}-\sqrt{2 s_{e}^{2} \cdot F_{1-2 \alpha, 2, \mathrm{n}-2} \cdot\left[\frac{1}{n}+\frac{\left(t_{0}-\bar{t}\right)^{2}}{(n-1) \cdot s_{t}^{2}}\right]}
\end{aligned}
\]
\(\hat{x}_{0}=\) estimated mean concentration from the regression equation at time \(t_{0}\)
\(F_{1-2 \alpha, 2, \mathrm{n}-2}=\) upper \((1-2 \alpha)^{\text {th }}\) percentage point from an \(F\)-distribution with 2 and \((n-2)\) degrees of freedom

For background data, the UCL around the linear regression line will be used as the GWPS for the trending constituent. For downgradient data, confidence bands around the linear regression line will be compared to the GWPS. The CCR site is considered to be in compliance if the LCL is equal to or lower than the GWPS for all detected Appendix IV constituents at all downgradient wells. An SSL is confirmed when the LCL based on the trend line first exceeds the GWPS.

\subsection*{4.1.7 Non-Parametric Thiel-Sen Trend Line and Confidence Band}

If the Mann-Kendall test detects a significant trend in the non-parametric Thiel-Sen line using either background or downgradient data for a particular constituent, confidence bands accounting for trends will be constructed to account for the trend-induced variation. The Thiel-Sen trend line will be used as a non-parametric alternative to linear regression when trend residuals cannot be normalized or if there are a higher percentage of non-detects in either background or downgradient data. The Thiel-Sen trend line estimates the median concentration over time by combining the median pairwise slope with the median concentration value and the median sample date. To compute the Thiel-Sen line, the data will first be ordered by sampling event \(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{n}}\). All possible distinct pairs of measurements (\(x_{\mathrm{i}}, x_{\mathrm{j}}\)) for \(j>i\) will be considered and the simple pairwise slope estimate will be computed for each pair as follows:
\[
m_{i j}=\left(x_{j}-x_{i}\right) /(j-i)
\]

With a sample size of \(n\), there will be a total of \(N=n(n-1) / 2\) pairwise estimates \(m_{\mathrm{ij}}\). If a given observation is a non-detect, half the RL will be substituted. The \(N\) pairwise slope estimates (\(m_{\mathrm{ij}}\)) will be ordered from least to greatest (renamed \(\left.m_{(1)}, m_{(2)}, . . m_{(N)}\right)\). The Thiel-Sen estimate of slope \((Q)\) will be calculated as the median value of the list depending on whether \(N\) is even or odd as follows:
\[
Q=\left\{\begin{array}{c}
m_{([N+1] / 2)} \text { if } N \text { is odd } \\
\left(m_{(N / 2)}+m_{([N+2] / 2)}\right) / 2 \text { if } N \text { is even }
\end{array}\right.
\]

The sample concentration magnitude will be ordered from least to greatest, \(x_{(1)}, x_{(2)}\), to \(x_{(\mathrm{n})}\) and the median concentration will be calculated as follows:
\[
\tilde{x}=\left\{\begin{array}{c}
x_{([n+1] / 2)} \text { if } n \text { is odd } \\
\left(x_{(n / 2)}+x_{([n+2] / 2)}\right) / 2 \text { if } n \text { is even }
\end{array}\right.
\]

The median sampling date \((\tilde{t})\) with ordered times \(\left(t_{(1)}, t_{(2)}\right.\), to \(\left.t_{(n)}\right)\) will also be determined in this way. The ThielSen trend line will then be computed for an estimate at any time \((t)\) of the expected median concentration \((x)\) as follows:
\[
x=\tilde{x}+Q \cdot(\mathrm{t}-\tilde{t})=(\tilde{x}-Q \cdot \tilde{t})+Q \cdot \mathrm{t}
\]

To construct a confidence band around the Thiel-Sen line, sample pairs (\(t_{\mathrm{i}}, x_{\mathrm{i}}\)) will be formed with a sample date \(\left(t_{\mathrm{i}}\right)\) and the concentration measurement from that date (\(x_{i}\)). Bootstrap samples (\(B\)) will be formed by repeatedly sampling \(n\) pairs at random with replacement from the original sample pairs. This will be repeated 500 times. For each bootstrap sample, a Thiel-Sen trend line will be constructed using the equation above. A series of equally spaced time points (\(t_{\mathrm{j}}\)) will be identified along the range of sampling dates represented in the original sample, \(j=1\) to \(m\). The Thiel-Sen trend line associated with each bootstrap replicate will be used to compute an estimated concentration \(\left(\hat{x}_{j}^{B}\right)\). An LCL will be constructed for the lower \(\alpha^{\text {th }}\) percentile \(\hat{x}_{j}^{[\alpha]}\) from the distribution of estimated concentrations at each time point \(\left(t_{j}\right)\). For an UCL, compute the upper \((1-\alpha)^{\text {th }}\) percentile, \(\hat{x}_{j}^{[1-\alpha]}\) at each time point \(\left(t_{\mathrm{j}}\right)\).

For background data, the UCL around the Thiel-Sen trend line will be used as the GWPS for the trending constituent. For downgradient data, confidence bands around the Thiel-Sen trend line will be compared to the GWPS. The CCR site is considered to be in compliance if the LCL is equal to or lower than the GWPS for all detected Appendix IV constituents at all downgradient wells. An SSL is confirmed when the LCL based on the trend line first exceeds the GWPS.

\subsection*{4.3 ALTERNATIVE SOURCE DEMONSTRATION}

If an SSL is confirmed, an ASD may be conducted to indicate a source other than the CCR unit as the cause of contamination. The ASD may also identify the SSL to be a result of error in sampling procedures, laboratory procedures, statistical analyses, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified by a qualified professional engineer. The demonstration must be included in the annual groundwater monitoring report and corrective action report.

\subsection*{4.4 REQUIRED RESPONSE ACTION}

In the event of a confirmed SSL, the following actions will be taken:
- A notification of the GWPS exceedance will be placed in the operating record within 30 days of the SSL, and on the public internet site within 30 days of placement in the operating record.
- Additional monitoring wells will be installed to characterize the nature and extent of the release, including a minimum of one at the property boundary.
- Property owners will be notified within 30 days if a plume has extended off-site, as identified by the characterization of the nature and extent of the release.
- An ASD will be submitted within 90 days of the SSL determination. If an ASD is not submitted, assessment of corrective action measures will be initiated within 90 days of the SSL determination, including the required notification and closure or retrofitting, if the facility is an unlined impoundment.

Table 2 below lists the statistical methods for Assessment Monitoring.

Table 2. Statistical Methods for Assessment Monitoring
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Significant Trend?} & \multicolumn{6}{|c|}{Assessment Monitoring} \\
\hline & \multicolumn{3}{|c|}{Background} & \multicolumn{3}{|c|}{Downgradient} \\
\hline & \% Non-Detects & Distribution & \begin{tabular}{l}
GWPS \\
Determination
\end{tabular} & \begin{tabular}{l}
\% Non- \\
Detects
\end{tabular} & Distribution & Test to Determine SSL \\
\hline \multirow{7}{*}{No} & \multirow{4}{*}{\(0 \leq 50 \%\)} & \multirow[t]{4}{*}{Normal} & \multirow{4}{*}{MCL or The Upper Tolerance Limit} & <75\% & Normal & Parametric Lower Confidence Interval around a Normal Mean \\
\hline & & & & \(\leq 75 \%\) & Log-Normal & Parametric
Lower
Confidence
Interval around
a Lognormal
Geometric Mean \\
\hline & & & & NA & Non-Normal & \multirow[t]{2}{*}{Non-Parametric Lower Confidence Interval around a Median} \\
\hline & & & & >75\% & Unknown/Cannot be determined & \\
\hline & \(50 \leq 70 \%\) & Normal & The Upper Prediction Limit for a Future Mean & NA & NA & Future mean \\
\hline & >70\% & Non-Normal & Upper Prediction Limit for a Future Median & NA & NA & Future median \\
\hline & 100\% & Non-Normal & Double Quantification Rule & NA & NA & Individual Retesting Values \\
\hline \multirow[t]{2}{*}{Yes} & \(0 \leq 50 \%\) & Normal & UCL of Confidence Band around Linear Regression & <75\% & Residuals after subtracting trend are normal, equal variance & \begin{tabular}{l}
Lower \\
Confidence Band around Linear Regression
\end{tabular} \\
\hline & \(50 \leq 100 \%\) & Non-Normal & UCL of Confidence Band around ThielSen trend line & <75\% & Residuals not normal & \begin{tabular}{l}
Lower \\
Confidence Band around ThielSen
\end{tabular} \\
\hline
\end{tabular}

\section*{5. CORRECTIVE ACTION MONITORING PROGRAM}

The fourth phase of the groundwater monitoring program is Corrective Action. Corrective Action Monitoring is performed after a corrective action remedy has been selected and implemented. The CCR Rule specifies that the corrective action program must meet all the requirements of an Assessment Monitoring program, address any interim measures that might be needed to reduce the contaminants leaching from the CCR unit, and document the effectiveness of the selected remedy. While both Appendix III and Appendix IV constituents are analyzed in Corrective Action Monitoring, compliance with the GWPS will be based only on Appendix IV constituents detected in the Corrective Action Monitoring wells. During this monitoring phase, Detection Monitoring and Assessment Monitoring will continue. Data evaluation for Corrective Action Monitoring however, will be conducted separately. Assessment of corrective measure(s) will be initiated within 90 days of a confirmed Appendix IV SSL to prevent further releases, as well as begin remediation to restore the affected area to original conditions. Corrective Action does not use the same monitoring system as Detection and Assessment Monitoring. The Corrective Action Monitoring system will include all or a subset of the monitoring wells installed to evaluate the nature and extent of the plume after a SSL is documented.

Statistical methods used for Corrective Action Monitoring data will be similar to those used for Assessment Monitoring. One major exception to these analyses is the use of the UCL (when the GWPS is based on the MCL or UTL) to evaluate whether a well is in compliance, rather than the LCL as used in Assessment Monitoring. A facility is considered to be in compliance when the UCL is lower than the GWPS for all detected Appendix IV constituents at all Corrective Action Monitoring wells for 3 consecutive years. Corrective Action Monitoring will continue if the UCL for any Appendix IV constituent at any Corrective Action Monitoring well is equal to or higher than the GWPS.

When the GWPS is based on a UPL for a future mean or median, the facility will be considered to be in compliance when all Corrective Action Monitoring well means or medians (depending on the use of parametric or non-parametric UPLs) are lower than the GWPS for all detected Appendix IV constituents for 3 consecutive years. Corrective Action Monitoring will continue if the mean or median for any Appendix IV constituent at any Corrective Action Monitoring well is higher than the GWPS.

Table 3 below lists the statistical methods for Corrective Action Monitoring.

Table 3. Statistical Methods for Corrective Action Monitoring
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Corrective Action Monitoring} \\
\hline \multirow{2}{*}{Significant Trend?} & \multicolumn{3}{|c|}{Background} & \multicolumn{3}{|c|}{Downgradient} \\
\hline & \% Non-Detects & Distribution & \begin{tabular}{l}
GWPS \\
Determination
\end{tabular} & \begin{tabular}{l}
\% Non- \\
Detects
\end{tabular} & Distribution & Test to Determine SSL \\
\hline \multirow{5}{*}{No} & \multirow{3}{*}{\(0 \leq 50 \%\)} & \multirow{3}{*}{Normal} & \multirow{3}{*}{MCL or The Upper Tolerance Limit} & <75\% & Normal & Parametric Upper Confidence Interval around a Normal Mean \\
\hline & & & & <75\% & Log-Normal & Parametric
Upper
Confidence
Interval around
a Lognormal
Geometric Mean \\
\hline & & & & NA
> & \begin{tabular}{l}
Non-Normal \\
Unknown/Cannot be determined
\end{tabular} & \begin{tabular}{l}
Non-Parametric \\
Upper \\
Confidence Interval around a Median
\end{tabular} \\
\hline & \(50 \leq 70 \%\) & Normal & The Upper Prediction Limit for a Future Mean & NA & NA & Future mean \\
\hline & >70\% & Non-Normal & Upper Prediction Limit for a Future Median & NA & NA & Future median \\
\hline & 100\% & Non-Normal & Double Quantification Rule & NA & NA & Individual Retesting Values \\
\hline \multirow[t]{2}{*}{Yes} & \(0 \leq 50 \%\) & Normal & UCL of Confidence Band around Linear Regression & <75\% & Residuals after subtracting trend are normal, equal variance & Upper Confidence Band around Linear Regression \\
\hline & \(50 \leq 100 \%\) & Non-Normal & UCL of Confidence Band around ThielSen trend line & <75\% & Residuals not normal & \begin{tabular}{l}
Upper \\
Confidence Band around ThielSen
\end{tabular} \\
\hline
\end{tabular}

\section*{6. SUMMARY AND REPORTING REQUIREMENTS}

\subsection*{6.1 PRIOR TO DETECTION MONITORING}

The following records will be completed and placed in the operating record no later than October 17th, 2017 or prior to first receipt of CCR for new facilities:
- Monitoring well records including all documentation on design, installation, development, decommissioning, piezometers, measurement, sampling, and analytical devices.
- Monitoring system certifications
- Statistical method certifications

\subsection*{6.2 ALL MONITORING PHASES}

The "Annual Groundwater Monitoring and Corrective Action Report" (Annual Report) will be placed in the operating record by January 31, 2018 for existing facilities, or January 31 of the year following first receipt of CCR for new facilities, and annually thereafter. For the preceding calendar year, the Annual Report will include:
- The status of the groundwater monitoring program phase for the CCR unit
- Key activities planned for the upcoming year
- A map, aerial image, or diagram indicating the CCR unit and monitoring well network
- Identification and explanation of monitoring wells installed or abandoned during the preceding year
- Summary of wells and dates for groundwater sampling for detection, assessment, or corrective action monitoring, depending on the current phase of the groundwater monitoring program
- Analytical results (Appendix III for Detection Monitoring and both Appendix III and Appendix IV for Assessment and Corrective Action Monitoring)
- Reasoning for transitions between phases of the groundwater monitoring program (detection vs. assessment vs corrective action monitoring)
- A demonstration for alternative groundwater sampling frequency, if needed

\subsection*{6.3 DETECTION MONITORING}

Detection Monitoring includes the collection of eight initial samples from both background/upgradient and downgradient monitoring wells. When the collection period for these initial samples is complete, an SSI determination for Appendix III constituents will be conducted with subsequent semi-annual monitoring and statistical analyses. If there is an SSI that cannot be attributed to an ASD, the facility will initiate Assessment Monitoring. In addition to those items listed in section 6.2, the Annual Report will include:
- Explanation and certification of an SSI attributed to an ASD by a qualified professional engineer, when appropriate

Notifications of establishing an Assessment Monitoring program or of a return to Detection Monitoring will also be placed in the operating record within 30 days of the event.

\subsection*{6.4 ASSESSMENT MONITORING}

Assessment Monitoring will include both Appendix III and Appendix IV constituents, on the same monitoring wells as Detection Monitoring. Under Assessment Monitoring, a facility is assumed to be in compliance until an SSL is confirmed. If an SSL of an Appendix IV constituent is confirmed, a notification and an assessment of the nature and extent of the release will be placed in the operating record regardless of whether an ASD is identified. If an ASD is identified, no further action is required and the facility will remain in Assessment Monitoring. If the release cannot be attributed to an ASD, Corrective Action will be triggered. Additional monitoring wells will then be installed to monitor the performance of the Corrective Action Remedy. In addition to items listed in sections 6.2 and 6.3, the Annual Report will include:
- Background concentrations for Appendix III and Appendix IV constituents
- Analytical results for Appendix III and detected Appendix IV constituents
- GWPS established for detected Appendix IV constituents
- Explanation and certification of new SSI concentrations attributed to an ASD by a qualified professional engineer, when appropriate
- Explanation and certification of an SSL attributed to an ASD by a qualified professional engineer, when appropriate
- Demonstration and certification by a qualified engineer that more than 90 days are needed to complete an evaluation of corrective measures to prevent future releases
Semi-annual analytical results for Appendix III and detected Appendix IV constituents will be placed in the facility's operating record within 90 days of receipt. Notifications of an SSL and initiation of assessment of Corrective Actions will also be placed in the operating record within 30 days of determination of an SSL above the GWPS.

\subsection*{6.5 CORRECTIVE ACTION MONITORING}

Detection monitoring and Assessment Monitoring continue during the Corrective Action Monitoring period. Similar to Assessment Monitoring, Appendix III constituents are monitored and Appendix IV constituents are used as the basis for compliance. Corrective Action Monitoring will use a different set of monitoring wells, likely located downgradient of the Detection and Assessment Monitoring well system. Under Corrective Action Monitoring, a release is assumed to have had occurred at a facility. Therefore, the null hypothesis is reversed and a facility is considered to be out of compliance until all constituents at Corrective Action Monitoring wells are statistically lower than the GWPS for 3 consecutive years. In addition to the items listed in sections 6.2, 6,3, and 6.4, the following additional items will be included in the Annual Report:
- A list of GWPS for both Assessment and Corrective Action Monitoring
- Explanation and certification of new SSL concentrations attributed to an ASD by a qualified professional engineer, when appropriate

Notifications of new SSLs and the completion of the Corrective Action remedy, as certified by a qualified professional engineer, will also be placed in the operating record within 30 days of determination of the new SSLs or completing the remedy.

\section*{7. REFERENCES}

Electric Power Research Institute (EPRI). Groundwater Monitoring Guidance for the Coal Combustion Residuals Rule. EPRI, Palo Alto, CA: 2015. 3002006287. November 2015.
U.S. Environmental Protection Agency. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530-R-09-007. March 2009.

\section*{40 CFR Part 257.93(f)(6) Statistical Method Certification CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond}

In accordance with Title 40 Code of Federal Regulations (40CFR) Part 257, Subpart D, Section 257.93(f)(6), the owner or operator of a coal combustion residual (CCR) unit must obtain a certification from a qualified professional engineer that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR management area.

This certification is based on the description of the statistical methods selected to evaluate groundwater as presented in the Statistical Analysis Plan, prepared for Coleto Creek Power, LP, and dated October 17, 2017. The procedures described in the plan will be used to establish background conditions and implement detection, assessment, and corrective action monitoring as necessary and required by 40 CFR §257.93-257.95. The Statistical Analysis Plan was prepared in accordance with the requirements of 40 CFR \(\S 257.93\), with reference to the acceptable statistical procedures provided in USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (March 2009), and is intended to provide a logical process and framework for conducting the statistical analysis of the data obtained during groundwater monitoring. In accordance with 40 CFR §257.93(f), the statistical method chosen for analysis of groundwater monitoring data will initially be the prediction interval procedure or control chart approach for each Appendix III constituent, and either the tolerance interval or the prediction interval procedure for each Appendix IV constituent at this CCR unit per 40 CFR \(\S 257.93(\mathrm{f})(3)\), in which the interval is established from the background data and compared to the level of each Appendix III constituent in each compliance well, or a confidence interval for each Appendix IV constituent in each compliance well.

\section*{Narrative Description of Statistical Methods}

A narrative description of the statistical methods chosen for analysis of groundwater monitoring data are provided below. Application of these methods for determining a statistically significant increase (SSI) for Appendix III constituents or statistically significant levels (SSLs) for Appendix IV constituents is provided in the Statistical Analysis Plan.

Parametric and Non-Parametric Prediction Limit
Parametric upper prediction limits (UPLs) for future values will be utilized when background data contains less than \(50 \%\) non-detects, and can be normalized. Parametric UPL for individual future values will be calculated from normally-distributed background data as follows:
\[
U P L_{1-\alpha}=\bar{x}+\kappa S
\]
\(\bar{X}=\) sample mean of background data
\(s=\) standard deviation of background data
\(\kappa=\) multiplier based on the number of downgradient compliance wells to be tested \((w)\), the background sample size (\(n\)) the number (\(c\)) of constituents of concern (COCs), the " 1 -of- \(m\) " retesting scheme, and the evaluation schedule (annual, semi-annual, quarterly). Tabulated in Table 19-1 in Appendix D of the Unified Guidance.

Non-parametric UPLs for future values will be utilized when background data cannot be normalized, or contains a large percentage of non-detects. To calculate the non-parametric UPL on a future value, the target per-constituent false positive rate (\(\alpha_{\text {const }}\)) will be determined as follows:
\[
\begin{aligned}
& \alpha=\text { the SWFPR of } 0.10 \\
& c=\text { the number of monitoring constituents }
\end{aligned}
\]

For a target SWFPR of 10\%, and 7 monitoring constituents, the target per-constituent false positive rate (\(\alpha_{\text {const }}\)) will be \(0.015 \%\).

UPLs will be compared to individual future downgradient values for detection monitoring and either
future downgradient means when using the parametric UPLs method or future downgradient medians when using the non-parametric UPL method for Assessment Monitoring.

\section*{Parametric Shewhart-CUSUM Control Chart}

Combined Shewhart-CUSUM control charts may also be used when pooled background data contains less than \(50 \%\) non-detects, and can be normalized. This method can be used to determine whether downgradient data plotted on the control chart follow the same distribution as the background data used to compute the baseline control limit. Combined control charts use both the new individual measurement and the cumulative sum (CUSUM) of past and current measurements at every sampling event. This technique gives control charts increased sensitivity to detect trends and shifts in concentration levels. The Shewhart portion of the chart is ideal for detecting sudden concentration increases, and the CUSUM portion is preferred for detecting slower, steady increases.

\section*{Parametric Tolerance Limit}

The upper tolerance limit (UTL) will be used to calculate the groundwater protection standard (GWPS) when pooled background data are normally distributed, with a non-detect frequency of \(15 \%\) or less. When non-detect frequency is \(15 \%\) or less, half the reporting limit (RL) will be substituted for nondetects. The Unified Guidance recommends 95\% confidence level and 95\% coverage (95/95 tolerance interval). The non-detect data will be replaced with half the RL (simple substitution), and the normal mean and standard deviation will be calculated.
\[
U T L=\bar{x}+\kappa(n, \gamma, \alpha-1) \cdot s
\]
\(\bar{x}=\) background sample mean
\(s=\) background sample standard deviation
\(\kappa(n, \gamma, \alpha-1)=o n e-s i d e d ~ n o r m a l ~ t o l e r a n c e ~ f a c t o r ~ b a s e d ~ o n ~ t h e ~ c h o s e n ~ c o v e r a g e ~(~ \gamma) ~ a n d ~\) confidence level (\(\alpha-1\)) and the size of the background dataset (\(n\)). Values are tabulated in Table 17-3 in Appendix D of the Unified Guidance.

The Kaplan-Meier, or the ROS method, will be used when the detection frequency is between \(15 \%\) and \(50 \%\). The Kaplan-Meier method assesses the linearity of a censored probability plot to determine whether the background sample can be approximately normalized. If so, then the Kaplan-Meier method will be used to compute estimates of the mean and standard deviation adjusted for the presence of left-censored values. The Kaplan-Meier or ROS estimate of the mean and standard deviation will be substituted for the sample mean and standard deviation. If background normality cannot be achieved, non-parametric UTLs will not be calculated until a minimum of 60 background samples have been collected (to achieve \(95 \%\) coverage).

UTLs will be compared to the upper confidence interval around a mean for parametric downgradient constituents in each compliance well. When downgradient constituents are non-parametric, UTLs will be compared the upper confidence interval around a median.

A linear regression, coupled with a t-test for slope significance may be used on datasets for each constituent with few non-detects and a normally distributed variance of the mean to evaluate time trends. The Theil-Sen trend line, coupled with the Mann-Kendall test for slope significance, will be used for datasets with frequent non-detects or non-normal variance. If either the \(t\)-test for a parametric linear regression line or Mann-Kendall test for a Thiel-Sen line detect a significant trend, confidence bands will be constructed around the trend line. The upper confidence band will then be used as the GWPS.

\section*{Performance Standards}

As specified by 40 CFR \(\S 257.93(\mathrm{~g})\), the prediction limit, control chart, and tolerance limit statistical method chosen complies with the following performance standards:
(1) The statistical method to evaluate groundwater monitoring data will use parametric methods for normal distributions of data and non-parametric methods for non-normal distributions of data. If the distribution of constituents is inappropriate for a normal theory test, then the data must be transformed, or a distribution-free (non-parametric) theory test will be used. If the distributions for the constituents differ, more than one statistical test may be needed.
(2) If a control chart approach is used to evaluate groundwater monitoring data, the specific type of control chart and its associated parameter values shall be such that this approach is at least as effective as any other approach in this section for evaluating groundwater data. The parameter values shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentration values for each constituent of concern.
(3) The levels of confidence and, for tolerance intervals, the percentage of the population that the interval must contain, shall be such that this approach is at least as effective as any other approach listed in 40 CFR \(\S 257.93\) for evaluating groundwater data. These parameters shall be determined after considering the number of samples in the background data base, the data distribution, and the range of the concentrations values for each constituent of concern.
(4) The statistical method must account for data below the limit of detection with one or more statistical procedures that shall be at least as effective as any other approach in 40 CFR \(\S 257.93\) for evaluating groundwater data. Any practical quantitation limit that is used in the statistical method shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions that are available to the facility.
(5) The statistical method must include, if necessary, procedures to control or correct for seasonal and spatial variability as well as temporal correlation in the data.

If the prediction limit, tolerance interval, or control chart statistical test chosen for analysis of groundwater monitoring data does not meet the above performance standards, one of the following alternative statistical methods may be substituted in order to meet the performance criteria of 40 CFR \(\S 257.93(\mathrm{~g})\) : parametric analysis of variance followed by multiple comparison procedures to identify statistically significant evidence of contamination; analysis of variance based on ranks followed by multiple comparison procedures to identify evidence of contamination; control chart approach that gives control limits for each constituent; or, another statistical test method that meets the performance standards. In the event one of these alternative statistical methods is used, an updated certification will be provided.

Based on the analysis of the first eight rounds of background groundwater monitoring data at this CCR unit, the statistical approach and methods described in this certification, and as detailed in the Statistical Analysis Plan, are appropriate for evaluating the groundwater monitoring data.

1, Maureen T. Hoke, a qualified professional engineer in good standing in the State of Texas, certify that the statistical methods described in this document, as supported by the Statistical Analysis Plan in the facility's Operating Record, are appropriate for evaluating the groundwater monitoring data for the CCR management area.

I, Stuart J. Cravens, a qualified professional, certify that the statistical methods described in this document, as supported by the Statistical Analysis Plan in the facility's Operating Record, are appropriate for evaluating the groundwater monitoring data for the CCR management area.

Stuart J. Cravens
Principal Hydrogeologist
Date: October 17, 2017

I, Kendall L. Simon, a qualified professional, certify that the statistical methods described in this . document, as supported by the Statistical Analysis Plan in the facility's Operating Record, are appropriate for evaluating the groundwater monitoring data for the CCR management area.

Kendall L. Simon, PhD
Project Statistician
Date: October 17, 2017

\section*{2020 Annual Groundwater Monitoring and Corrective Action Report \\ Coleto Creek Primary Ash Pond - Fannin, Texas}

\section*{Prepared for:}

\section*{Coleto Creek Power, LLC}

\section*{Prepared by:}

\section*{Golder Associates Inc.}

2201 Double Creek Dr, Suite 4004, Round Rock, Texas, USA 78664
+1512 671-3434

January 29, 2021
TABLE OF CONTENTS
LIST OF FIGURES ii
LIST OF TABLES ii
ACRONYMS AND ABBREVIATIONS iii
EXECUTIVE SUMMARY iv
1.0 INTRODUCTION 1
2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS 3
3.0 KEY ACTIONS COMPLETED IN 2020 5
4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS 6
5.0 KEY ACTIVITIES PLANNED FOR 2021 7
6.0 REFERENCES 8

\section*{LIST OF FIGURES}

Figure 1 Detailed Site Plan

\section*{LIST OF TABLES}

Table 1 Appendix III Statistical Background Values
Table 2 Groundwater Protection Standards
Table 3 Appendix III Analytical Results
Table 4 Appendix IV Analytical Results

\section*{ACRONYMS AND ABBREVIATIONS}
\begin{tabular}{ll}
CCR & Coal Combustion Residuals \\
CFR & Code of Federal Regulations \\
GWPS & Groundwater Protection Standard \\
MCL & Maximum Concentration Level \\
mg/L & Milligrams per Liter \\
NA & Not Applicable \\
OBG & O'Brien \& Gere Engineers, Inc. \\
SSI & Statistically Significant Increase \\
SSL & Statistically Significant Level \\
USEPA & United States Environmental Protection Agency
\end{tabular}

\section*{EXECUTIVE SUMMARY}

Golder Associates, Inc. (Golder) has prepared this report on behalf of Coleto Creek Power, LLC to satisfy the 2020 annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule (40 CFR 257, Subpart D) for the Primary Ash Pond (the "CCR unit") at the Coleto Creek Power Station in Fannin, Texas. The CCR unit and CCR monitoring well network are shown on Figure 1.

At the beginning and end of the 2020 reporting period, the CCR unit was operating under an Assessment Monitoring Program as described in 40 CFR § 257.95. The Assessment Monitoring Program was established on May 9, 2018. No constituents listed in Appendix IV to Part 257 were detected at statistically significant levels (SSLs) above groundwater protection standards during 2020. The Assessment Monitoring Program will continue during 2021 in accordance with § 257.95.

\subsection*{1.0 INTRODUCTION}

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) was promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per 40 CFR 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:
(1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
(3) In addition to all the monitoring data obtained under \(\S \S 257.90\) through 257.98 , a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
(4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
(5) Other information required to be included in the annual report as specified in \(\S \S 257.90\) through 257.98.
(6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
(iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):
(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and
(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.
(iv) If it was determined that there was a SSL above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:
(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;
(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;
(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.
(v) Whether a remedy was selected pursuant to \(\S 257.97\) during the current annual reporting period, and if so, the date of remedy selection; and
(vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

\subsection*{2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS}

O'Brien \& Gere Engineers, Inc. (OBG) collected the initial Detection Monitoring Program groundwater samples from the Primary Ash Pond CCR monitoring well network in November 2017. OBG completed an evaluation of those data in 2018 to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary
\begin{tabular}{|c|c|c|c|}
\hline Sampling Dates & Parameters & SSIs & \begin{tabular}{c}
Assessment Monitoring \\
Program Established
\end{tabular} \\
\hline November 7-8, 2017 & Appendix III & Yes & May 9, 2018 \\
\hline
\end{tabular}

Alternate source evaluations were inconclusive for one or more of the SSIs. Consequently, an Assessment Monitoring Program was initiated and established for the Primary Ash Pond CCR unit in 2018 in accordance with 40 CFR § 257.94(e)(2).

Assessment Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network in 2018, as required by the CCR Rule. OBG collected the initial 2018 Assessment Monitoring Program groundwater samples in June 2018. Subsequent Assessment Monitoring Program sampling events have been conducted by Golder on a semi-annual basis, as required by the CCR Rule. All CCR groundwater monitoring wells were sampled for Appendix III and Appendix IV constituents during the first and second semi-annual sampling events of each year. The Assessment Monitoring Program sampling dates and results are summarized in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Assessment Monitoring Program Summary \\
\hline Sampling Dates & \begin{tabular}{c}
Analytical Data \\
Receipt Date
\end{tabular} & \begin{tabular}{c}
Parameters \\
Collected
\end{tabular} & SSL(s) & \begin{tabular}{c}
SSL(s) \\
Determination \\
Date
\end{tabular} & \begin{tabular}{c}
Corrective \\
Measures \\
Assessment \\
Initiated
\end{tabular} \\
\hline June 19-25, 2018 & August 7, 2018 & \begin{tabular}{c}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline Sept. 18, 2018 & October 12, 2018 & \begin{tabular}{c}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline June 3-5, 2019 & July 12, 2019 & \begin{tabular}{l}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline October 2-3, 2019 & November 5, 2019 & \begin{tabular}{l}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline June 9, 2020 & July 15, 2020 & \begin{tabular}{l}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline October 6, 2020 & November 9, 2020 & \begin{tabular}{l}
Appendix III \\
Appendix IV
\end{tabular} & No & NA & NA \\
\hline
\end{tabular}

Notes:
NA - not applicable

The statistical background prediction limits used to assess Appendix III data and the Groundwater Protection Standards (GWPSs) used to assess Appendix IV data are summarized in Tables 1 and 2, respectively. Appendix III and Appendix IV sample analytical data are summarized in Tables 3 and 4, respectively. Statistical analysis of the 2020 sample data was performed in accordance with the Statistical Analysis Plan for CCR Groundwater Monitoring (PBW 2017) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA FacilitiesUnified Guidance (USEPA 2009). The statistical analysis included an evaluation of statistical confidence intervals based on Appendix IV sample data collected from downgradient monitoring wells. Statistically significant levels (SSLs) above GWPSs are indicated if the \(95 \%\) lower confidence limit of a particular parameter's data population exceeds the GWPS. Based on the current Appendix IV sample data, none of the Appendix IV parameters are currently present at SSLs above GWPSs. \(\square\)

\subsection*{3.0 KEY ACTIONS COMPLETED IN 2020}

Assessment Monitoring Program groundwater monitoring events were completed in June and October 2020. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 3 (Appendix III parameters) and Table 4 (Appendix IV parameters).

No CCR wells were installed or decommissioned in 2020.

\subsection*{4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS}

No problems were encountered with the CCR groundwater monitoring program in 2020.

\subsection*{5.0 KEY ACTIVITIES PLANNED FOR 2021}

The following key activities are planned for 2021:
- Continue the Assessment Monitoring Program in accordance with 40 CFR § 257.95.
- Complete statistical evaluation of Appendix IV analytical data from the downgradient wells and compare results to GWPSs to determine whether an SSL has occurred.
- If an SSL is identified, notification will be prepared as required under 40 CFR § 257.95(g). The notification will be placed in the operating record per 40 CFR § \(257.105(\mathrm{~h})(8)\) and will be subsequently placed on the public website per 40 CFR § 257.107 (d). Potential alternate sources (i.e., a source other than the CCR unit caused the SSL or that the SSL resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is identified to be the cause of the SSL, a written demonstration will be completed within 90 days of SSL determination and included in the subsequent Annual Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSL, the applicable requirements of 40 CFR §§ 257.94 through 257.98 (e.g., assessment of corrective measures) will be met, including associated recordkeeping/notifications required by 40 CFR \(\S \S 257.105\) through 257.108.

\subsection*{6.0 REFERENCES}

O'Brien and Gere Engineers, Inc. (OBG), 2017. Statistical Analysis Plan, Coleto Creek Power Station.

\section*{Signature Page}

\section*{Golder Associates Inc.}

William F. Vienne
Senior Hydrogeologist

Patrick J. Behling
Principal Engineer

Golder and the G logo are trademarks of Golder Associates Corporation.

FIGURES

\section*{L—ND}

DOWNGRADIENT MONITORING WELL LOCATION
UPGRADIENT MONITORING WELL LOCATION
1 I CCR MONITORING UNIT
CLIENT
COLETO CREEK POWER LP

\section*{PROJECT}
COLETO CREEK POWER STATION FANNIN, TEXAS
TITLE
\(\mathbf{D} \square \square \square \mathbf{L} \square \square \square \square \mathbf{P L} \square \mathbf{N}-\mathbf{C} \square \mathbf{L} \square \square \square \mathbf{C} \square \square \square \mathbf{K} \square \mathbf{M} \square \square \square \square \square \square \mathbf{P} \square \mathbf{N D}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{CONSULTANT} & \multicolumn{2}{|l|}{YYYY-MM-DD} & \multicolumn{2}{|l|}{2019-01-14} \\
\hline & \multicolumn{2}{|l|}{DESIGNED} & \multicolumn{2}{|l|}{AJD} \\
\hline & PREPARED & & AJD & \\
\hline & REVIEWED & & WFV & \\
\hline & APPROVED & & WFV & \\
\hline \[
\begin{aligned}
& \text { PROJECT NO. } \\
& 18106453
\end{aligned}
\] & & \[
\begin{aligned}
& \text { REV. } \\
& 0
\end{aligned}
\] & & \[
\begin{array}{r}
\text { FIGURE } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

TABLES
\(\rightarrow\) GOLDER

Table 1
Appendix III Statistical Background Values

\section*{Coleto Creek Primary Ash Pond}
\begin{tabular}{||l|c||}
\hline \multicolumn{1}{|c|}{ Parameter } & \begin{tabular}{c}
Statistical \\
Background \\
Value
\end{tabular} \\
\hline Boron (mg/L) & 1.26 \\
\hline Calcium \((\mathrm{mg} / \mathrm{L})\) & 143 \\
\hline Chloride \((\mathrm{mg} / \mathrm{L})\) & 118 \\
\hline Fluoride \((\mathrm{mg} / \mathrm{L})\) & 0.61 \\
\hline field \(\mathrm{pH}(\mathrm{s} . \mathrm{u})\). & 6.51 \\
\hline Sulfate \((\mathrm{mg} / \mathrm{L})\) & 7.33 \\
\hline Total Dissolved Solids \((\mathrm{mg} / \mathrm{L})\) & 148 \\
\hline
\end{tabular}

Table 2 Groundwater Protection Standards Coleto Creek Primary Ash Pond
\begin{tabular}{||l|c||}
\hline \multicolumn{1}{|c|}{ Parameter } & \begin{tabular}{c}
Groundwater \\
Protection Standard
\end{tabular} \\
\hline Antimony \((\mathrm{mg} / \mathrm{L})\) & 0.006 \\
\hline Arsenic \((\mathrm{mg} / \mathrm{L})\) & 0.128 \\
\hline Barium \((\mathrm{mg} / \mathrm{L})\) & 2.0 \\
\hline Beryllium \((\mathrm{mg} / \mathrm{L})\) & 0.004 \\
\hline Cadmium \((\mathrm{mg} / \mathrm{L})\) & 0.005 \\
\hline Chromium \((\mathrm{mg} / \mathrm{L})\) & 0.10 \\
\hline Cobalt \((\mathrm{mg} / \mathrm{L})\) & 0.0499 \\
\hline Fluoride \((\mathrm{mg} / \mathrm{L})\) & 4.0 \\
\hline Lead \((\mathrm{mg} / \mathrm{L})\) & 0.015 \\
\hline Lithium \((\mathrm{mg} / \mathrm{L})\) & 0.04 \\
\hline Mercury \((\mathrm{mg} / \mathrm{L})\) & 0.002 \\
\hline Molybdenum \((\mathrm{mg} / \mathrm{L})\) & 0.10 \\
\hline Selenium \((\mathrm{mg} / \mathrm{L})\) & 0.05 \\
\hline Thallium \((\mathrm{mg} / \mathrm{L})\) & 0.002 \\
\hline Radium \(226+228(\mathrm{pCi} / \mathrm{L})\) & 5.0 \\
\hline \hline
\end{tabular}

TABLE 3
APPENDIX III ANALYTICAL RESULTS COLETO CREEK PRIMARY ASH POND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date Sampled & B & Ca & CI & FI & field pH & \(\mathrm{SO}_{4}\) & TDS \\
\hline \multicolumn{9}{|l|}{Upgradient Wells} \\
\hline \multirow[t]{15}{*}{BV-5} & 03/29/17 & 1.15 & 90.5 & 118 & 0.54 & 7.01 & 147 & 860 \\
\hline & 05/11/17 & 1.03 & 81.6 & 106 & 0.57 & 6.89 & 148 & 862 \\
\hline & 05/16/17 & 1.17 & 99 & 107 & 0.55 & 6.9 & 145 & 832 \\
\hline & 06/07/17 & 1.11 & 88.8 & 109 & 0.56 & 6.64 & 147 & 810 \\
\hline & 06/20/17 & 1.02 & 90.7 & 106 & 0.58 & 6.54 & 145 & 716 \\
\hline & 06/27/17 & 1.14 & 100 & 114 & 0.55 & 6.76 & 144 & 743 \\
\hline & 07/12/17 & 1.07 & 96.8 & 112 & 0.56 & 6.88 & 140 & 430 \\
\hline & 07/18/17 & 1.17 & 143 & 117 & 0.56 & 6.68 & 142 & 817 \\
\hline & 11/07/17 & 1.10 & 94.2 & 109 & 0.62 & 6.96 & 136 & 850 \\
\hline & 06/19/18 & 1.18 & 56.4 & 112 & 0.97 & -- & 147 & 775 \\
\hline & 09/18/18 & 1.27 & 86.2 & 145 & 0.667 & 6.53 & 146 & 904 \\
\hline & 06/05/19 & 1.26 & 82.9 & 123 & 0.769 & 6.89 & 146 & 828 \\
\hline & 10/03/19 & 1.31 & 72.2 & 141 & 0.753 & 7.11 & 145 & 806 \\
\hline & 06/09/20 & 1.35 & 90.4 & 171 & 0.498 & 6.97 & 159 & 951 \\
\hline & 10/06/20 & 1.26 & 80.2 & 133 & 1.01 & 6.54 & 155 & 843 \\
\hline \multirow[t]{15}{*}{BV-21} & 03/28/17 & 0.651 & 6.89 & 36 & 0.61 & 7.09 & 69 & 490 \\
\hline & 05/09/17 & 0.687 & 65.2 & 38 & 0.61 & 7.04 & 55 & 410 \\
\hline & 05/17/17 & 0.709 & 74.3 & 39 & 0.58 & 7.05 & 53 & 454 \\
\hline & 06/06/17 & 0.657 & 69 & 40 & 0.59 & 7.11 & 49 & 452 \\
\hline & 06/20/17 & 0.642 & 77 & 40 & 0.61 & 6.7 & 45 & 356 \\
\hline & 06/27/17 & 0.727 & 84.9 & 40 & 0.6 & 6.97 & 46 & 420 \\
\hline & 07/10/17 & 0.674 & 90.6 & 39 & 0.58 & 7.22 & 45 & 427 \\
\hline & 07/18/17 & 0.618 & 84.4 & 39 & 0.6 & 6.91 & 44 & 380 \\
\hline & 11/07/17 & 0.515 & 73.6 & 42 & 0.64 & 7.12 & 46 & 423 \\
\hline & 06/25/18 & 0.543 & 69.3 & 38.4 & 0.62 & -- & 38.4 & 380 \\
\hline & 09/18/18 & 0.624 & 72.1 & 33.3 & 0.479 & 6.64 & 36.4 & 416 \\
\hline & 06/05/19 & 0.576 & 61.3 & 30.3 & 0.602 & 7.1 & 34.2 & 379 \\
\hline & 10/03/19 & 0.534 & 63.4 & 23.9 & 0.588 & 6.82 & 33.2 & 342 \\
\hline & 06/09/20 & 0.447 & 72.5 & 34.2 & 0.522 & 6.96 & 18.5 & 362 \\
\hline & 10/06/20 & 0.480 & 84.0 & 40.4 & 0.677 & 6.72 & 14.5 & 390 \\
\hline \multirow{15}{*}{MW-8} & 03/28/17 & 1.2 & 7.76 & 79 & 0.49 & 7.06 & 76 & 626 \\
\hline & 05/09/17 & 1.21 & 77.5 & 77 & 0.44 & 7.15 & 79 & 564 \\
\hline & 05/15/17 & 1.16 & 81.2 & 76 & 0.44 & 7.01 & 79 & 558 \\
\hline & 06/06/17 & 1.26 & 78.1 & 72 & 0.45 & 6.92 & 83.5 & 570 \\
\hline & 06/20/17 & 1.24 & 86.5 & 67 & 0.43 & 6.7 & 89 & 476 \\
\hline & 06/27/17 & 1.23 & 89.6 & 66 & 0.44 & 6.85 & 97 & 533 \\
\hline & 07/10/17 & 1.24 & 92.6 & 63 & 0.44 & 7.13 & 97 & 533 \\
\hline & 07/18/17 & 1.25 & 92.9 & 61 & 0.46 & 6.91 & 100 & 533 \\
\hline & 11/07/17 & 1.21 & 78.8 & 61 & 0.49 & 7.08 & 100 & 540 \\
\hline & 06/25/18 & 1.25 & 80.3 & 65.9 & 0.52 & -- & 95.2 & 565 \\
\hline & 09/18/18 & 1.29 & 76.5 & 53.7 & 0.402 & 6.70 & 94.8 & 543 \\
\hline & 06/05/19 & 1.11 & 65.2 & 51.4 & 0.497 & 7.10 & 79 & 515 \\
\hline & 10/03/19 & 1.2 & 76.7 & 58.3 & 0.419 & 6.76 & 90.1 & 541 \\
\hline & 06/09/20 & 1.33 & 73.1 & 46.4 & 0.392 J & 7.04 & 72.3 & 511 \\
\hline & 10/06/20 & 1.18 & 81.1 & 49.5 & 0.652 & 6.84 & 72.2 & 510 \\
\hline
\end{tabular}

TABLE 3
APPENDIX III ANALYTICAL RESULTS
COLETO CREEK PRIMARY ASH POND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date Sampled & B & Ca & Cl & FI & field pH & SO \({ }_{4}\) & TDS \\
\hline \multicolumn{9}{|l|}{Downgradient Wells} \\
\hline \multirow[t]{15}{*}{MW-4} & 03/28/17 & 0.287 & 9.14 & 102 & 0.61 & 9.81 & 157 & 794 \\
\hline & 05/09/17 & 0.395 & 88.7 & 101 & 0.61 & 7.27 & 156 & 668 \\
\hline & 05/17/17 & 0.251 & 92.1 & 101 & 0.6 & 6.93 & 157 & 702 \\
\hline & 06/06/17 & 0.243 & 90.7 & 101 & 0.63 & 7.13 & 157 & 728 \\
\hline & 06/20/17 & 0.254 & 99.3 & 101 & 0.62 & 6.71 & 157 & 626 \\
\hline & 06/27/17 & 0.254 & 102 & 101 & 0.63 & 6.87 & 157 & 690 \\
\hline & 07/10/17 & 0.271 & 111 & 101 & 0.62 & 7.16 & 158 & 670 \\
\hline & 07/18/17 & 0.292 & 108 & 101 & 0.63 & 6.82 & 157 & 717 \\
\hline & 11/07/17 & 0.255 & 94.5 & 99 & 0.62 & 7.12 & 155 & 700 \\
\hline & 06/21/18 & 0.267 & 92.5 & 104 & 0.6 & -- & 159 & 665 \\
\hline & 09/18/18 & 0.28 & 91.8 & 102 & 0.582 & 6.63 & 155 & 720 \\
\hline & 06/05/19 & 0.379 & 85.3 & 108 & 0.67 & 6.92 & 161 & 718 \\
\hline & 10/03/19 & 0.367 & 93.1 & 102 & 0.559 & 6.7 & 155 & 693 \\
\hline & 06/09/20 & 0.241 & 94.9 & 24.6 & 0.205 J & 6.88 & 26.8 & 400 \\
\hline & 10/06/20 & 0.328 & 103 & 101 & 0.736 & 6.75 & 151 & 731 \\
\hline \multirow[t]{15}{*}{MW-5} & 03/30/17 & 0.11 & 110 & 140 & 0.51 & 6.85 & 184 & 830 \\
\hline & 05/10/17 & 0.115 & 114 & 139 & 0.54 & 6.86 & 183 & 900 \\
\hline & 05/16/17 & 0.215 & 121 & 139 & 0.5 & 6.81 & 183 & 848 \\
\hline & 06/08/17 & 0.122 & 118 & 139 & 0.55 & 6.8 & 182 & 862 \\
\hline & 06/21/17 & 0.122 & 124 & 138 & 0.53 & 6.6 & 182 & 813 \\
\hline & 06/26/17 & 0.121 & 129 & 139 & 0.54 & 6.79 & 184 & 900 \\
\hline & 07/11/17 & 0.111 & 120 & 138 & 0.52 & 6.91 & 184 & 797 \\
\hline & 07/19/17 & 0.001 & 0.005 & 137 & 0.53 & 6.84 & 181 & 857 \\
\hline & 11/08/17 & 0.149 & 116 & 138 & 0.52 & 6.92 & 183 & 883 \\
\hline & 06/25/18 & 0.119 & 114 & 140 & 0.56 & -- & 183 & 820 \\
\hline & 09/18/18 & 0.146 & 114 & 136 & 0.493 & 6.70 & 183 & 824 \\
\hline & 06/03/19 & 0.146 & 113 & 143 & 0.596 & 7.06 & 187 & 864 \\
\hline & 10/02/19 & 0.179 & 111 & 147 & 0.543 & 7.06 & 202 & 842 \\
\hline & 09/06/20 & 0.152 & 117 & 138 & 0.370 J & 6.84 & 182 & 858 \\
\hline & 10/6/2020 & 0.160 & 125 & 133 & 0.662 & 6.91 & 178 & 841 \\
\hline \multirow[t]{15}{*}{MW-6} & 03/29/17 & 1.67 & 73.9 & 69 & 0.38 & 7.34 & 99 & 510 \\
\hline & 05/11/17 & 1.94 & 70.6 & 70 & 0.37 & 7.1 & 110 & 490 \\
\hline & 05/16/17 & 1.84 & 76.3 & 70 & 0.36 & 7.23 & 107 & 506 \\
\hline & 06/07/17 & 1.8 & 73.8 & 70 & 0.37 & 6.97 & 103 & 492 \\
\hline & 06/22/17 & 1.97 & 79.9 & 69 & 0.37 & 7.11 & 100 & 510 \\
\hline & 06/28/17 & 1.74 & 81.8 & 69 & 0.37 & 7.16 & 99 & 570 \\
\hline & 07/12/17 & 1.76 & 81.6 & 69 & 0.35 & 7.24 & 98 & 557 \\
\hline & 07/20/17 & 0.005 & 0.0002 & 69 & 0.39 & 6.9 & 97 & 530 \\
\hline & 11/07/17 & 1.72 & 76.4 & 69 & 0.39 & 7.41 & 101 & 483 \\
\hline & 06/22/18 & 0.0171 & 76.6 & 70.7 & 0.41 & -- & 107 & 490 \\
\hline & 09/18/18 & 2.09 & 70.8 & 72.5 & 0.353 J & 6.97 & 114 & 505 \\
\hline & 06/03/19 & 1.9 & 73.9 & 73 & 0.043 & 7.31 & 103 & 514 \\
\hline & 10/02/19 & 1.83 & 73.6 & 76.4 & 0.357 J & 7.29 & 115 & 507 \\
\hline & 06/09/20 & 2.51 & 69.7 & 80.9 & 0.4 & 6.95 & 122 & 507 \\
\hline & 10/06/20 & 1.92 & 81.9 & 73.4 & 0.512 & 6.97 & 87.9 & 510 \\
\hline
\end{tabular}

TABLE 3

\section*{APPENDIX III ANALYTICAL RESULTS} COLETO CREEK PRIMARY ASH POND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date Sampled & B & Ca & Cl & FI & field pH & \(\mathrm{SO}_{4}\) & TDS \\
\hline \multirow{15}{*}{MW-9} & 03/30/17 & 3.38 & 54.5 & 71 & 1.13 & 7.35 & 62 & 406 \\
\hline & 05/10/17 & 3.16 & 52.7 & 66 & 1.29 & 7.48 & 59 & 410 \\
\hline & 05/17/17 & 3.18 & 53.3 & 67 & 1.26 & 7.34 & 58 & 440 \\
\hline & 06/07/17 & 3.12 & 52 & 67 & 1.26 & 7.03 & 57 & 380 \\
\hline & 06/21/17 & 3.44 & 60.7 & 66 & 1.39 & 7.09 & 60 & 393 \\
\hline & 06/26/17 & 3.31 & 60.6 & 67 & 1.4 & 7.23 & 61 & 407 \\
\hline & 07/11/17 & 3.35 & 52.1 & 64 & 1.3 & 7.51 & 60 & 927 \\
\hline & 07/19/17 & 3.4 & 50.2 & 63 & 1.4 & 7.29 & 62 & 407 \\
\hline & 11/08/17 & 2.84 & 49.4 & 62 & 1.56 & 7.54 & 50 & 397 \\
\hline & 06/21/18 & 2.94 & 46.9 & 71.5 & 1.5 & -- & 35.7 & 370 \\
\hline & 09/18/18 & 2.79 & 51.7 & 71.4 & 1.1 & 6.99 & 49.1 & 394 \\
\hline & 06/05/19 & 4.26 & 48 & 74.7 & 1.38 & 7.4 & 66.3 & 421 \\
\hline & 10/03/19 & 3.97 & 71.3 & 70.9 & 1.41 & 7.37 & 63.6 & 462 \\
\hline & 09/06/20 & 4.10 & 47.4 & 63.7 & 1.58 & 7.21 & 54.9 & 397 \\
\hline & 10/06/20 & 3.78 & 50.1 & 49.6 & 1.73 & 7.47 & 51.7 & 366 \\
\hline \multirow{15}{*}{MW-10} & 03/30/17 & 3.74 & 92.1 & 151 & 0.54 & 6.99 & 130 & 804 \\
\hline & 05/10/17 & 7.32 & 56.1 & 82 & 0.83 & 7.23 & 96 & 582 \\
\hline & 05/16/17 & 7.45 & 62.7 & 81 & 0.81 & 7.28 & 95 & 612 \\
\hline & 06/08/17 & 7.54 & 58.1 & 77 & 0.84 & 7.23 & 92 & 604 \\
\hline & 06/21/17 & 9.22 & 60.7 & 77 & 0.84 & 6.97 & 92 & 550 \\
\hline & 06/26/17 & 8.21 & 63.4 & 78 & 0.84 & 7.14 & 92 & 530 \\
\hline & 07/11/17 & 7.99 & 49.5 & 76 & 0.84 & 7.4 & 88 & 617 \\
\hline & 07/19/17 & 8.74 & 56.6 & 74 & 0.86 & 7.25 & 86 & 533 \\
\hline & 11/08/17 & 8.72 & 77.7 & 74 & 0.88 & 7.35 & 81 & 590 \\
\hline & 06/22/18 & 8.47 & 84.4 & 76.7 & 0.88 & -- & & 550 \\
\hline & 09/18/18 & 8.45 & 51.9 & 81.4 & 0.759 & 6.98 & 95.1 & 577 \\
\hline & 06/03/19 & 8.28 & 43.1 & 87.2 & 0.953 & 7.52 & 97.7 & 587 \\
\hline & 10/02/19 & 8.28 & 44.2 & 85.5 & 0.891 & 7.46 & 104 & 575 \\
\hline & 06/09/20 & 7.58 & 46.9 & 76.9 & 0.818 & 7.13 & 96.5 & 575 \\
\hline & 10/06/20 & 6.94 & 49.0 & 73.7 & 1.05 & 7.35 & 92.3 & 575 \\
\hline \multirow{15}{*}{MW-11} & 05/10/17 & 1.35 & 64.1 & 55 & 0.82 & 7.27 & 61 & 394 \\
\hline & 05/16/17 & 1.39 & 62.3 & 52 & 0.85 & 7.29 & 58 & 362 \\
\hline & 05/18/17 & 1.27 & 61.6 & 47.8 & 0.94 & -- & 52.4 & 390 \\
\hline & 06/07/17 & 1.23 & 59.8 & 48 & 0.93 & 7.25 & 50 & 372 \\
\hline & 06/21/17 & 1.19 & 73.1 & 43.7 & 1.04 & 7.15 & 44 & 373 \\
\hline & 06/26/17 & 1.15 & 82 & 44 & 1 & 7.3 & 43 & 407 \\
\hline & 07/11/17 & 1.23 & 44.7 & 44 & 1 & 7.55 & 42 & 603 \\
\hline & 07/19/17 & 1.17 & 48.6 & 43 & 1.01 & 7.21 & 42 & 360 \\
\hline & 11/08/17 & 1.13 & 52.2 & 43 & 1.02 & 7.61 & 56 & 367 \\
\hline & 06/21/18 & 1.07 & 69.6 & 44.3 & 0.96 & -- & 61.4 & 355 \\
\hline & 09/18/18 & 1.12 & 39.3 & 44.6 & 0.754 & 7.00 & 44.4 & 354 \\
\hline & 06/03/19 & 1.27 & 43.4 & 42.2 & 0.837 & 7.55 & 44.8 & 372 \\
\hline & 10/02/19 & 1.22 & 43.4 & 41.4 & 0.768 & 7.43 & 10.8 & 355 \\
\hline & 06/09/20 & 1.20 & 56.6 & 44.4 & 0.571 & 6.88 & 67.7 & 414 \\
\hline & 10/06/20 & 1.05 & 66.8 & 58.6 & 0.767 & 7.05 & 85.9 & 453 \\
\hline
\end{tabular}

Notes:
1. All concentrations in \(\mathrm{mg} / \mathrm{L} . \mathrm{pH}\) in standard units.
2. J - concentration is below sample quantitation limit; result is an estimate.

\title{
TABLE 4
}

\section*{APPENDIX IV ANALYTICAL RESULTS \\ COLETO CREEK PRIMARY ASH POND}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date Sampled & Sb & As & Ba & Be & Cd & Cr & Co & FI & Pb & Li & Hg & Mo & Se & TI & Ra 226 & Ra 228 & Ra 226/228 Combined \\
\hline \multicolumn{19}{|l|}{Upgradient Wells} \\
\hline \multirow[t]{14}{*}{BV-5} & 03/29/17 & <0.0025 & 0.00856 & 0.04510 & \(<0.001\) & <0.001 & <0.005 & 0.0497 & 0.540 & \(<0.001\) & 0.0206 & \(<0.0002\) & 0.00925 & <0.005 & <0.0015 & -- & -- & 1.503 \\
\hline & 05/11/17 & <0.0025 & 0.00786 & 0.03680 & <0.001 & <0.001 & <0.005 & 0.0462 & 0.570 & <0.001 & 0.018 & \(<0.0002\) & 0.0101 & <0.005 & <0.0015 & -- & -- & 1.555 \\
\hline & 05/16/17 & <0.0025 & 0.00885 & 0.04520 & <0.001 & <0.001 & <0.005 & 0.0495 & 0.550 & 0.00151 & 0.0171 & \(<0.0002\) & 0.0102 & <0.005 & <0.0015 & -- & -- & 0.7550 \\
\hline & 06/07/17 & <0.0025 & 0.00829 & 0.03760 & <0.001 & <0.001 & <0.005 & 0.0483 & 0.560 & <0.001 & 0.0207 & <0.0002 & 0.01 & <0.005 & <0.0015 & -- & -- & 1.457 \\
\hline & 06/20/17 & <0.0025 & 0.00841 & 0.04010 & <0.001 & <0.001 & <0.005 & 0.0499 & 0.580 & <0.001 & 0.0208 & <0.0002 & 0.0114 & <0.005 & <0.0015 & -- & -- & 0.4920 \\
\hline & 06/27/17 & \(<0.0025\) & 0.0083 & 0.04120 & <0.001 & <0.001 & <0.005 & 0.046 & 0.550 & <0.001 & 0.0198 & <0.0002 & 0.00942 & <0.005 & <0.0015 & -- & -- & 2.247 \\
\hline & 07/12/17 & \(<0.0025\) & 0.00849 & 0.04160 & <0.001 & <0.001 & <0.005 & 0.0484 & 0.560 & <0.001 & 0.0188 & \(<0.0002\) & 0.0096 & <0.005 & <0.0015 & -- & -- & 2.139 \\
\hline & 07/18/17 & <0.0025 & 0.00951 & 0.05780 & <0.001 & <0.001 & 0.00739 & 0.0453 & 0.560 & 0.00288 & 0.022 & <0.0002 & 0.0083 & <0.005 & <0.0015 & -- & -- & 1.260 \\
\hline & 06/19/18 & \(<0.0025\) & 0.0106 & 0.0336 & \(<0.001\) & <0.001 & 0.0022 J & 0.0513 J & 0.970 & \(<0.00074\) J & 0.016 & <0.0002 & 0.0139 & <0.005 & <0.0015 & 0.327 & <1.680 & 2.01 \\
\hline & 09/18/18 & NA & 0.00949 & 0.0436 & NA & NA & 0.00228 J & 0.0487 & 0.667 & 0.00039 J & 0.0206 & NA & 0.0102 & NA & NA & 0.302 & <0.608 & 0.91 \\
\hline & 06/05/19 & <0.0008 & 0.0092 & 0.042 & <0.0003 & 0.00092 J & <0.002 & 0.0466 & 0.769 & 0.00144 & 0.0201 & <0.00008 & 0.0109 & <0.0020 & <0.0005 & <0.687 & <1.130 & <1.82 \\
\hline & 10/03/19 & \(<0.0008\) & 0.00941 & 0.0441 & <0.0003 & \(<0.0003\) & 0.00285 J & 0.0437 & 0.753 & 0.0039 & 0.0172 & <0.00008 & 0.0122 & <0.0020 & <0.0005 & 0.928 & 1.35 & 2.28 \\
\hline & 06/09/20 & <0.0008 & 0.00879 & 0.0462 & <0.0003 & <0.0003 & 0.00818 & 0.0486 & 0.498 & 0.00162 & 0.0201 & \(<0.0000800\) & 0.0120 & \(<0.00200\) & <0.000500 & 0.363 & 0 & 0.363 \\
\hline & 10/06/20 & <0.000800 & 0.00982 & 0.0387 & <0.000300 & <0.000300 & 0.00226 & 0.0449 & 1.01 & <0.000300 & 0.0174 & \(<0.0000800\) & 0.0105 & \(<0.00200\) & <0.000500 & 0.293 & 0.709 & 1 \\
\hline \multirow[t]{14}{*}{BV-21} & 03/28/17 & <0.0025 & 0.0954 & 0.09630 & <0.001 & <0.001 & <0.005 & 0.0083 & 0.610 & <0.001 & <0.010 & <0.0002 & <0.005 & <0.005 & \(<0.0015\) & -- & -- & 1.390 \\
\hline & 05/09/17 & \(<0.0025\) & 0.108 & 0.09720 & <0.001 & <0.001 & <0.005 & 0.00852 & 0.610 & <0.001 & <0.010 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.7460 \\
\hline & 05/17/17 & <0.0025 & 0.117 & 0.09440 & <0.001 & <0.001 & <0.005 & 0.00878 & 0.580 & <0.001 & <0.010 & \(<0.0002\) & <0.005 & <0.005 & \(<0.0015\) & -- & -- & 0.9190 \\
\hline & 06/06/17 & \(<0.0025\) & 0.118 & 0.09540 & <0.001 & <0.001 & <0.005 & 0.00806 & 0.590 & <0.001 & <0.010 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.6710 \\
\hline & 06/20/17 & \(<0.0025\) & 0.121 & 0.1010 & <0.001 & <0.001 & <0.005 & 0.00744 & 0.610 & \(<0.001\) & \(<0.010\) & \(<0.0002\) & \(<0.005\) & <0.005 & <0.0015 & -- & -- & 1.672 \\
\hline & 06/27/17 & \(<0.0025\) & 0.128 & 0.1040 & <0.001 & <0.001 & <0.005 & 0.00841 & 0.600 & \(<0.001\) & \(<0.010\) & <0.0002 & \(<0.005\) & <0.005 & <0.0015 & -- & -- & 0.5200 \\
\hline & 07/10/17 & <0.0025 & 0.123 & 0.1100 & <0.001 & <0.001 & <0.005 & 0.0086 & 0.580 & <0.001 & <0.010 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.8050 \\
\hline & 07/18/17 & \(<0.0025\) & 0.115 & 0.1010 & <0.001 & <0.001 & <0.005 & 0.00784 & 0.600 & \(<0.001\) & \(<0.010\) & \(<0.0002\) & \(<0.005\) & \(<0.005\) & <0.0015 & -- & -- & 4.812 \\
\hline & 06/25/18 & \(<0.0025\) & 0.0697 & 0.104 & <0.001 & <0.001 & <0.005 & 0.00682 & 0.620 & \(<0.00074\) J & 0.00513 J & <0.0002 & 0.00428 J & <0.005 & <0.0015 & 0.267 & <1.417 & 1.68 \\
\hline & 09/18/18 & NA & 0.0625 & 0.109 & NA & NA & <0.002 & 0.0064 & 0.479 & 0.000555 J & 0.00624 J & NA & 0.00450 J & NA & NA & <0.31 & <0.528 & <0.838 \\
\hline & 06/05/19 & \(<0.0008\) & 0.0531 & 0.105 & \(<0.0003\) & \(<0.0003\) & <0.002 & 0.00574 & 0.602 & 0.000354 & 0.00558 J & \(<0.00008\) & 0.00685 & \(<0.0020\) & \(<0.0005\) & 0.65 & \(<0.687\) & 1.337 \\
\hline & 10/03/19 & \(<0.0008\) & 0.049 & 0.0963 & \(<0.0003\) & \(<0.0003\) & <0.002 & 0.00542 & 0.588 & 0.000333 J & <0.005 & <0.00008 & 0.00784 & \(<0.0020\) & \(<0.0005\) & 0.346 & 1.54 & 1.89 \\
\hline & 06/09/20 & <0.0008 & 0.0793 & 0.132 & <0.0003 & <0.0003 & 0.007 & 0.00437 J & 0.522 & 0.00033 J & <0.005 & <0.00008 & 0.00698 & \(<0.0020\) & \(<0.0005\) & 0.211 & 1.15 & 1.36 \\
\hline & 10/6/2020 & <0.000800 & 0.0815 & 0.157 & <0.000300 & <0.000300 & <0.00200 & 0.00411 J & 0.677 & <0.000300 & 0.00532 J & \(<0.0000800\) & 0.00523 & <0.00200 & <0.000500 & 0.37 & -0.112 & 0.37 \\
\hline \multirow[t]{14}{*}{MW-8} & 03/28/17 & \(<0.0025\) & 0.00839 & 0.0623 & <0.001 & <0.001 & <0.005 & 0.0236 & 0.490 & <0.001 & 0.0111 & <0.0002 & 0.0154 & <0.005 & \(<0.0015\) & -- & -- & 0.4520 \\
\hline & 05/09/17 & \(<0.0025\) & 0.00848 & 0.064 & <0.001 & <0.001 & <0.005 & 0.0272 & 0.440 & <0.001 & 0.0111 & \(<0.0002\) & 0.0157 & <0.005 & <0.0015 & -- & -- & 0.4740 \\
\hline & 05/15/17 & <0.0025 & 0.00926 & 0.064 & <0.001 & <0.001 & <0.005 & 0.0311 & 0.440 & <0.001 & 0.0112 & \(<0.0002\) & 0.016 & <0.005 & <0.0015 & -- & -- & 0.6140 \\
\hline & 06/06/17 & \(<0.0025\) & 0.00912 & 0.0616 & <0.001 & <0.001 & 0.00744 & 0.0308 & 0.450 & \(<0.001\) & 0.0107 & \(<0.0002\) & 0.0157 & <0.005 & \(<0.0015\) & -- & -- & 0.1320 \\
\hline & 06/20/17 & <0.0025 & 0.00885 & 0.0669 & <0.001 & <0.001 & <0.005 & 0.0297 & 0.430 & <0.001 & 0.0121 & \(<0.0002\) & 0.0171 & <0.005 & <0.0015 & -- & -- & 0.5380 \\
\hline & 06/27/17 & \(<0.0025\) & 0.00939 & 0.0633 & <0.001 & <0.001 & <0.005 & 0.0314 & 0.440 & \(<0.001\) & 0.0115 & \(<0.0002\) & 0.0163 & \(<0.005\) & \(<0.0015\) & -- & -- & 0.9390 \\
\hline & 07/10/17 & <0.0025 & 0.00902 & 0.0631 & <0.001 & <0.001 & <0.005 & 0.031 & 0.440 & <0.001 & 0.0112 & <0.0002 & 0.0165 & <0.005 & <0.0015 & -- & -- & 0.8040 \\
\hline & 07/18/17 & \(<0.0025\) & 0.00937 & 0.0635 & <0.001 & <0.001 & \(<0.005\) & 0.0352 & 0.460 & \(<0.001\) & 0.0118 & \(<0.0002\) & 0.0185 & \(<0.005\) & <0.0015 & -- & -- & 2.113 \\
\hline & 06/25/18 & \(<0.0025\) & 0.0101 & 0.0632 & <0.001 & <0.001 & <0.005 & 0.029 & 0.520 & 0.0011 & 0.0107 & <0.0002 & 0.017 & \(<0.005\) & <0.0015 & \(<0.234\) & <1.204 & <1.44 \\
\hline & 09/18/18 & NA & 0.00896 & 0.0582 & NA & NA & \(<0.00200\) & 0.0237 & 0.402 & \(<0.0003\) & 0.0117 & NA & 0.0178 & NA & NA & <0.281 & <0.558 & <0.84 \\
\hline & 06/05/19 & \(<0.0008\) & 0.00946 & 0.0596 & \(<0.0003\) & \(<0.0003\) & <0.002 & 0.0217 & 0.497 & 0.000355 J & 0.011 & \(<0.00008\) & 0.0156 & \(<0.0020\) & \(<0.0005\) & 0.528 & <0.619 & 1.147 \\
\hline & 10/03/19 & <0.0008 & 0.0083 & 0.0607 & \(<0.0003\) & \(<0.0003\) & <0.002 & 0.231 & 0.419 & \(<0.0003\) & 0.0106 & \(<0.00008\) & 0.0144 & \(<0.0020\) & \(<0.0005\) & 0.224 & 0.241 & 0.465 \\
\hline & 06/09/20 & <0.0008 & 0.00856 & 0.0599 & \(<0.0003\) & \(<0.0003\) & <0.002 & 0.0174 & 0.392 J & 0.000479 J & 0.0104 & <0.00008 & 0.0158 & <0.002 & <0.0005 & 0.304 & 2.64 & 2.94 \\
\hline & 10/6/2020 & \(<0.000800\) & 0.00862 & 0.0647 & <0.000300 & <0.000300 & \(<0.00200\) & 0.0162 & 0.652 & \(<0.000300\) & 0.0107 & \(<0.0000800\) & 0.0148 & \(<0.00200\) & <0.000500 & 1.08 & 1.65 & 2.73 \\
\hline
\end{tabular}

\title{
TABLE 4
}

\section*{APPENDIX IV ANALYTICAL RESULTS \\ COLETO CREEK PRIMARY ASH POND}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date
Sampled & Sb & As & Ba & Be & Cd & Cr & Co & FI & Pb & Li & Hg & Mo & Se & TI & Ra 226 & Ra 228 & Ra 226/228 Combined \\
\hline \multicolumn{19}{|l|}{Downgradient Wells} \\
\hline \multirow[t]{14}{*}{MW-4} & 03/28/17 & <0.0025 & 0.00738 & 0.0575 & <0.001 & <0.001 & <0.005 & 0.007 & 0.610 & <0.001 & 0.0192 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.4600 \\
\hline & 05/09/17 & <0.0025 & 0.00733 & 0.0576 & <0.001 & <0.001 & <0.005 & 0.007 & 0.610 & <0.001 & 0.0182 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.6940 \\
\hline & 05/15/17 & \(<0.0025\) & 0.00794 & 0.0556 & <0.001 & <0.001 & <0.005 & 0.007 & 0.600 & <0.001 & 0.0166 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 1.451 \\
\hline & 06/06/17 & <0.0025 & 0.0077 & 0.0556 & <0.001 & <0.001 & <0.005 & 0.007 & 0.630 & <0.001 & 0.0179 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 0.1740 \\
\hline & 06/20/17 & <0.0025 & 0.0081 & 0.0596 & <0.001 & <0.001 & 0.00877 & 0.008 & 0.620 & <0.001 & 0.0195 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 0.5430 \\
\hline & 06/27/17 & \(<0.0025\) & 0.00786 & 0.0554 & <0.001 & <0.001 & <0.005 & 0.007 & 0.630 & <0.001 & 0.0185 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 0.6390 \\
\hline & 07/10/17 & <0.0025 & 0.00846 & 0.0582 & <0.001 & <0.001 & <0.005 & 0.009 & 0.620 & <0.001 & 0.0187 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 1.069 \\
\hline & 07/18/17 & <0.0025 & 0.00815 & 0.0549 & <0.001 & <0.001 & <0.005 & 0.008 & 0.630 & <0.001 & 0.0183 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 0.1910 \\
\hline & 06/21/18 & <0.0025 & 0.00843 & 0.0591 & <0.001 & <0.001 & <0.005 & 0.00711 & 0.600 & \(<0.00072\) J & 0.0175 & <0.0002 & <0.005 & <0.005 & <0.0015 & 0.370 & 1.705 & 2.08 \\
\hline & 09/18/18 & NA & 0.00793 & 0.0577 & NA & NA & <0.002 & 0.00673 & 0.582 & <0.0003 & 0.019 & NA & <0.002 & NA & NA & 1.610 & <0.543 & 2.15 \\
\hline & 06/05/19 & <0.0008 & 0.0079 & 0.0571 & <0.0003 & <0.0003 & <0.002 & 0.00729 & 0.670 & <0.0003 & 0.0195 & <0.00008 & <0.002 & <0.0020 & <0.0005 & 0.436 & <0.547 & 0.98 \\
\hline & 10/03/19 & <0.0008 & 0.00764 & 0.0532 & <0.0003 & <0.0003 & <0.002 & 0.00699 & 0.559 & 0.00101 & 0.017 & <0.00008 & <0.002 & <0.002 & <0.0005 & 1.85 & -0.102 & 1.85 \\
\hline & 06/09/20 & <0.0008 & <0.002 & 0.0376 & <0.0003 & \(<0.0003\) & <0.002 & <0.003 & 0.205 J & <0.0003 & 0.00751 J & \(<0.00008\) & 0.0021 J & <0.002 & <0.0005 & 0.0553 & 0.264 & 0.319 \\
\hline & 10/06/20 & <0.000800 & 0.00754 & 0.0586 & <0.000300 & <0.000300 & <0.00200 & 0.00862 & 0.736 & 0.000375 J & 0.0186 & \(<0.0000800\) & <0.00200 & <0.00200 & <0.000500 & 0.0684 & -0.16 & 0.0684 \\
\hline \multirow[t]{14}{*}{MW-5} & 03/30/17 & <0.0025 & 0.00953 & 0.0748 & <0.001 & <0.001 & <0.005 & <0.005 & 0.510 & <0.001 & 0.0192 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 1.443 \\
\hline & 05/10/17 & <0.0025 & 0.00955 & 0.0706 & <0.001 & <0.001 & <0.005 & <0.005 & 0.540 & <0.001 & 0.0179 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.6150 \\
\hline & 05/16/17 & <0.0025 & 0.00967 & 0.0708 & <0.001 & <0.001 & <0.005 & <0.005 & 0.500 & <0.001 & 0.0181 & \(<0.0002\) & <0.005 & <0.005 & \(<0.0015\) & -- & -- & 0.6410 \\
\hline & 06/08/17 & <0.0025 & 0.00908 & 0.0701 & <0.001 & <0.001 & <0.005 & <0.005 & 0.550 & <0.001 & 0.0200 & <0.0002 & <0.005 & <0.005 & <0.0015 & -- & -- & 0.1790 \\
\hline & 06/21/17 & \(<0.0025\) & 0.00917 & 0.0767 & \(<0.001\) & <0.001 & <0.005 & <0.005 & 0.530 & \(<0.001\) & 0.0197 & \(<0.0002\) & \(<0.005\) & <0.005 & <0.0015 & -- & -- & 0.1060 \\
\hline & 06/26/17 & \(<0.0025\) & 0.00955 & 0.0735 & <0.001 & <0.001 & <0.005 & \(<0.005\) & 0.540 & \(<0.001\) & 0.0204 & <0.0002 & \(<0.005\) & <0.005 & <0.0015 & -- & -- & 1.112 \\
\hline & 07/11/17 & <0.0025 & 0.00945 & 0.0712 & <0.001 & <0.001 & <0.005 & <0.005 & 0.520 & <0.001 & 0.0183 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & -- & -- & 0.5120 \\
\hline & 07/19/17 & \(<0.0025\) & 0.00941 & 0.0735 & <0.001 & <0.001 & <0.005 & <0.005 & 0.530 & \(<0.001\) & 0.0186 & \(<0.0002\) & <0.005 & \(<0.005\) & <0.0015 & -- & -- & 0.1910 \\
\hline & 06/25/18 & \(<0.0025\) & 0.00998 & 0.0733 & <0.001 & <0.001 & <0.005 & <0.005 & 0.560 & <0.001 & 0.0182 & \(<0.0002\) & <0.005 & <0.005 & <0.0015 & \(<0.251\) & <1.369 & <1.62 \\
\hline & 09/18/18 & NA & 0.00945 & 0.0697 & NA & NA & <0.002 & <0.003 & 0.493 & <0.0003 & 0.0195 & NA & <0.002 & NA & NA & \(<0.282\) & <0.606 & <0.89 \\
\hline & 06/03/19 & \(<0.0008\) & 0.00948 & 0.0678 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.596 & \(<0.0003\) & 0.0206 & \(<0.00008\) & <0.002 & \(<0.002\) & \(<0.0005\) & \(<0.619\) & \(<0.917\) & <1.54 \\
\hline & 10/02/19 & <0.0008 & 0.00918 & 0.067 & <0.0003 & <0.0003 & <0.002 & <0.003 & 0.543 & <0.0003 & 0.0187 & \(<0.00008\) & <0.002 & <0.002 & <0.0005 & 0.47 & 0.117 & 0.587 \\
\hline & 06/09/20 & <0.0008 & 0.00891 & 0.0689 & <0.0003 & \(<0.0003\) & <0.002 & <0.003 & 0.370 J & <0.0003 & 0.0192 & <0.00008 & <0.002 & <0.002 & <0.0005 & 0.171 & 0.211 & 0.382 \\
\hline & 10/6/2020 & <0.000800 & 0.00927 & 0.0708 & <0.000300 & <0.000300 & <0.00200 & \(<0.00300\) & 0.662 & \(<0.000300\) & 0.0190 & \(<0.0000800\) & <0.00200 & \(<0.00200\) & <0.000500 & 0.0604 & 0.0798 & 0.14 \\
\hline \multirow[t]{14}{*}{MW-6} & 03/29/17 & \(<0.0025\) & 0.00827 & 0.0900 & <0.001 & <0.001 & <0.005 & <0.005 & 0.380 & \(<0.001\) & <0.010 & <0.0002 & 0.00749 & <0.005 & \(<0.0015\) & -- & -- & 1.009 \\
\hline & 05/11/17 & \(<0.0025\) & 0.00738 & 0.0758 & <0.001 & <0.001 & <0.005 & <0.005 & 0.370 & <0.001 & 0.0101 & \(<0.0002\) & 0.0176 & <0.005 & <0.0015 & -- & -- & 0.8250 \\
\hline & 05/16/17 & <0.0025 & 0.00803 & 0.0784 & <0.001 & <0.001 & <0.005 & <0.005 & 0.360 & <0.001 & \(<0.010\) & \(<0.0002\) & 0.0131 & <0.005 & <0.0015 & -- & -- & 0.7740 \\
\hline & 06/07/17 & \(<0.0025\) & 0.00772 & 0.0798 & <0.001 & <0.001 & <0.005 & <0.005 & 0.370 & \(<0.001\) & <0.010 & \(<0.0002\) & 0.00949 & <0.005 & \(<0.0015\) & -- & -- & 0.6640 \\
\hline & 06/22/17 & \(<0.0025\) & 0.00764 & 0.083 & \(<0.001\) & \(<0.001\) & \(<0.005\) & \(<0.005\) & 0.370 & \(<0.001\) & 0.0109 & \(<0.0002\) & 0.0084 & \(<0.005\) & \(<0.0015\) & -- & -- & 0.2150 \\
\hline & 06/28/17 & \(<0.0025\) & 0.00779 & 0.0842 & <0.001 & <0.001 & <0.005 & <0.005 & 0.370 & \(<0.001\) & \(<0.010\) & \(<0.0002\) & 0.00806 & \(<0.005\) & \(<0.0015\) & -- & -- & 1.730 \\
\hline & 07/12/17 & <0.0025 & 0.0077 & 0.0819 & <0.001 & <0.001 & <0.005 & <0.005 & 0.350 & <0.001 & <0.010 & <0.0002 & 0.0076 & <0.005 & <0.0015 & -- & -- & 1.012 \\
\hline & 07/20/17 & \(<0.0025\) & 0.001 & 0.0010 & <0.001 & <0.001 & <0.005 & <0.005 & 0.390 & <0.001 & <0.010 & <0.0002 & 0.001 & <0.005 & <0.0015 & -- & -- & 0.3660 \\
\hline & 06/22/18 & \(<0.0025\) & 0.00861 & 0.0912 & <0.001 & <0.001 & <0.005 & <0.005 & 0.410 & <0.001 & 0.00924 J & <0.0002 & 0.00837 & \(<0.005\) & <0.0015 & \(<0.309\) & <1.243 & <1.55 \\
\hline & 09/18/18 & NA & 0.008 & 0.0828 & NA & NA & <0.002 & <0.003 & 0.353 J & 0.000349 J & 0.0107 & NA & 0.0274 & NA & NA & <0.196 & 1.06 & 1.256 \\
\hline & 06/03/19 & \(<0.0008\) & 0.00799 & 0.0894 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.438 & \(<0.0003\) & 0.00968 J & \(<0.00008\) & 0.00884 & \(<0.0020\) & \(<0.0005\) & \(<0.407\) & \(<0.623\) & \(<1.03\) \\
\hline & 10/02/19 & \(<0.0008\) & 0.00775 & 0.0876 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.357 J & \(<0.0003\) & 0.00875 J & \(<0.00008\) & 0.00875 & \(<0.0020\) & \(<0.0005\) & 0.715 & 1.23 & 1.94 \\
\hline & 06/09/20 & <0.0008 & 0.00799 & 0.078 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.4 & <0.0003 & 0.0113 & <0.00008 & 0.0357 & <0.002 & <0.0005 & 0.00643 & 0.127 & 0.134 \\
\hline & 10/6/2020 & \(<0.000800\) & 0.00768 & 0.0912 & \(<0.000300\) & <0.000300 & \(<0.00200\) & 0.00319 J & 0.512 & \(<0.000300\) & 0.00900 J & \(<0.0000800\) & 0.00924 & \(<0.00200\) & <0.000500 & 1.02 & 0.621 & 1.64 \\
\hline
\end{tabular} \\ \section*{TABLE 4 \\ \section*{TABLE 4 \\ APPENDIX IV ANALYTICAL RESULTS \\ COLETO CREEK PRIMARY ASH POND}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample Location & Date Sampled & Sb & As & Ba & Be & Cd & Cr & Co & FI & Pb & Li & Hg & Mo & Se & TI & Ra 226 & Ra 228 & Ra 226/228 Combined \\
\hline \multirow[t]{14}{*}{MW-9} & 03/30/17 & <0.0025 & 0.00909 & 0.121 & <0.001 & <0.001 & <0.005 & <0.005 & 1.130 & 0.00217 & <0.010 & \(<0.0002\) & 0.0747 & \(<0.005\) & <0.0015 & -- & -- & 1.353 \\
\hline & 05/10/17 & \(<0.0025\) & 0.00996 & 0.105 & <0.001 & <0.001 & <0.005 & <0.005 & 1.290 & 0.00433 & <0.010 & <0.0002 & 0.0900 & <0.005 & <0.0015 & -- & -- & 0.4800 \\
\hline & 05/17/17 & \(<0.0025\) & 0.00958 & 0.101 & <0.001 & <0.001 & <0.005 & <0.005 & 1.260 & 0.00377 & \(<0.010\) & <0.0002 & 0.0899 & \(<0.005\) & <0.0015 & -- & -- & 0.3600 \\
\hline & 06/07/17 & <0.0025 & 0.0093 & 0.100 & <0.001 & <0.001 & <0.005 & <0.005 & 1.260 & <0.001000 & <0.010 & \(<0.0002\) & 0.0926 & <0.005 & <0.0015 & -- & -- & 0.4760 \\
\hline & 06/21/17 & <0.0025 & 0.00937 & 0.119 & <0.001 & <0.001 & <0.005 & <0.005 & 1.390 & 0.00136 & <0.010 & <0.0002 & 0.1020 & <0.005 & <0.0015 & -- & -- & 1.579 \\
\hline & 06/26/17 & \(<0.0025\) & 0.0107 & 0.114 & <0.001 & <0.001 & 0.0102 & <0.005 & 1.400 & 0.00217 & \(<0.010\) & \(<0.0002\) & 0.1060 & <0.005 & <0.0015 & -- & -- & 1.023 \\
\hline & 07/11/17 & \(<0.0025\) & 0.0105 & 0.103 & <0.001 & <0.001 & 0.00566 & <0.005 & 1.300 & 0.00124 & <0.010 & \(<0.0002\) & 0.1050 & <0.005 & <0.0015 & -- & -- & 0.8630 \\
\hline & 07/19/17 & \(<0.0025\) & 0.0103 & 0.101 & <0.001 & <0.001 & <0.005 & <0.005 & 1.400 & \(<0.001000\) & <0.010 & \(<0.0002\) & 0.1130 & <0.005 & \(<0.0015\) & -- & -- & 0.5840 \\
\hline & 06/21/18 & \(<0.0025\) & 0.0104 & 0.100 & <0.001 & <0.001 & <0.005 & <0.005 & 1.500 & \(<0.00072 \mathrm{~J}\) & <0.01 & \(<0.0002\) & 0.0617 & <0.005 & \(<0.0015\) & 0.608 & \(<1.303\) & 1.91 \\
\hline & 09/18/18 & NA & 0.0103 & 0.0985 & NA & NA & <0.002 & \(<0.003\) & 1.100 & <0.000300 & 0.00639 J & NA & 0.0502 & NA & NA & 0.618 & \(<0.638\) & 1.26 \\
\hline & 06/05/19 & \(<0.0008\) & 0.0109 & 0.102 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 1.380 & \(<0.0003\) & 0.00545 J & \(<0.00008\) & 0.0683 & \(<0.002\) & \(<0.0005\) & \(<0.402\) & \(<0.683\) & \(<1.085\) \\
\hline & 10/03/19 & \(<0.0008\) & 0.0109 & 0.128 & 0.00069 J & \(<0.0003\) & <0.002 & 0.00337 J & 1.410 & 0.00876 & 0.0064 J & \(<0.00008\) & 0.0507 & 0.0041 J & <0.0005 & 0.577 & 0.747 & 1.32 \\
\hline & 06/09/20 & \(<0.0008\) & 0.0126 & 0.0865 & <0.0003 & \(<0.0003\) & <0.002 & <0.003 & 1.58 & 0.000577 J & <0.005 & <0.00008 & 0.0774 & <0.002 & \(<0.0005\) & 0.132 & -0.0432 & 0.132 \\
\hline & 10/6/2020 & \(<0.000800\) & 0.0225 & 0.0786 & <0.000300 & <0.000300 & <0.00200 & <0.00300 & 1.73 & <0.000300 & \(<0.00500\) & <0.0000800 & 0.0616 & <0.00200 & <0.000500 & 0.14 & 1.51 & 1.65 \\
\hline \multirow[t]{14}{*}{MW-10} & 03/30/17 & \(<0.0025\) & 0.0110 & 0.0844 & <0.001 & <0.001 & <0.005 & <0.005 & 0.540 & <0.001 & 0.0179 & \(<0.0002\) & 0.0342 & <0.005 & <0.0015 & -- & -- & 1.439 \\
\hline & 05/10/17 & \(<0.0025\) & 0.0146 & 0.0554 & <0.001 & <0.001 & 0.00533 & <0.005 & 0.830 & <0.001 & 0.0122 & \(<0.0002\) & 0.102 & <0.005 & <0.0015 & -- & -- & 0.8880 \\
\hline & 05/16/17 & \(<0.0025\) & 0.0150 & 0.0598 & <0.001 & <0.001 & <0.005 & <0.005 & 0.810 & <0.001 & 0.0123 & \(<0.0002\) & 0.0987 & <0.005 & <0.0015 & -- & -- & 0.1830 \\
\hline & 06/08/17 & \(<0.0025\) & 0.0144 & 0.0544 & <0.001 & <0.001 & <0.005 & <0.005 & 0.840 & <0.001 & 0.0115 & \(<0.0002\) & 0.106 & <0.005 & \(<0.0015\) & -- & -- & 0.06700 \\
\hline & 06/21/17 & \(<0.0025\) & 0.0149 & 0.054 & <0.001 & <0.001 & <0.005 & <0.005 & 0.840 & <0.001 & 0.0133 & <0.0002 & 0.113 & <0.005 & \(<0.0015\) & -- & -- & 0.7090 \\
\hline & 06/26/17 & \(<0.0025\) & 0.0160 & 0.0587 & <0.001 & <0.001 & 0.0177 & <0.005 & 0.840 & \(<0.001\) & 0.0137 & \(<0.0002\) & 0.116 & \(<0.005\) & <0.0015 & -- & -- & 0.7180 \\
\hline & 07/11/17 & \(<0.0025\) & 0.0149 & 0.0508 & <0.001 & <0.001 & <0.005 & <0.005 & 0.840 & <0.001 & 0.0119 & \(<0.0002\) & 0.114 & <0.005 & \(<0.0015\) & -- & -- & 1.713 \\
\hline & 07/19/17 & \(<0.0025\) & 0.0146 & 0.0633 & <0.001 & <0.001 & 0.00963 & <0.005 & 0.860 & <0.001 & 0.0127 & \(<0.0002\) & 0.121 & <0.005 & \(<0.0015\) & -- & -- & 2.132 \\
\hline & 06/22/18 & \(<0.0025\) & 0.0154 & 0.0692 & <0.001 & \(<0.001\) & <0.005 & \(<0.005\) & 0.88 & \(<0.00095\) J & 0.0122 & \(<0.0002\) & 0.134 & \(<0.005\) & \(<0.0015\) & \(<0.212\) & <1.192 & <1.40 \\
\hline & 09/18/18 & NA & 0.0140 & 0.0446 & NA & NA & <0.002 & \(<0.003\) & 0.759 & \(<0.0003\) & 0.0141 & NA & 0.125 & NA & NA & 0.151 & \(<0.848\) & 0.999 \\
\hline & 06/03/19 & \(<0.0008\) & 0.0142 & 0.0420 & \(<0.0003\) & \(<0.0003\) & <0.002 & <0.003 & 0.953 & <0.0003 & 0.0139 & \(<0.00008\) & 0.109 & \(<0.002\) & \(<0.0005\) & \(<0.203\) & 0.814 & 1.017 \\
\hline & 10/02/19 & <0.0008 & 0.0139 & 0.0406 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.891 & \(<0.0003\) & 0.0127 & \(<0.00008\) & 0.106 & <0.002 & \(<0.0005\) & -0.0288 & 0.901 & 0.901 \\
\hline & 06/09/20 & \(<0.0008\) & 0.014 & 0.0444 & \(<0.0003\) & \(<0.0003\) & \(<0.002\) & 0.00334 J & 0.818 & \(<0.0003\) & 0.013 & \(<0.00008\) & 0.088 & \(<0.002\) & \(<0.0005\) & 0.0959 & 1.22 & 1.31 \\
\hline & 10/6/2020 & \(<0.000800\) & 0.0139 & 0.0411 & <0.000300 & <0.000300 & \(<0.00200\) & 0.00390 J & 1.05 & \(<0.000300\) & 0.0127 & \(<0.0000800\) & 0.0865 & <0.00200 & <0.000500 & 0.0332 & 1.68 & 1.71 \\
\hline \multirow[t]{14}{*}{MW-11} & 05/10/17 & \(<0.0025\) & 0.0156 & 0.0899 & <0.001 & <0.001 & <0.005 & <0.005 & 0.82 & 0.00239 & 0.0125 & \(<0.0002\) & 0.0082 & <0.005 & <0.0015 & -- & -- & 0.4560 \\
\hline & 05/16/17 & \(<0.0025\) & 0.018 & 0.0869 & <0.001 & <0.001 & 0.00731 & <0.005 & 0.85 & 0.0113 & 0.0144 & <0.0002 & 0.00841 & <0.005 & <0.0015 & -- & -- & 1.418 \\
\hline & 05/18/17 & \(<0.0025\) & 0.0188 & 0.0779 & <0.001 & <0.001 & <0.005 & <0.005 & 0.94 & 0.00204 & 0.0122 & \(<0.0002\) & 0.00781 & <0.005 & <0.0015 & -- & -- & 0.6390 \\
\hline & 06/07/17 & \(<0.0025\) & 0.0175 & 0.0835 & <0.001 & <0.001 & <0.005 & <0.005 & 0.93 & 0.00171 & 0.0137 & \(<0.0002\) & 0.00744 & \(<0.005\) & <0.0015 & -- & -- & 0.5020 \\
\hline & 06/21/17 & \(<0.0025\) & 0.0203 & 0.0822 & <0.001 & \(<0.001\) & \(<0.005\) & \(<0.005\) & 1.04 & 0.00322 & 0.0136 & \(<0.0002\) & 0.00659 & \(<0.005\) & <0.0015 & -- & -- & 1.084 \\
\hline & 06/26/17 & \(<0.0025\) & 0.0237 & 0.0954 & <0.001 & <0.001 & 0.0131 & <0.005 & 1.00 & 0.00593 & 0.0176 & \(<0.0002\) & 0.00796 & <0.005 & <0.0015 & -- & -- & 3.067 \\
\hline & 07/11/17 & \(<0.0025\) & 0.0212 & 0.0725 & <0.001 & <0.001 & <0.005 & <0.005 & 1.00 & <0.001 & 0.012 & \(<0.0002\) & 0.00765 & \(<0.005\) & \(<0.0015\) & -- & -- & 0.7530 \\
\hline & 07/19/17 & \(<0.0025\) & 0.0224 & 0.0709 & <0.001 & \(<0.001\) & 0.00762 & <0.005 & 1.01 & 0.0018 & 0.0137 & <0.0002 & 0.00783 & <0.005 & <0.0015 & -- & -- & 1.551 \\
\hline & 06/21/18 & \(<0.0025\) & 0.0367 & 0.0805 & \(<0.001\) & \(<0.001\) & <0.005 & \(<0.005\) & 0.96 & 0.00241 & 0.0135 & \(<0.0002\) & 0.00465 & <0.005 & \(<0.0015\) & \(<0.234\) & \(<1.312\) & <1.55 \\
\hline & 09/18/18 & NA & 0.0382 & 0.0645 & NA & NA & <0.002 & \(<0.003\) & 0.754 & <0.0003 & 0.0139 & NA & 0.00445 J & NA & NA & \(<0.188\) & 0.597 & 0.785 \\
\hline & 06/03/19 & \(<0.0008\) & 0.0379 & 0.0834 & \(<0.0003\) & \(<0.0003\) & <0.002 & \(<0.003\) & 0.0837 & \(<0.0003\) & 0.0154 & \(<0.00008\) & 0.00316 J & \(<0.002\) & \(<0.0005\) & \(<0.481\) & 0.991 & 1.472 \\
\hline & 10/02/19 & \(<0.0008\) & 0.0379 & 0.0744 & \(<0.0003\) & \(<0.0003\) & \(<0.002\) & \(<0.003\) & 0.768 & 0.000391 J & 0.014 & \(<0.00008\) & 0.00259 J & \(<0.002\) & \(<0.0005\) & 1.57 & 0.478 & 2.040 \\
\hline & 06/09/20 & \(<0.0008\) & 0.0293 & 0.0948 & \(<0.0003\) & \(<0.0003\) & \(<0.002\) & \(<0.003\) & 0.571 & 0.000675 J & 0.0156 & \(<0.00008\) & 0.00215 J & \(<0.002\) & \(<0.0005\) & 0.163 & 1.31 & 1.480 \\
\hline & 10/6/2020 & \(<0.000800\) & 0.0159 & 0.105 & <0.000300 & <0.000300 & <0.00200 & \(<0.00300\) & 0.767 & 0.000320 J & 0.0165 & <0.0000800 & 0.00340 J & <0.00200 & <0.000500 & 0.354 & 0.53 & 0.884 \\
\hline
\end{tabular}

Notes:
1. Ra \(226 / 228\) concentrations in \(\mathrm{pCi} / \mathrm{L}\). All other concentrations in \(\mathrm{mg} / \mathrm{L}\).
2. J-concentration is below sample quantitation limit; result is an estimate
3. Non-detect Ra isotope results were assigned a value equal to the minimum detectable concentration.
4. \(N A=\) Not analyzed (groundwater sample analyses for the second semi-annual sampling events were limited to Appendix IV parameters detected during the preceding first semi-annual sampling event in accordance with 40 CFR § 257.95(d)(1)).
golder.com

\section*{APPENDIX F - CLOSURE AND POST-CLOSURE CARE}

\section*{Closure Plan}

Closure Plan Addendum No. 1
Post-Closure Plan
\begin{tabular}{l|l}
\hline CLOSURE PLAN FOR EXISTING CCR SURFACE IMPOUNDMENT & \begin{tabular}{l}
Rev 1 Page 1 of 2 \\
40 CFR \(\S 257.102\) (b)
\end{tabular} \\
\hline
\end{tabular}

\section*{SITE INFORMATION}

Site Name / Address
Owner Name / Address
CCR Unit
Reason for Initiating Closure
Coleto Creek Power Station, 45 FM 2987 Fannin, Goliad County, TX
Coleto Creek Power, LP 1500 Eastport Plaza Drive Collinsville, IL 62234
Primary Ash Pond Final Cover Type
Known final receipt of waste/Final removal of
beneficial reuse materials

Soil/Synthetic Liner System
Close In-Place

CLOSURE PLAN DESCRIPTION
(b)(1)(i) - Narrative
description of how the CC description of how the unit will be closed in accordance with this section.
(b)(1)(iii) - If closure of the
(b) (1)(iii) - If cla
CCR unit will be

CCR unit will be
accomplished by leaving CCR
in place, a description of the
final cover system and
methods and procedures
used to install the finalcover.
used to install the finalcover.

The Primary Ash Pond will be closed such that contained CCR solids will remain in-place. In accordance with §257.102(b)(3), this written closure plan will be amended to provide additional details after the final engineering design for the grading and cover system is completed. This closure plan reflects the best information available to date, and the plan may be amended in the future.

First, the Primary Ash Pond will be dewatered with the resulting water to be discharged through existing TPDES Outfall No. 003. CCR solids will be graded and leveled, then covered with a final cover system as described below. Existing perimeter dikes will remain intact and the final cover system will tie into these dikes. The cover system will consist of the following elements, listed in order from contact with the CCR to the top: 1) subgrade leveling fill (as needed); 2) 1 foot thick soil liner with a permeability not to exceed the permeability of \(1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}\); 3) Synthetic Liner System consisting of: Geosynthetic Clay Liner (GCL), Textured (both sides) 40 Mil Linear-Low Density Polyethylene Flexible Membrane Liner (LLDPE-FML), Double Sided (geotextile fabric on both sides) Geonet Drainage Layer; and 4) 24 -inch Protective/Vegetative Soil Layer. The top of the final cover system will be vegetated to minimize erosion. The final cover will be sloped to promote drainage and storm water runoff.
(b)(1)(iii) - How the final cover system will achieve the performance standards in \(\$ 257.102(\mathrm{~d})\).
(d)(1)(i) Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere.
(d)(1)(ii) - Preclude the probability of future impoundment of water, sediment, or slurry.
(d)(1)(iii) - Include measures that provide for major slope stability to (d)(1)(iii) - include measures that provide for major siope stabiiity to
prevent the sloughing or movement of the final cover system during the closure and post-closure care period.

The permeability of the final cover will be equal to or less than the permeability of the bottom liner or a permeability no greater than \(1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}\), whichever is less, and will be graded to prevent ponding and promote drainage.

The final cover will be sloped across the unit as needed to preclude the probability of future impoundment of water, sediment, or slurry.
The top of the vegetated final cover system will be sloped and the outsides of the perimeter dikes will be vegetated as necessary to minimize the potential for erosion. The cap system will be designed by a Qualified Professional Engineer in a manner to prevent sloughing or movement of the final cover system and geotechnical testing and evaluation will be performed as needed during and after construction to confirm that engineering slope stability standards have been achieved.
The vegetative cover will be regularly mowed and maintained to minimize the potential for erosion or other structural issues that would cause more extensive and long-term maintenance issues. The storm water control system will be regularly inspected for proper operation.

Construction would occur in a phased approach as sections of the impoundment are prepared, enabling expedited capping of portions of the CCR impoundment.
The unit will be dewatered sufficiently to remove the free liquids to provide a stable base for the construction of the final cover system.
Dewatering and regrading of existing in-place CCR will sufficiently stabilize the waste such that the final cover will be supported.
The final cover system will be constructed as described above in accordance with (d)(3)(i) and will minimize infiltration and erosion.

When the final design of the final cover system is completed, the written closure plan will be amended to include the detailed final design.
The permeability of the final cover will be equal to or less than the permeability of the existing bottom liner or no greater than \(1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}\), whichever is less. This will be verified during construction per the construction quality assurance plan to be developed in conjunction with the detailed amended closure plan.
Infiltration of liquids through the closed CCR unit will be minimized by the placement of a 24 -inch thick protective/vegetated soil layer over the Geonet drainage layer.

The final cover will include a minimum 24-inch protective/vegetated soil layer that is capable of sustaining native plant growth. The vegetative cover will be regularly maintained to prevent erosion.
The final cover system will be designed to account for expected settlement and subsidence.
must be minimized through a design that accommodates settling and
subsidence.

\section*{INVENTORY AND AREA ESTIMATES}
(b)(1)(iv) - Estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit
(b)(1)(v) - Estimate of the largest area of the CCR unit ever requiring a final cover

Approx. 10 million cubic yards

\section*{CLOSURE SCHEDULE}
(b)(1)(vi) - Schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including major milestones ...and the estimated timeframes to complete each step or phase of CCR unit closure.
Note: At the time of this Written Closure Plan, there are no immediate plans to close the Primary Ash Pond. The Primary Ash Pond is currently actively managing CCR wastes generated during operation of the coal-fired power plant. CCR waste is also actively removed from the Primary Ash Pond for off-site beneficial use. This practice is expected to continue after the pond no longer accepts CCR solids. The milestones presented in this plan, therefore, provide an overview of major tasks associated with final closure of the Primary Ash Pond and a schedule relative to the timeframes specified in the rule. This Closure Plan will be amended with more specific information once closure activities have been initiated.
(b)(2) - Initial Written Closure Plan Placed in Permanent Record
\begin{tabular}{|c|c|}
\hline CLOSURE PLAN FOR EXISTING CCR SURFACE IMP 40 CFR \(\$ 257.102\) (b) & \begin{tabular}{l}
UNDMENT \\
Rev 1 Page 2 of 2 January 24, 2018
\end{tabular} \\
\hline (e)(1)(ii) - The owner or operator must commence closure of the CCR unit no later than 30 days after the date on which the CCR unit...: Removed the known final volume of CCR from the CCR unit for the purpose of beneficial use of CCR. & \begin{tabular}{l}
Closure activities will commence 30 days after known final receipt of CCR waste and removal of the last known quantity of CCR from the Primary Ash Pond for the purpose of beneficial reuse, which for the purposes of this plan is assumed to be the year 2045. Closure activities will consist of the following components which will be implemented between 2045 and 2050: \\
1) \(\S 257.102(\mathrm{~g})\) Preparation of Notice of Intent to close a CCR Unit \\
2) Agency coordination \\
3) Mobilization \\
4) Reroute plant process water pipes and dewater and stabilize CCR \\
5) Grading of CCR material to final design grades \\
6) Installation of cap system \\
7) \(\S 257.102(\mathrm{~h})\) Preparation of Notification of Closure of a CCR Unit \\
8) \(\S 257.102(\mathrm{~h})(\mathrm{i})\) Deed Notation
\end{tabular} \\
\hline \(\mathrm{f}(2)\) (ii) - ...the owner or operator must complete closure of the CCR unit: For existing and new CCR surface impoundments and any lateral expansion of a CCR surface impoundment, within five years of commencing closure activities pursuant to...paragraph (e)(2) of this section. & Final closure of the Primary Ash Pond will occur within 5 years of commencing closure activities. \\
\hline \multicolumn{2}{|r|}{Certification by qualified professional engineer appended to this plan.} \\
\hline
\end{tabular}

\section*{Certification Statement 40 CFR § 257.102 (b)(4) - Written Closure Plan for a CCR Surface Impoundment or Landfill}

\section*{CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond}

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the written closure plan, dated January 24, 2018, meets the requirements of 40 CFR §257.102.

1/24/2018

Daniel Bullock, P.E. (TX 82596)
Bullock, Bennett \& Associates, LLC
Firm Registrations: Engineering F-8542, Geoscience 50127

\section*{Certification Statement 40 CFR § \(\mathbf{2 5 7 . 1 0 2}\) (d)(3)(iii) -Design of the Final Cover System for a} CCR Surface Impoundment or Landfill

\section*{CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond}

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the conceptual-level design of the final cover system as included in the written closure plan, dated January 24, 2018, meets the requirements of 40 CFR § 257.102.

Daniel Bullock, P.E. (TX 82596)
Bullock, Bennett \& Associates, LLC
Firm Registrations: Engineering F-8542, Geoscience 50127

\section*{RAMBULL}

40 C.F.R. § 257.102(B)(3): Closure Plan Addendum
Coleto Creek Existing CCR Surface Impoundment
November 30, 2020

\section*{ADDENDUM NO. 1 COLETO CREEK EXISTING CCR SURFACE IMPOUNDMENT CLOSURE PLAN}

This Addendum No. 1 to the Closure Plan for Existing Coal Combustion Residuals (CCR) Impoundment for the Coleto Creek Primary Ash Pond at the Coleto Creek Power Station, Revision 1 - January 24, 2018 has been prepared to meet the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R. Section \(257.103(f)(2)(v)(D))\) as a component of the demonstration that the Coleto Creek Primary Ash Pond qualifies for a site-specific alternative deadline to initiate closure due to permanent cessation of a coal-fired boiler by a certain date.

The Coleto Creek Primary Ash Pond will begin construction of closure by April 17, 2025 and cease receipt and placement of CCR and non-CCR wastestreams by no later than September 17, 2027 as indicated in the Coleto Creek Power Plant Alternative Closure Demonstration dated November 30, 2020. Closure will be completed by October 17, 2028 within the 5-year timeframe included in the Closure Schedule identified in the Coleto Creek Existing CCR Surface Impoundment Closure Plan in accordance with 40 C.F.R. § 257.102(f)(1)(ii).

All other aspects of the Closure Plan remain unchanged.

\section*{CERTIFICATION}

I, Maureen T. Warren, a Qualified Professional Engineer in good standing in the State of Texas, certify that the information in this addendum is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

\section*{Maureen T. Warren}

Maureen T. Warren
Qualified Professional Engineer
117550
Texas
Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien \& Gere Engineers, inc.
Date: November 30, 2020

\section*{SITE INFORMATION}

Site Name / Address
Owner Name / Address
CCR Unit
Reason for Initiating Closure

Coleto Creek Power Station, 45 FM 2987 Fannin, Goliad County, TX
Coleto Creek Power, LP 1500 Eastport Plaza Drive Collinsville, IL 62234
\begin{tabular}{|l|l|l|}
\hline Primary Ash Pond & Final Cover Type & Soil/Synthetic Liner System \\
\begin{tabular}{l}
Known final receipt of waste/Final removal of \\
beneficial reuse materials
\end{tabular} & Closure Method & Close In-Place \\
\hline (d)(1)(ii) & & \\
\hline CCR Office, Coleto Creek Power, LP & \\
\hline 601 Travis Street, Suite 1400, Houston, TX 77002 & Email & ccr@dynegy.com \\
\hline \(800-633-4704\) & &
\end{tabular}

\section*{POST-CLOSURE PLAN DESCRIPTION}
(d)(1)(i) Description of the monitoring and main
paragraph (b) of this section
for the CCR unit, and the
frequency at which these
activities will be performed;
(d)(1)(iii) A description of the planned uses of the property during the post-closure period.
(b)(1) Maintaining the integrity and effectiveness of the final cover system, including making repairs to the final cover as necessary to correct the effects of settlement, subsidence, erosion, or other events, and preventing run-on and run-off from eroding or otherwise damaging the final cover;
(3) Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with the
requirements of \(\S \S 257.90\) through 257.98.
Descriptions of maintenance activities and frequencies are provided below.
The property will continue to be operated as a coal-fired power plant. If operation of the power plant is discontinued, postclosure use of the property shall not disturb the integrity of the final cover, liner(s), or any other component of the containment system, or the function of the monitoring systems unless necessary to comply with the requirements in this subpart. Any other disturbance will only be allowed if the owner or operator of the CCR unit demonstrates that disturbance
of the final cover, liner, or other component of the containment system, including any removal of CCR, will not increase the potential threat to human health or the environment. The demonstration will be certified by a qualified professional engineer, and notification shall be provided to the Texas Commission on Environmental Quality (TCEQ) that the demonstration has been placed in the operating record and on the owners or operator's publicly accessible Internet site.

Following closure of the Primary Ash Pond, a notation on the deed to the property, or some other instrument that is normally examined during title search, will be recorded in accordance with 40 CFR 257.102 (i). The notation will notify potential purchasers of the property that the land has been used as a CCR unit and its use is restricted under the postclosure care requirements per 40 CFR 257.104(d)(1)(iii). Within 30 days of recording the deed notation, a notification stating that the notation has been recorded will be placed in the facility's operating record. The notification will be placed on the owner or operator's publicly accessible CCR Web site in accordance with 40 CFR 257.107
Post Closure Care Requirements §257.104(b)
(b)(1) Maintaining the integrity and effectiveness of the final cover system, including making repairs to the final cover as necessary to correct the effects of settlement, subsidence, erosion, or other events, and preventing run-on and run-off from eroding or otherwise damaging the final cover
b)(3) Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with the requirements of \(\$ \S 257.90\) through 257.98 .

In accordance with TCEQ guidelines, cover and drainage system inspections will be conducted semi-annually and after severe storms to check the condition of the facilities. The following items will be checked: Erosion of closure cover, deterioration of vegetative cover, damage to erosion control facilities, settlement, and drainage from operation of the seepage collection system. A description of the condition of the facility will be recorded in a logbook during each inspection. Any deterioration will be documented by photographs. In addition, settlement will be evaluated by topographic survey the first 5 years after closure. All records will be maintained in the facility's Permanent Record.

Groundwater monitoring is conducted in accordance with the requirements of \(\$ 257.90\) through \(\S 257.98\) as detailed in the certified Coleto Creek Power Station Groundwater

Sampling and Analysis Plan (October 17, 2017) and Groundwater Hydrogeologic Monitoring Plan (October 17, 2017).

NOTIFICATION AND RECORDKEEPING REQUIREMENTS
257.105(i) Closure and post-closure care. The owner or operator of a CCR available, in the facility's operating record:

The following post-closure care information will be placed in the facility's operating record as it becomes available:
- The written post-closure plan, and any amendment of the plan, as required by § 257.104(d), except that only the most recent closure plan must be maintained in the facility's operating record irrespective of the time requirement specified in paragraph (b) of this section.
- The notification of completion of post-closure care period as required by \(\S\) 257.104(e)

TCEQ will be notified when information has been placed in the facility's operating ecord. Notification will be submitted as follows:
- Notification of the availability of the written post-closure plan, and any amendment of the plan, specified under § 257.105(i)(12).
- Notification of completion of post-closure care specified under 257.105(i)(13)

The following information will be placed in the facility's Web site:
- The written post-closure plan, and any amendment of the plan, specified under § 257.105(i)(12).
- The notification of completion of post-closure care specified under § 257.105(i)(13).

\section*{POST-CLOSURE SCHEDULE}
(c) Post-closure care period. (1) Except as provided by paragraph (c)(2) of this section, the owner or operator of the CCR unit must conduct post-closure care for 30 years. (2) If at the end of the post-closure care period the owner or operator of the CCR unit is operating under assessment monitoring in accordance with \(\S 257.95\), the owner or operator must continue to conduct post-closure care until the owner or operator returns to detection monitoring in accordance with § 257.95 .
Note: At the time of this Written Post-Closure Plan, there are no immediate plans to close the Primary Ash Pond. The Primary Ash Pond is currently actively managing CCR wastes generated during operation of the coal-fired power plant. CCR waste is also actively removed from the Primary Ash Pond for off-site beneficial use. This practice is expected to continue after the pond no longer accepts CCR solids. The information presented in this plan, therefore, provides an overview of major tasks associated with final post-closure monitoring of the Primary Ash Pond and a schedule relative to the timeframes specified in the rule. This Post-Closure Plan will be amended with more specific information once closure activities have been initiated.
(d)(2)(i) - Initial Written Post-Closure Plan Placed in Permanent Record October 17, 2016

\footnotetext{
((e) Notification of completion of post-closure care period. No later than 60 days following the completion of the post-closure care period, the owner or operator of the CCR unit must prepare a notification verifying hat post-closure care has been completed. The notification must include the certification by a qualified professional engineer verifying that postlosure care has been completed in accordance with the closure pla secified in paragraph (d) of this section and the requirements of this section. The owner or operator has completed the notification when it has been placed in the facility's operating record as required by \(\S\) 257.105(i)(13).
}

\section*{Notification of the completion of post-closure care activities will be placed in the facility's Permanent Record no later than 60 days following the completion of the post-} closure care period.

\section*{Certification Statement 40 CFR § 257.104(d) - Written Post-Closure Plan for a CCR Surface Impoundment or Landfill}

\section*{CCR Unit: Coleto Creek Power, LP; Coleto Creek Power Station; Coleto Creek Primary Ash Pond}

I, Daniel Bullock, being a Registered Professional Engineer in good standing in the State of Texas, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR Unit, that the information contained in the written post-closure plan, dated January 24, 2018, meets the requirements of 40 CFR§257.104.

Daniel Bullock, P.E. (TX 82596)
Bullock, Bennett \& Associates, LLC
Firm Registrations: Engineering F-8542, Geoscience 50127

\section*{APPENDIX G - FINANCIAL ASSURANCE}

Post-Closure Care Cost Estimate Memo

\title{
TECHNICAL MEMORANDUM
}

TO Mr. Eric Chavers Luminant

FROM Patrick J. Behling, PE/Jeffrey B. Fassett, PE
EMAIL Patrick_Behling@golder.com
ESTIMATED POST CLOSURE CARE COSTS
MARTIN LAKE, OAK GROVE, SANDOW AND COLETO CREEK POWER PLANTS TCEQ POST CLOSURE CARE COST ESTIMATES

Luminant operates the following coal/lignite-fired power plants located in Texas:
- Martin Lake Steam Electric Station
- Oak Grove Steam Electric Station
- Sandow Steam Electric Station
- Coleto Creek Power Plant

Coal combustion residuals (CCR) are generated as by-products of power generation and are managed at the following existing CCR Units at each power plant:
- Martin Lake Steam Electric Station
- Permanent Disposal Pond No. 5 (PDP-5)
- Ash Ponds (East Ash Pond, West Ash Pond and New Scrubber Pond)
- A-1 Area Landfill
- Oak Grove Steam Electric Station
- Flue Gas Desulfurization Ponds (FGD-A, FGD-B and FGD-C)
- Ash Landfill 1
- Sandow Steam Electric Station
- AX Landfill
- Coleto Creek Power Plant
- Primary Ash Pond

These CCR Units are regulated under 40 CFR 257, Subpart D (the "Federal CCR Rule") and 30 Texas Administrative Code (TAC) Chapter 352 (The "TCEQ CCR Rule"). In accordance with 30 TAC §352.201, Luminant is required to submit an application to TCEQ to obtain a registration for each of these CCR Units.

Golder Associates USA Inc. (Golder) has been retained by Luminant to assist with preparation of Post Closure Care Cost Estimates (PCCE) for these CCR Units in accordance with §352.1101. This technical memorandum
presents the PCCEs estimated by Golder for the CCR Units. The PCCEs were prepared using TCEQ Technical Guidance Documents TG-30 and TG-31 and related documents.

\subsection*{1.0 CCR Unit Closure Assumptions}

The PCCEs were prepared based on the following closure assumptions for the CCR Units.

\subsection*{1.1 Martin Lake Steam Electric Station}
- PDP-5:
- CCR Unit Closure:
- Closure in Place with low permeability cap
- Cap Area: 40 acres
- Groundwater Closure:
- No evidence of a release to groundwater to date
- Continuation of Detection Monitoring for Groundwater
- Nine (9) monitoring wells sampled semi-annually
- Existing Leachate Collection System operated throughout post closure care period
- Ash Ponds:
- West Ash Pond (WAP), East Ash Pond (EAP) and New Scrubber Pond (NSP) managed as one CCR Unit
- CCR Unit Closure:
- Closure in Place with low permeability cap
- Cap Areas:
\begin{tabular}{ll}
- & WAP and EAP Cap Area: 25 acres \\
\(\circ\) & NSP Cap Area: \\
- & \(\underline{36 \text { acres }}\) \\
- Total: & 61 acres
\end{tabular}
- Groundwater Closure:
- Monitored Natural Attenuation (MNA) with MNA Groundwater Monitoring
- Continuation of Detection and Assessment Monitoring for Groundwater
- Seven (7) monitoring wells sampled semi-annually
- A-1 Area Landfill:
- CCR Unit Closure:
- Closure in Place with low permeability cap
- Cap Areas:
\begin{tabular}{lll}
- & Existing Cap Area: & 464 acres \\
- & Future Cap Area: & \(\underline{321 \text { acres }}\) \\
- Total: & 785 acres
\end{tabular}
- Groundwater Closure:
- Monitored Natural Attenuation (MNA) with MNA Groundwater Monitoring
- Continuation of Detection and Assessment Monitoring for Groundwater
- Twelve (12) monitoring wells sampled semi-annually

\subsection*{1.2 Oak Grove Steam Electric Station}
- FGD Ponds:
- FGD-A, FGD-B and FGD-C managed as one CCR Unit
- CCR Unit Closure:
- Closure in Place with vegetated, low permeability cap
- Cap Areas:
\begin{tabular}{lll}
\(\circ\) & FGD-A Cap Area: & \\
\hline 9 acres \\
\(\circ\) & FGD-B Cap Area: & \\
\hline 11.2 acres \\
\(\circ\) & FGD-C Cap Area: & \(\underline{15.2 \text { acres }}\) \\
\hline & Total: &
\end{tabular}
- Groundwater Closure:
- Monitored Natural Attenuation (MNA) with MNA Groundwater Monitoring
- Continuation of Detection and Assessment Monitoring for Groundwater
- Nine (9) monitoring wells sampled semi-annually
- Ash Landfill 1:
- CCR Unit Closure:
- Closure in Place with vegetated, low permeability cap
- Cap Area:

128 acres
- Groundwater Closure:
- No evidence of a release to groundwater to date
- Continuation of Detection Monitoring for Groundwater
- Six (6) monitoring wells sampled semi-annually
1.3 Sandow Steam Electric Station
- AX Landfill:
- CCR Unit Closure:
- Closure in Place with vegetated, low permeability cap
- Cap Area:

150 acres
- Groundwater Closure:
- No evidence of a release to groundwater to date
- Continuation of Detection Monitoring for Groundwater
- Nine (9) monitoring wells sampled semi-annually

\subsection*{1.4 Coleto Creek Power Plant}
- Primary Ash Pond (PAP):
- CCR Unit Closure:
- Closure in Place with vegetated, low permeability cap
- Cap Area: 190 acres
- Groundwater Closure:
- No evidence of a release to groundwater to date
- Continuation of Detection Monitoring for Groundwater
- Nine (9) monitoring wells sampled semi-annually

\subsection*{2.0 Post Closure Care Cost Assumptions}

The following general assumptions were incorporated into the PCCEs:
- Post Closure Care Period. A post-closure care period of 30 years is assumed in accordance with 30 TAC §352.1241 and 40 CFR § 257.104(c).
- CCR Unit Inspections. Weekly and annual inspections of the CCR Units are required under \(\S 352.831\) and \(\S 352.841\). It is assumed that these inspections will continue throughout the Post Closure Care Period.
- Final Cover Maintenance. It is likely that some level of maintenance/repair will be required for the final cover systems used to close the CCR Units. The PCCEs include the following assumptions for final cover maintenance/repair:
- Years 1-5 After Closure - it is assumed that erosion damage on \(5 \%\) of the cap soil will be repaired each year. The thickness of each repair is assumed to average 6 inches of soil. In addition, the repaired areas will be revegetated.
- Years 6-30 After Closure - it is assumed that erosion damage on \(5 \%\) of the cap soil will be repaired three times during this period. The thickness of each repair is assumed to average 6 inches of soil. In addition, the repaired areas will be revegetated.
- Estimated engineering/mobilization costs associated with the repairs/revegetation are included in the PCCEs.
- Annual mowing costs for the final cover are included in the PCCEs.
- General Site Maintenance. Maintenance of run-off/drainage structures, access roads, fencing, signs, etc. are included in the PCCEs.
- Groundwater Monitoring. Semi-annual groundwater monitoring in accordance with the Federal/TCEQ CCR Rules (detection monitoring or assessment monitoring) is on-going for each CCR Unit. It is assumed that the current groundwater monitoring program at each CCR Unit will continue throughout the Post Closure Care Period.

In addition, several of the CCR Units incorporate MNA as a groundwater remedy as part of closure. For those CCR Units, it is assumed that MNA analyses will be included in the semi-annual groundwater monitoring events.

It is also likely that maintenance of the monitoring well system at each CCR Unit will be required during the post closure care period. The PCCEs assume that one monitoring well will be replaced every 10 years at each CCR Unit.
- One Time Post Closure Care Costs. The following on time activities associated with post closure care are included in the PCCEs for each CCR Unit:
- Deed Notices/Surveys
- Monitoring Well Plugging and Abandonment
- Leachate Collection - PDP-5. Martin Lake PDP-5 is constructed with a leachate collection system to remove leachate from the unit after closure. For the PDP-5 PCCE, it is assumed that all free liquids in PDP-5 will be removed during closure and the existing leachate collection system will be operated throughout the post closure care period to remove water that infiltrates through the low permeability cap. For the PCEE, the average annual volume of leachate generated following closure was estimated to be approximately 1,000 gallons per year using the Hydrologic Evaluation of Landfill Performance (HELP)

Model (see Attachment A). Costs to dispose of this estimated volume of leachate as Class II Industrial Waste and maintain the leachate collection system through the post closure care period are included in the PCCE for PDP-5.
- Contingency. A 10\% contingency factor is included in each PCCE.

\subsection*{3.0 Post Closure Care Cost Estimates}

Based on the assumptions listed above, \(30-\) Year post closure care cost estimates for the Luminant CCR Units are as follows (see Tables 1 through 7 for details):
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ CCR Unit } & \begin{tabular}{c}
30-Year Post Closure \\
Care Cost Estimate
\end{tabular} \\
\hline MLSES PDP-5 & \(\$ 2,026,787\) \\
\hline MLSES Ash Ponds & \(\$ 2,228,065\) \\
\hline MLSES A-1 Area Landfill & \(\$ 8,273,063\) \\
\hline OGSES FGD Ponds & \(\$ 2,168,817\) \\
\hline OGSES Ash Landfill 1 & \(\$ 2,326,837\) \\
\hline SASES AX Landfill & \(\$ 2,591,600\) \\
\hline CCPP PAP & \(\$ 3,117,987\) \\
\hline
\end{tabular}

It should be noted that the PCCEs presented herein are considered Opinions of Probable Cost and represent Golder's best judgement based on the assumptions stated, information available at the time the estimates were prepared, and Golder's experience with similar sites. The PCCEs are susceptible to variations in future cost of materials, labor, and equipment and should not be considered guaranteed maximum prices for post closure care activities.

Please do not hesitate to contact us if you have any questions or comments.

\section*{TABLES}

Martin Lake Steam Electric Station - PDP-5
Post Closure Care Cost Estimate - 30 TAC 352.1101

Martin Lake Steam Electric Station - Ash Ponds Post Closure Care Cost Estimate - 30 TAC \(\mathbf{3 5 2 . 1 1 0 1}\)

\section*{Notes:}
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

\section*{Martin Lake Steam Electric Station - A1 Area Landfill} Post Closure Care Cost Estimate - 30 TAC \(\mathbf{3 5 2 . 1 1 0 1}\)

\section*{otes:}
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

Oak Grove Steam Electric Station - FGD Ponds Post Closure Care Cost Estimate - 30 TAC \(\mathbf{3 5 2 . 1 1 0 1}\)

\section*{Notes:}
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

\section*{Oak Grove Steam Electric Station - Ash Landfill 1} Post Closure Care Cost Estimate - 30 TAC 352.1101
\begin{tabular}{|l|c|c|c|c|c|}
\hline Item & Unit & Rate & Quantity & Cost/Event & \begin{tabular}{c}
No. of \\
Events
\end{tabular} \\
30-Year Cost
\end{tabular}\(|\)

Notes:
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

\section*{Sandow Steam Electric Station - AX Landfill} Post Closure Care Cost Estimate - 30 TAC \(\mathbf{3 5 2 . 1 1 0 1}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & Unit & Rate & Quantity & Cost/Event & No. of Events & 30-Year Cost \\
\hline CCR Unit Inspections (Annually) & LS & \$15,000 & 1 & \$15,000 & 30 & \$450,000 \\
\hline Final Cover Maintenance & & & & & & \\
\hline - Erosion Repair, 6-inch avg. thickness, 5\% of cap per year, Years 1-5 & CY & \$5 & 6,050 & \$30,250 & 5 & \$151,250 \\
\hline - Erosion Repair, 6-inch avg. thickness, 5\% of cap, 3 times, Years 6-30 & CY & \$5 & 6,050 & \$30,250 & 3 & \$90,750 \\
\hline - Revegetation, 5\% of cap area per year, Years 1-5 & AC & \$1,500 & 7.5 & \$11,250 & 5 & \$56,250 \\
\hline - Revegetation, 5\% of cap area, 3 times, Years 6-30 & AC & \$1,500 & 7.5 & \$11,250 & 3 & \$33,750 \\
\hline - Engineering/Mobilization for Final Cover Repairs/Revegetation Events & LS & \$10,000 & 1 & \$10,000 & 8 & \$80,000 \\
\hline - Mowing, per year & AC & \$150 & 150 & \$22,500 & 30 & \$675,000 \\
\hline General Site Maintenance (Annually) & & & & & & \\
\hline - Run-off/Drainage Structures & LS & \$4,000 & 1 & \$4,000 & 30 & \$120,000 \\
\hline - Access Roads, fencing, signs, etc. & LS & \$2,000 & 1 & \$2,000 & 30 & \$60,000 \\
\hline GW Monitoring (Annually) & & & & & & \\
\hline - Detection Monitoring - Semi-annual Collection/Analysis, (9 MWs, 1 Dup) & EA & \$500 & 10 & \$5,000 & 60 & \$300,000 \\
\hline - Annual Report & LS & \$10,000 & 1 & \$10,000 & 30 & \$300,000 \\
\hline - Monitoring Well Maintenance (1 MW replaced every 10 years) & EA & \$5,000 & 1 & \$5,000 & 3 & \$15,000 \\
\hline One Time Post Closure Care Costs & & & & & & \\
\hline - Deed Notices/Surveys & LS & \$15,000 & 1 & \$15,000 & 1 & \$15,000 \\
\hline - Monitoring Well Plugging and Abandonment & EA & \$1,000 & 9 & \$9,000 & 1 & \$9,000 \\
\hline \multicolumn{6}{|r|}{Subtotal 30-Year Post Closure Care Costs:} & \$2,356,000 \\
\hline \multicolumn{6}{|r|}{Contingency (10\%):} & \$235,600 \\
\hline \multicolumn{6}{|r|}{30-Year Post Closure Cost Estimate:} & \$2,591,600 \\
\hline
\end{tabular}

Notes:
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

Coleto Creek Power Plant - Primary Ash Pond Post Closure Care Cost Estimate - 30 TAC \(\mathbf{3 5 2 . 1 1 0 1}\)

\section*{Notes:}
1. LF - linear foot
2. SY - square yard
3. CY - cubic yard
4. EA - each
5. AC - acre
6. M - month
7. Gal - gallons
8. See Technical Memorandum for cost assumptions

\section*{ATTACHMENT A PDP-5 HELP MODEL RESULTS}

\title{
HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)
}

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: Martin Lake PDP \(5 \quad\) Simulated On: \(1 / 3 / 2022\) 14:52

\section*{Layer 1}

Type 1 - Vertical Percolation Layer (Cover Soil)
SiL - Silty Loam(Moderate)
Material Texture Number 23
Thickness
\begin{tabular}{rr}
\(=\) & 18 inches \\
\(=\) & \(0.461 \mathrm{vol} / \mathrm{vol}\) \\
\(=\) & \(0.36 \mathrm{vol} / \mathrm{vol}\) \\
\(=\) & \(0.203 \mathrm{vol} / \mathrm{vol}\) \\
\(=\) & \(0.2798 \mathrm{vol} / \mathrm{vol}\) \\
\(=\) & \(9.00 \mathrm{E}-06 \mathrm{~cm} / \mathrm{sec}\)
\end{tabular}

\section*{Layer 2}

Type 4 - Flexible Membrane Liner
LDPE Membrane
Material Texture Number 36
Thickness \(=0.04\) inches
Effective Sat. Hyd. Conductivity \(\quad=\quad 4.00 \mathrm{E}-13 \mathrm{~cm} / \mathrm{sec}\)
FML Pinhole Density \(=\quad 1\) Holes/Acre
FML Installation Defects \(=\quad 4\) Holes/Acre
FML Placement Quality \(=\quad 2\) Excellent

\section*{Layer 3}

Type 1 - Vertical Percolation Layer
Clay
Material Texture Number 43
Thickness \(=\quad 24\) inches

Porosity \(\quad=\quad 0.451 \mathrm{vol} / \mathrm{vol}\)
Field Capacity \(\quad=\quad 0.419 \mathrm{vol} / \mathrm{vol}\)
Wilting Point \(=\quad 0.332 \mathrm{vol} / \mathrm{vol}\)
Initial Soil Water Content \(=0.4174 \mathrm{vol} / \mathrm{vol}\)
Effective Sat. Hyd. Conductivity \(=\quad 1.00 \mathrm{E}-07 \mathrm{~cm} / \mathrm{sec}\)

\section*{Layer 4}

Type 1 - Vertical Percolation Layer (Waste)
High-Density Electric Plant Coal Fly Ash
Material Texture Number 30
\begin{tabular}{llr}
Thickness & \(=\) & 720 inches \\
Porosity & \(=\) & \(0.541 \mathrm{vol} / \mathrm{vol}\) \\
Field Capacity & \(=\) & \(0.187 \mathrm{vol} / \mathrm{vol}\) \\
Wilting Point & \(=\) & \(0.047 \mathrm{vol} / \mathrm{vol}\) \\
Initial Soil Water Content & \(=\) & \(0.187 \mathrm{vol} / \mathrm{vol}\) \\
Effective Sat. Hyd. Conductivity & \(=\) & \(5.00 \mathrm{E}-05 \mathrm{~cm} / \mathrm{sec}\)
\end{tabular}

\section*{Layer 5}

Type 3 - Barrier Soil Liner
C (Moderate)
Material Texture Number 29
\begin{tabular}{llr}
Thickness & \(=\) & 48 inches \\
Porosity & \(=\) & \(0.451 \mathrm{vol} / \mathrm{vol}\) \\
Field Capacity & \(=\) & \(0.419 \mathrm{vol} / \mathrm{vol}\) \\
Wilting Point & \(=\) & \(0.332 \mathrm{vol} / \mathrm{vol}\) \\
Initial Soil Water Content & \(=\) & \(0.451 \mathrm{vol} / \mathrm{vol}\) \\
Effective Sat. Hyd. Conductivity & \(=\) & \(6.80 \mathrm{E}-07 \mathrm{~cm} / \mathrm{sec}\)
\end{tabular}

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

\section*{General Design and Evaporative Zone Data}
\begin{tabular}{llc}
SCS Runoff Curve Number & \(=\) & 84.2 \\
Fraction of Area Allowing Runoff & \(=\) & \(100 \%\) \\
Area projected on a horizontal plane & \(=\) & 40 acres \\
Evaporative Zone Depth & \(=\) & 18 inches \\
Initial Water in Evaporative Zone & \(=\) & 5.037 inches \\
Upper Limit of Evaporative Storage & \(=\) & 8.298 inches \\
Lower Limit of Evaporative Storage & \(=\) & 3.654 inches \\
Initial Snow Water & \(=\) & 0 inches \\
Initial Water in Layer Materials & \(=\) & 171.343 inches \\
Total Initial Water & \(=\) & 171.343 inches \\
Total Subsurface Inflow & & 0 inches/year
\end{tabular}

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data
\begin{tabular}{llc}
Station Latitude & \(=\) & 32.31 Degrees \\
Maximum Leaf Area Index & \(=\) & 5 \\
Start of Growing Season (Julian Date) & \(=\) & 0 days \\
End of Growing Season (Julian Date) & \(=\) & 367 days \\
Average Wind Speed & \(=\) & 6 mph
\end{tabular}
\begin{tabular}{llr}
Average 1st Quarter Relative Humidity & \(=\) & \(1 \%\) \\
Average 2nd Quarter Relative Humidity & \(=\) & \(22 \%\) \\
Average 3rd Quarter Relative Humidity & \(=\) & \(88 \%\) \\
Average 4th Quarter Relative Humidity & \(=\) & \(22 \%\)
\end{tabular}

Note: Evapotranspiration data was obtained for Dirgin, Texas

\section*{Normal Mean Monthly Precipitation (inches)}
\begin{tabular}{cccccc}
\(\frac{\text { Jan/Jul }}{}\) & \(\frac{\text { Feb/Aug }}{}\) & \(\frac{\text { Mar/Sep }}{}\) & \(\frac{\text { Apr/Oct }}{}\) & \(\frac{\text { May/Nov }}{}\) & \(\frac{\text { Jun/Dec }}{3.449471}\) \\
3.632658 & 4.152557 & 5.603921 \\
3.172363 & 2.83961 & 2.855806 & 4.403743 & 4.552789 & 4.108209
\end{tabular}

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 32.31/-94.55

\section*{Normal Mean Monthly Temperature (Degrees Fahrenheit)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Jan/Jul & Feb/Aug & Mar/Sep & Apr/Oct & May/Nov & Jun/Dec \\
\hline 51.6 & 52.5 & 64.1 & 73 & 79.7 & 89.4 \\
\hline 92.3 & 89.7 & 84.1 & 74 & 66.1 & 57.1 \\
\hline
\end{tabular}

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 32.31/-94.55
Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 32.31/-94.55

\section*{Average Annual Totals Summary}
\(\begin{array}{ll}\text { Title: } & \text { Martin Lake PDP } 5 \\ \text { Simulated on: } & 1 / 6 / 20228.32\end{array}\)
Simulated on: \(\quad 1 / 6 / 2022\) 8:32
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Average Annual Totals for Years 1-30*} \\
\hline & (inches) & [std dev] & (cubic feet) & (gallons) & (percent) \\
\hline Precipitation & 47.10 & [5.76] & 6,838,323.4 & 51,154,215.3 & 100.00 \\
\hline Runoff & 4.062 & [2.566] & 589,755.5 & 4,411,677.7 & 8.62 \\
\hline Evapotranspiration & 42.959 & [5.448] & 6,237,618.8 & 46,660,632.2 & 91.22 \\
\hline \multicolumn{6}{|l|}{Subprofile1} \\
\hline Percolation/leakage through Layer 2 & 0.000690 & [0.000293] & 100.1 & 749.1 & 0.00 \\
\hline Average Head on Top of Layer 2 & 2.5255 & [1.058] & --- & --- & --- \\
\hline \multicolumn{6}{|l|}{Subprofile2} \\
\hline Percolation/leakage through Layer 5 & 0.000690 & [0.000293] & 100.1 & 749.1 & 0.00 \\
\hline Average Head on Top of Layer 5 & 0.0000 & [0] & --- & --- & --- \\
\hline \multicolumn{6}{|l|}{Water storage} \\
\hline Change in water storage & 0.0747 & [1.8339] & 10,849.0 & 81,156.3 & 0.16 \\
\hline
\end{tabular}

\footnotetext{
* Note: Average inches are converted to volume based on the user-specified area.
}

\section*{Peak Annual Totals Summary}
\begin{tabular}{|r|r|r|}
\hline Year & \begin{tabular}{l}
Percolation/leakage \\
through Layer 2 \\
(cubic feet)
\end{tabular} & \begin{tabular}{l}
Percolation/leaka \\
ge through Layer \\
2 (gallons)
\end{tabular} \\
\hline 1 & 94.36 & 705.86 \\
\hline 2 & 90.86 & 679.71 \\
\hline 3 & 114.98 & 860.12 \\
\hline 4 & 133.94 & 1001.98 \\
\hline 5 & 68.53 & 512.66 \\
\hline 6 & 72.73 & 544.05 \\
\hline 7 & 65.14 & 487.29 \\
\hline 8 & 129.67 & 969.97 \\
\hline 9 & 145.04 & 1084.99 \\
\hline 10 & 96.08 & 718.70 \\
\hline 11 & 113.33 & 847.75 \\
\hline 12 & 127.05 & 950.38 \\
\hline 13 & 170.85 & 1278.05 \\
\hline 14 & 110.62 & 827.46 \\
\hline 15 & 176.37 & 1319.34 \\
\hline 16 & 32.26 & 241.34 \\
\hline 17 & 135.53 & 1013.81 \\
\hline 18 & 114.29 & 854.96 \\
\hline 19 & 124.03 & 927.84 \\
\hline 20 & 9.75 & 72.90 \\
\hline 21 & 36.21 & 270.86 \\
\hline 22 & 65.90 & 492.99 \\
\hline 23 & 79.54 & 594.98 \\
\hline 24 & 31.83 & 238.14 \\
\hline 25 & 99.15 & 741.70 \\
\hline 26 & 78.99 & 590.87 \\
\hline 27 & 111.77 & 836.07 \\
\hline 28 & 180.88 & 1353.09 \\
\hline 29 & 76.11 & 569.33 \\
\hline 30 & 118.42 & 885.85 \\
\hline & & \\
\hline
\end{tabular}```

[^0]: Notes:
 CMA $=$
 CMA = Corrective Measures Assessment
 NA $=$ Not Applicable
 TBD $=$ To Be Determi

 1. Groundwater sample analysis was limited to Appendix IV parameters detected in previous events in accordance with 40 C.F.R. § 257.95 (d)(1).
[^1]: 2. J - concentration is below sample quantitation limit; result is an estimate.
 3. Non-detect Ra isotope results were assigned a value equal to the minimum detectable concentration
 4. $N A=$ Not analyzed.
[^2]: ${ }^{1}$ This revised History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment replaces the initial version of this report dated October 13, 2016.

[^3]: Depth to Water $=$
 Average Unsaturated Soil Unit Weight， $\mathrm{y}_{\mathrm{d}}=$ Average Saturated Soil Unit Weight， $\mathrm{y}_{\mathrm{s}}=$ Average Water Unit Weight， $\mathrm{y}_{\mathrm{w}}=$
 Earthquake Magnitude， $\mathrm{M}_{\mathrm{w}}=$

[^4]: ${ }^{1}$ This revised History of Construction and Initial Hazard Potential Assessment, Structural Integrity Assessment, and Safety Factor Assessment replaces the initial version of this report dated October 13, 2016.

[^5]: ** Note: Test performed by heating the sample to 440 degrees centigrade for a period of three hours.

